Biochemical and Thermochemical Conversion Processes of Lignicellulosic Biomass Fractionated Streams

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Environmental and Green Processes".

Deadline for manuscript submissions: closed (30 November 2020) | Viewed by 52192

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website
Guest Editor
Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, C148 Luleå, Sweden
Interests: biomass pretreatment and fractionation; organosolv; bioenergy; biofuels; biomaterials; heterotrophic growth of algae; production of nutraceutical compounds; lignin valorization; enzymatic processes
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Chemical Sciences, University of Limerick, Castletroy, Co. Limerick V94 T9PX, Ireland
Interests: life cycle analysis; manufacturing; risk models; bioenergy; water systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Switching towards a sustainable and green economy requires the use of renewable resources for the production of fuels, chemicals, and materials. In such a scenario, the use of lignocellulosic biomass and waste streams plays an important role, as it consists of abundant renewable resources. The complex nature of lignocellulosic biomass dictates the use of a pretreatment process prior to any further processing. Traditional methods of biomass pretreatment fail to recover cellulose, hemicellulose, and lignin in clean streams. It has been recognized that efficient use of all the main fractions of lignocellulosic biomass (cellulose, hemicellulose, and lignin) is an important step towards a financially sustainable biomass biorefinery. To this context, switching from biomass pretreatment to biomass fractionation can offer a sustainable solution to recover relative clean streams of cellulose, hemicellulose, and lignin. This Special issue aims at exploring the most advanced solutions in biomass and waste pretreatment and fractionation techniques, together with novel (thermo)chemical and biochemical processes for the conversion of fractionated cellulose, hemicellulose and lignin to bioenergy, bio-based chemicals, and biomaterials, including application of such products (i.e., use of biochar for filtration and metallurgical processes), as well as recent developments in kinetic, thermodynamic, and numeric modeling of conversion processes. The scope of this Special Issue will also cover progress in advanced measuring methods and techniques used in the characterization of biomass, waste, and products.

The authors are encouraged to contact one of the editors to discuss the relevance of the selected topic before the submission deadline.

Dr. Leonidas Matsakas
Dr. Anna Trubetskaya
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomass biorefinery
  • biomass pretreatment and fractionation
  • bioenergy
  • biofuels
  • biomaterials
  • bio-based chemicals
  • biochar

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

4 pages, 180 KiB  
Editorial
Special Issue: Biochemical and Thermochemical Conversion Processes of Lignocellulosic Biomass Fractionated Streams
by Anna Trubetskaya and Leonidas Matsakas
Processes 2021, 9(6), 969; https://doi.org/10.3390/pr9060969 - 31 May 2021
Cited by 2 | Viewed by 2170
Abstract
Global consumption of materials such as forest resources, fossil fuels, earth metals and minerals are expected to double in the next 30 years, while annual waste production is estimated to increase by approximately 70% by 2050 [...] Full article

Research

Jump to: Editorial, Review

12 pages, 10439 KiB  
Article
Is Steam Explosion a Promising Pretreatment for Acid Hydrolysis of Lignocellulosic Biomass?
by David Steinbach, Andrea Kruse, Jörg Sauer and Jonas Storz
Processes 2020, 8(12), 1626; https://doi.org/10.3390/pr8121626 - 10 Dec 2020
Cited by 11 | Viewed by 3774
Abstract
For the production of sugars and biobased platform chemicals from lignocellulosic biomass, the hydrolysis of cellulose and hemicelluloses to water-soluble sugars is a crucial step. As the complex structure of lignocellulosic biomass hinders an efficient hydrolysis via acid hydrolysis, a suitable pretreatment strategy [...] Read more.
For the production of sugars and biobased platform chemicals from lignocellulosic biomass, the hydrolysis of cellulose and hemicelluloses to water-soluble sugars is a crucial step. As the complex structure of lignocellulosic biomass hinders an efficient hydrolysis via acid hydrolysis, a suitable pretreatment strategy is of special importance. The pretreatment steam explosion was intended to increase the accessibility of the cellulose fibers so that the subsequent acid hydrolysis of the cellulose to glucose would take place in a shorter time. Steam explosion pretreatment was performed with beech wood chips at varying severities with different reaction times (25–34 min) and maximum temperatures (186–223 °C). However, the subsequent acid hydrolysis step of steam-exploded residue was performed at constant settings at 180 °C with diluted sulfuric acid. The concentration profiles of the main water-soluble hydrolysis products were recorded. We showed in this study that the defibration of the macrofibrils in the lignocellulose structure during steam explosion does not lead to an increased rate of cellulose hydrolysis. So, steam explosion is not a suitable pretreatment for acid hydrolysis of hardwood lignocellulosic biomass. Full article
Show Figures

Graphical abstract

13 pages, 608 KiB  
Article
Biomimetic Vanadate and Molybdate Systems for Oxidative Upgrading of Iono- and Organosolv Hard- and Softwood Lignins
by Lucía Penín, Matteo Gigli, Federica Sabuzi, Valentín Santos, Pierluca Galloni, Valeria Conte, Juan Carlos Parajó, Heiko Lange and Claudia Crestini
Processes 2020, 8(9), 1161; https://doi.org/10.3390/pr8091161 - 16 Sep 2020
Cited by 6 | Viewed by 2886
Abstract
Recently reported acetosolv soft- and hardwood lignins as well as ionosolv soft- and hardwood lignins were transformed into monomeric aromatic compounds using either a vanadate or a molybdate-based catalyst system. Monomers were generated with remarkable, catalyst-dependent selectivity and high depolymerisation yields via oxidative [...] Read more.
Recently reported acetosolv soft- and hardwood lignins as well as ionosolv soft- and hardwood lignins were transformed into monomeric aromatic compounds using either a vanadate or a molybdate-based catalyst system. Monomers were generated with remarkable, catalyst-dependent selectivity and high depolymerisation yields via oxidative exo- and endo-depolymerisation processes. Using the vanadate–hydrogen peroxide system on acetosolv pine lignin, vanillin and isovanillin were produced as main products with depolymerisation yields of 31%. Using the molybdate system on acetosolv and ionosolv lignin, vanillic acid was the practically exclusive product, with depolymerisation yields of up to 72%. Similar selectivities, albeit with lower depolymerisation yields of around 50% under standardised conditions, were obtained for eucalyptus acetosolv lignin, producing vanillin and syringaldehyde or vanillic acid as products, by using the vanadate- or the molybdate-based systems respectively. Full article
Show Figures

Graphical abstract

15 pages, 2833 KiB  
Article
Melt Stable Functionalized Organosolv and Kraft Lignin Thermoplastic
by Shubhankar Bhattacharyya, Leonidas Matsakas, Ulrika Rova and Paul Christakopoulos
Processes 2020, 8(9), 1108; https://doi.org/10.3390/pr8091108 - 05 Sep 2020
Cited by 17 | Viewed by 3147
Abstract
A shift towards an economically viable biomass biorefinery concept requires the use of all biomass fractions (cellulose, hemicellulose, and lignin) for the production of high added-value products. As lignin is often underutilized, the establishment of lignin valorization routes is highly important. In-house produced [...] Read more.
A shift towards an economically viable biomass biorefinery concept requires the use of all biomass fractions (cellulose, hemicellulose, and lignin) for the production of high added-value products. As lignin is often underutilized, the establishment of lignin valorization routes is highly important. In-house produced organosolv as well as commercial Kraft lignin were used in this study. The aim of the current work was to make a comparative study of thermoplastic biomaterials from two different types of lignins. Native lignins were alkylate with two different alkyl iodides to produce ether-functionalized lignins. Successful etherification was verified by FT-IR spectroscopy, changes in the molecular weight of lignin, as well as 13C and 1H Nuclear Magnetic Resonance (NMR). The thermal stability of etherified lignin samples was considerably improved with the T2% of organosolv to increase from 143 °C to up to 213 °C and of Kraft lignin from 133 °C to up to 168 °C, and glass transition temperature was observed. The present study shows that etherification of both organosolv and Kraft lignin with alkyl halides can produce lignin thermoplastic biomaterials with low glass transition temperature. The length of the alkyl chain affects thermal stability as well as other thermal properties. Full article
Show Figures

Figure 1

22 pages, 6574 KiB  
Article
Electrical Resistivity of Carbonaceous Bed Material at High Temperature
by Gerrit Ralf Surup, Tommy Andre Pedersen, Annah Chaldien, Johan Paul Beukes and Merete Tangstad
Processes 2020, 8(8), 933; https://doi.org/10.3390/pr8080933 - 03 Aug 2020
Cited by 13 | Viewed by 6148
Abstract
This study reports the effect of high-temperature treatment on the electrical properties of charcoal, coal, and coke. The electrical resistivity of industrial charcoal samples used as a reducing agent in electric arc furnaces was investigated as a renewable carbon source. A set-up to [...] Read more.
This study reports the effect of high-temperature treatment on the electrical properties of charcoal, coal, and coke. The electrical resistivity of industrial charcoal samples used as a reducing agent in electric arc furnaces was investigated as a renewable carbon source. A set-up to measure the electrical resistivity of bulk material at heat treatment temperatures up to 1700 C was developed. Results were also evaluated at room temperature by a four-point probe set-up with adjustable load. It is shown that the electrical resistivity of charcoal decreases with increasing heat treatment temperature and approaches the resistivity of fossil carbon materials at temperatures greater than 1400 C. The heat treatment temperature of carbon material is the main influencing parameter, whereas the measurement temperature and residence time showed only a minor effect on electrical resistivity. Bulk density of the carbon material and load on the burden have a large impact on the electrical resistivity of each material, while the effect of particle size can be neglected at high heat treatment temperature or compacting pressure. The mechanical durability of charcoal slightly increased after heat treatment and decreased for coal and semi-coke samples. The results indicate that charcoal can be used as an efficient carbon source for electric arc furnaces. Full article
Show Figures

Figure 1

21 pages, 415 KiB  
Article
Structural and Thermal Characterization of Novel Organosolv Lignins from Wood and Herbaceous Sources
by Anna Trubetskaya, Heiko Lange, Bernd Wittgens, Anders Brunsvik, Claudia Crestini, Ulrika Rova, Paul Christakopoulos, J. J. Leahy and Leonidas Matsakas
Processes 2020, 8(7), 860; https://doi.org/10.3390/pr8070860 - 17 Jul 2020
Cited by 28 | Viewed by 3445
Abstract
This study demonstrates the effects of structural variations of lignins isolated via an organosolv process from different woody and herbaceous feedstocks on their thermal stability profiles. The organosolv lignins were first analysed for impurities, and structural features were determined using the default set [...] Read more.
This study demonstrates the effects of structural variations of lignins isolated via an organosolv process from different woody and herbaceous feedstocks on their thermal stability profiles. The organosolv lignins were first analysed for impurities, and structural features were determined using the default set of gel permeation chromatography, FT-IR spectroscopy, quantitative 31 P NMR spectroscopy and semi-quantitative 1 H- 13 C HSQC analysis. Pyrolysis-, O 2 - and CO 2 -reactivity of the organosolv lignins were investigated by thermogravimetric analysis (TGA), and volatile formation in various heating cycles was mapped by head-space GC-MS analysis. Revealed reactivities were correlated to the presence of identified impurities and structural features typical for the organosolv lignins. Data suggest that thermogravimetric analysis can eventually be used to delineate a lignin character when basic information regarding its isolation method is available. Full article
Show Figures

Figure 1

26 pages, 2778 KiB  
Article
Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters
by Evangelos Xenopoulos, Ioannis Giannikakis, Afroditi Chatzifragkou, Apostolis Koutinas and Seraphim Papanikolaou
Processes 2020, 8(7), 819; https://doi.org/10.3390/pr8070819 - 11 Jul 2020
Cited by 24 | Viewed by 2877
Abstract
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further [...] Read more.
Six yeast strains belonging to Rhodosporidium toruloides, Lipomyces starkeyi, Rhodotorula glutinis and Cryptococcus curvatus were shake-flask cultured on xylose (initial sugar—S0 = 70 ± 10 g/L) under nitrogen-limited conditions. C. curvatus ATCC 20509 and L. starkeyi DSM 70296 were further cultured in media where process waters were partially replaced by the phenol-containing olive mill wastewaters (OMWs). In flasks with S0 ≈ 100 g/L and OMWs added yielding to initial phenolic compounds concentration (PCC0) between 0.0 g/L (blank experiment) and 2.0 g/L, C. curvatus presented maximum total dry cell weight—TDCWmax ≈ 27 g/L, in all cases. The more the PCC0 increased, the fewer lipids were produced. In OMW-enriched media with PCC0 ≈ 1.2 g/L, TDCW = 20.9 g/L containing ≈ 40% w/w of lipids was recorded. In L. starkeyi cultures, when PCC0 ≈ 2.0 g/L, TDCW ≈ 25 g/L was synthesized, whereas lipids in TDCW = 24–28% w/w, similar to the experiments without OMWs, were recorded. Non-negligible dephenolization and species-dependent decolorization of the wastewater occurred. A batch-bioreactor trial by C. curvatus only with xylose (S0 ≈ 110 g/L) was performed and TDCW = 35.1 g/L (lipids in TDCW = 44.3% w/w) was produced. Yeast total lipids were composed of oleic and palmitic and to lesser extent linoleic and stearic acids. C. curvatus lipids were mainly composed of nonpolar fractions (i.e., triacylglycerols). Full article
Show Figures

Figure 1

17 pages, 5002 KiB  
Article
Evaluation of the Interactive Effect Pretreatment Parameters via Three Types of Microwave-Assisted Pretreatment and Enzymatic Hydrolysis on Sugar Yield
by Saleem Ethaib, Rozita Omar, Mustapa Kamal Siti Mazlina and Awang Biak Dayang Radiah
Processes 2020, 8(7), 787; https://doi.org/10.3390/pr8070787 - 06 Jul 2020
Cited by 8 | Viewed by 2277
Abstract
This study aims to evaluate the sugar yield from enzymatic hydrolysis and the interactive effect pretreatment parameters of microwave-assisted pretreatment on glucose and xylose. Three types of microwave-assisted pretreatments of sago palm bark (SPB) were conducted for enzymatic hydrolysis, namely: microwave-sulphuric acid pretreatment [...] Read more.
This study aims to evaluate the sugar yield from enzymatic hydrolysis and the interactive effect pretreatment parameters of microwave-assisted pretreatment on glucose and xylose. Three types of microwave-assisted pretreatments of sago palm bark (SPB) were conducted for enzymatic hydrolysis, namely: microwave-sulphuric acid pretreatment (MSA), microwave-sodium hydroxide pretreatment (MSH), and microwave-sodium bicarbonate (MSB). The experimental design was done using a response surface methodology (RSM) and Box–Behenken Design (BBD). The pretreatment parameters ranged from 5–15% solid loading (SL), 5–15 min of exposure time (ET), and 80–800 W of microwave power (MP). The results indicated that the maximum total reducing sugar was 386 mg/g, obtained by MSA pretreatment. The results also illustrated that the higher glucose yield, 44.3 mg/g, was found using MSH pretreatment, while the higher xylose yield, 43.1 mg/g, resulted from MSA pretreatment. The pretreatment parameters MP, ET, and SL showed different patterns of influence on glucose and xylose yield via enzymatic hydrolysis for MSA, MSH, and MSB pretreatments. The analyses of the interactive effect of the pretreatment parameters MP, ET, and SL on the glucose yield from SPB showed that it increased with the high MP and longer ET, but this was limited by low SL values. However, the analysis of the interactive effect of the pretreatment parameters on xylose yields revealed that MP had the most influence on the xylose yield for MSA, MSH, and MSB pretreatments. Full article
Show Figures

Figure 1

19 pages, 2083 KiB  
Article
Evaluation of Napier Grass for Bioethanol Production through a Fermentation Process
by Mallika Boonmee Kongkeitkajorn, Chanpim Sae-Kuay and Alissara Reungsang
Processes 2020, 8(5), 567; https://doi.org/10.3390/pr8050567 - 11 May 2020
Cited by 21 | Viewed by 10662
Abstract
Ethanol is one of the widely used liquid biofuels in the world. The move from sugar-based production into the second-generation, lignocellulosic-based production has been of interest due to an abundance of these non-edible raw materials. This study interested in the use of Napier [...] Read more.
Ethanol is one of the widely used liquid biofuels in the world. The move from sugar-based production into the second-generation, lignocellulosic-based production has been of interest due to an abundance of these non-edible raw materials. This study interested in the use of Napier grass (Pennisetum purpureum Schumach), a common fodder in tropical regions and is considered an energy crop, for ethanol production. In this study, we aim to evaluate the ethanol production potential from the grass and to suggest a production process based on the results obtained from the study. Pretreatments of the grass by alkali, dilute acid, and their combination prepared the grass for further hydrolysis by commercial cellulase (Cellic® CTec2). Separate hydrolysis and fermentation (SHF), and simultaneous saccharification and fermentation (SSF) techniques were investigated in ethanol production using Saccharomyces cerevisiae and Scheffersomyces shehatae, a xylose-fermenting yeast. Pretreating 15% w/v Napier grass with 1.99 M NaOH at 95.7 °C for 116 min was the best condition to prepare the grass for further enzymatic hydrolysis using the enzyme dosage of 40 Filter Paper Unit (FPU)/g for 117 h. Fermentation of enzymatic hydrolysate by S. cerevisiae via SHF resulted in the best ethanol production of 187.4 g/kg of Napier grass at 44.7 g/L ethanol concentration. The results indicated that Napier grass is a promising lignocellulosic raw material that could serve a fermentation with high ethanol concentration. Full article
Show Figures

Figure 1

19 pages, 1451 KiB  
Article
Optimizing Yield and Quality of Bio-Oil: A Comparative Study of Acacia tortilis and Pine Dust
by Gratitude Charis, Gwiranai Danha and Edison Muzenda
Processes 2020, 8(5), 551; https://doi.org/10.3390/pr8050551 - 08 May 2020
Cited by 13 | Viewed by 3057
Abstract
We collected pine dust and Acacia tortilis samples from Zimbabwe and Botswana, respectively. We then pyrolyzed them in a bench-scale plant under varying conditions. This investigation aimed to determine an optimum temperature that will give result to maximum yield and quality of the [...] Read more.
We collected pine dust and Acacia tortilis samples from Zimbabwe and Botswana, respectively. We then pyrolyzed them in a bench-scale plant under varying conditions. This investigation aimed to determine an optimum temperature that will give result to maximum yield and quality of the bio-oil fraction. Our experimental results show that we obtain the maximum yield of the oil fraction at a pyrolysis temperature of 550 °C for the acacia and at 500 °C for the pine dust. Our results also show that we obtain an oil fraction with a heating value (HHV) of 36.807 MJ/kg using acacia as the feed material subject to a primary condenser temperature of 140 °C. Under the same pyrolysis temperature, we obtain an HHV value of 15.78 MJ/kg using pine dust as the raw material at a primary condenser temperature of 110 °C. The bio-oil fraction we obtain from Acacia tortilis at these condensation temperatures has an average pH value of 3.42 compared to that of 2.50 from pine dust. The specific gravity of the oil from Acacia tortilis is 1.09 compared to that of 1.00 from pine dust. We elucidated that pine dust has a higher bio-oil yield of 46.1% compared to 41.9% obtained for acacia. Although the heavy oils at condenser temperatures above 100 °C had good HHVs, the yields were low, ranging from 2.8% to 4.9% for acacia and 0.2% to 12.7% for pine dust. Our future work will entail efforts to improve the yield of the heavy oil fraction and scale up our results for trials on plant scale capacity. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

19 pages, 412 KiB  
Review
Life Cycle Assessment of Renewable Reductants in the Ferromanganese Alloy Production: A Review
by Gerrit Ralf Surup, Anna Trubetskaya and Merete Tangstad
Processes 2021, 9(1), 185; https://doi.org/10.3390/pr9010185 - 19 Jan 2021
Cited by 7 | Viewed by 3575
Abstract
This study examined the literature on life cycle assessment on the ferromanganese alloy production route. The environmental impacts of raw material acquisition through the production of carbon reductants to the production of ferromanganese alloys were examined and compared. The transition from the current [...] Read more.
This study examined the literature on life cycle assessment on the ferromanganese alloy production route. The environmental impacts of raw material acquisition through the production of carbon reductants to the production of ferromanganese alloys were examined and compared. The transition from the current fossil fuel-based production to a more sustainable production route was reviewed. Besides the environmental impact, policy and socioeconomic impacts were considered due to evaluation course of differences in the production routes. Charcoal has the potential to substantially replace fossil fuel reductants in the upcoming decades. The environmental impact from current ferromanganese alloy production can be reduced by ≥20% by the charcoal produced in slow pyrolysis kilns, which can be further reduced by ≥50% for a sustainable production in high-efficient retorts. Certificated biomass can ensure a sustainable growth to avoid deforestation and acidification of the environment. Although greenhouse gas emissions from transport are low for the ferromanganese alloy production, they may increase due to the low bulk density of charcoal and the decentralized production of biomass. However, centralized charcoal retorts can provide additional by-products or biofuel and ensure better product quality for the industrial application. Further upgrading of charcoal can finally result in a CO2 neutral ferromanganese alloy production for the renewable power supply. Full article
Show Figures

Figure 1

41 pages, 840 KiB  
Review
Charcoal as an Alternative Reductant in Ferroalloy Production: A Review
by Gerrit Ralf Surup, Anna Trubetskaya and Merete Tangstad
Processes 2020, 8(11), 1432; https://doi.org/10.3390/pr8111432 - 09 Nov 2020
Cited by 27 | Viewed by 7115
Abstract
This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different [...] Read more.
This paper provides a fundamental and critical review of biomass application as renewable reductant in integrated ferroalloy reduction process. The basis for the review is based on the current process and product quality requirement that bio-based reductants must fulfill. The characteristics of different feedstocks and suitable pre-treatment and post-treatment technologies for their upgrading are evaluated. The existing literature concerning biomass application in ferroalloy industries is reviewed to fill out the research gaps related to charcoal properties provided by current production technologies and the integration of renewable reductants in the existing industrial infrastructure. This review also provides insights and recommendations to the unresolved challenges related to the charcoal process economics. Several possibilities to integrate the production of bio-based reductants with bio-refineries to lower the cost and increase the total efficiency are given. A comparison of challenges related to energy efficient charcoal production and formation of emissions in classical kiln technologies are discussed to underline the potential of bio-based reductant usage in ferroalloy reduction process. Full article
Show Figures

Figure 1

Back to TopTop