Special Issue "Rock Physics, Well Logging, and Formation Evaluation in Energy Exploration Systems"

A special issue of Processes (ISSN 2227-9717). This special issue belongs to the section "Energy Systems".

Deadline for manuscript submissions: 10 December 2023 | Viewed by 3274

Special Issue Editors

School of Geophysics and Information Technology, China University of Geosciences, Beijing 10083, China
Interests: formation evaluation; unconventional reservoirs; well logging; applied nuclear magnetic resonance
College of Geophysics and Petroleum Resources, Yangtze University, Wuhan 430100, China
Interests: digital rock physics; shale oil and gas; formation evaluation
Faculty of Mathematics and Natural Sciences, Christian-Albrechts-Universität, 24118 Kiel, Germany
Interests: experimental and theoritical geosciences
Special Issues, Collections and Topics in MDPI journals
Department of Geology, Northwest University, Xi’an 710069, China
Interests: formation evaluation; well logging; unconventional reservoirs; machine learning; CCUS; digital core

Special Issue Information

Dear Colleagues,

Well logging plays a very important role in oil and gas exploration and development since it appeared in 1927. It can help to indicate effective formations, offer reliable formation parameters and identify fluids. In the last decade, as more and more unconventional oil and gas, e.g., shale oil/gas and tight oil/gas, are discovered, common well logging inversion and interpretation techniques face great challenges. Formation evaluation methods also cannot work. For complex reservoir characterization, validity evaluation and “sweet spot” prediction, it is urgent to put forward innovative evaluation methods. In addition, small pore space, poor connectivity and weak fluid response lead to low formation parameter (especially permeability and water saturation) calculation and hydrocarbon-beariong identification accuracy. The emergence of digital rock physics techniques and deep learning methods provides a new direction to solve the problem of complex formation evaluation.

This Special Issue on ‘Rock Physics, Well Logging, and Formation Evaluation in Energy Exploration Systems’ seeks high-quality works focusing on the latest novel advances for conventional and unconventional reservoir evaluation based on rock physics and well logging. Topics include, but are not limited to:

  • Conventional and unconventional reservoir characterization based on well logging techniques;
  • Shale oil/gas, tight oil/gas identification and “sweet spot” prediction;
  • Unconventional reservoir conduction mechanism and parameter evaluation;
  • Application of deep learning methods in formation evaluation;
  • Digital rock physics or NMR techniques for complex formation evaluation.

Prof. Dr. Liang Xiao
Dr. Xin Nie
Prof. Dr. Mehdi Ostadhassan
Dr. Hongyan Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Processes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • formation evaluation
  • pore structure
  • validity characterization
  • deep learning
  • digital rock physics

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
A New Method for Mobility Logging Evaluation Based on Flowing Porosity in Shale Oil Reservoirs
Processes 2023, 11(5), 1466; https://doi.org/10.3390/pr11051466 - 11 May 2023
Viewed by 530
Abstract
Shale oil reservoirs differ from conventional reservoirs in several aspects, including the sedimentary model, accumulation mechanism, and reservoir characteristics, which pose significant challenges to their exploration and development. Therefore, identifying the location of optimal spots is crucial for the successful exploration and development [...] Read more.
Shale oil reservoirs differ from conventional reservoirs in several aspects, including the sedimentary model, accumulation mechanism, and reservoir characteristics, which pose significant challenges to their exploration and development. Therefore, identifying the location of optimal spots is crucial for the successful exploration and development of shale oil reservoirs. Mobility, particularly in low-permeability shale oil reservoirs with nano-scale pores, is a crucial petrophysical property that determines the development plan. However, two-dimensional nuclear magnetic resonance (2D-NMR) is expensive and has limited applicability, although it can estimate shale oil mobility. Hence, it is of great significance to find a precise method for evaluating shale oil mobility using conventional logging. In this paper, we propose a new method for assessing shale oil mobility based on free oil porosity derived from the difference in flowing porosity detected at different ranges of logging, utilizing the Maxwell conductivity model and conductivity efficiency theory. Our study shows that longitudinal-T2 (T1-T2) NMR logging can accurately evaluate the mobility of shale oil. This is demonstrated by comparing the processing results obtained from our proposed method with those from 2D-NMR and laboratory NMR experiments. The predicted results based on conventional well logs also show good agreement with experimental results, confirming the effectiveness and reliability of our new method. Our proposed method carries reference significance for evaluating shale oil reservoir quality. Full article
Show Figures

Figure 1

Article
A New Method for Calculating Reservoir Core-Bound Water Saturation Using the Cast Thin Section
Processes 2023, 11(5), 1397; https://doi.org/10.3390/pr11051397 - 05 May 2023
Viewed by 385
Abstract
The rock coring of the reservoir in the Bohai A field is difficult. The cores of the target section in the study area are loose, making it difficult to accurately measure the core-bound water saturation. The purpose of this research was to develop [...] Read more.
The rock coring of the reservoir in the Bohai A field is difficult. The cores of the target section in the study area are loose, making it difficult to accurately measure the core-bound water saturation. The purpose of this research was to develop and validate a method for calculating a reservoir core-bound water saturation ratio using the cast thin section. First, pepper noise denoising and image enhancement were performed on the thin section by median filtering and gamma variation. Based on this, the enhanced sheet images were thresholded for segmentation by the two-dimensional OTSU algorithm, which automatically picked up the thin section pore-specific parameters. Then, the thin section image was equivalent to a capillary cross-section, while the thin film water fused to the pore surface was observed as bound water. For hydrophilic rocks with a strong homogeneity, the area of thin film water in the pore space of the sheet was divided by the total area of the pore space, which produced the bound water saturation. Next, the theoretical relationship between the film water thickness and the critical pore throat radius was derived based on the Young–Laplace equation. The bound water saturation of the rock was calculated by combining the pore perimeter and the area that was automatically picked up from the thin film for a given critical pore throat radius of the rock. Finally, 22 images of thin sections of sparse sandstone from the coring well section of the study area were image processed using the new method proposed in this paper, and the bound water saturation was calculated. The calculated results were compared with 22 NMR-bound water saturations and 11 semi-permeable baffle plate-bound water saturations in the same layer section. The results showed that the bound water saturation values calculated by the three methods produced consistent trends with absolute errors within 5%. The calculated results confirm the reliability of the method proposed in this paper. This method can effectively avoid the problem of the inaccurate results of core experiments due to the easy damage of sparse sandstone and provides a new idea for the accurate determination of the bound water saturation of sparse sandstone. Full article
Show Figures

Figure 1

Article
Theory and Application of Geostatistical Inversion: A Facies-Constrained MCMC Algorithm
Processes 2023, 11(5), 1335; https://doi.org/10.3390/pr11051335 - 26 Apr 2023
Viewed by 439
Abstract
To improve the prediction of thin reservoirs with special geophysical responses, a geostatistical inversion technique is proposed based on an in-depth analysis of the theory of geostatistical inversion. This technique is based on the Markov chain Monte Carlo algorithm, to which we added [...] Read more.
To improve the prediction of thin reservoirs with special geophysical responses, a geostatistical inversion technique is proposed based on an in-depth analysis of the theory of geostatistical inversion. This technique is based on the Markov chain Monte Carlo algorithm, to which we added the contents of facies-constrained. The feasibility of the technique and the reliability of the prediction results are demonstrated by a prediction of the sand bodies in the braided river channel bars in the Xiazijie Oilfield in the Junggar Basin. Based on the MCMC algorithm, the results show that leveraging the lateral changes in the seismic waveforms as geologically relevant information to drive the construction of the variogram and the optimization of the statistical sampling can largely overcome the obstacle that prevents traditional geostatistical inversions from accurately delineating the sedimentary characteristics; thereby, the proposed algorithm truly achieves facies-constrained geostatistical inversion. The case study of the Xiazijie Oilfield showed the feasibility and reliability of this technology. The prediction accuracy of the FCMCMC algorithm-based geostatistical inversion is as high as 6 m for thin interbedded reservoirs, and the coincidence rate between the prediction results and the well log data is more than 85%, which confirms the reliability of the technique. The demonstrated performance of the proposed technique provides a preliminary reference for the prediction of the thin interbedded reservoirs formed in terrestrial sedimentary basins and characterized by small thicknesses and rapid lateral changes with special geophysical responses. Full article
Show Figures

Figure 1

Article
Saturation Determination and Fluid Identification in Carbonate Rocks Based on Well Logging Data: A Middle Eastern Case Study
Processes 2023, 11(4), 1282; https://doi.org/10.3390/pr11041282 - 20 Apr 2023
Viewed by 415
Abstract
In the Middle East, there remain many technical challenges in the water saturation evaluation of carbonate rocks and the effective identification of reservoir fluid properties. The traditional Archie equation is not applicable to carbonate reservoirs with complex pore structures and varying reservoir space [...] Read more.
In the Middle East, there remain many technical challenges in the water saturation evaluation of carbonate rocks and the effective identification of reservoir fluid properties. The traditional Archie equation is not applicable to carbonate reservoirs with complex pore structures and varying reservoir space distribution, as there are obvious “non-Archie” phenomena. In this paper, by analyzing the experimental data on the rock resistivity of the target formation in the study area and analyzing the relationship between stratigraphic factors and porosity, the previous fitting method was modified as a result of using the actual data while avoiding the cementation index as a way to improve Archie’s formula to evaluate the water saturation. Based on the improved Archie formula, the mathematical differential operation of water saturation and porosity was carried out using the formation resistivity. The calculation results of irreducible water saturation were used to calibrate the oil layer, and the water layer was calibrated when the water saturation was 100%, allowing for a novel reservoir fluid property identification method. This total differential method can effectively identify the oil-down-to (ODT) and water-up-to (WUT) levels in an oil–water system and then accurately divide the transition zone of the oil–water layer. When this method was applied, the identification results were in good agreement with production conclusions and test data with an accuracy rate of 89.95%. Although the use of geophysical logging data from open-hole wells combined with the total differential method is only applicable to wells with similar logging time and production time, it is possible to compare geophysical logging data from different periods to construct oil–water profiles to observe the changes in ODT over time to guide development and adjust production plans. The proposed reservoir fluid property identification method and the improved water saturation calculation formula can meet the requirements of water saturation evaluation in the target block with low calculation cost and easy implementation, which provides a new method for water saturation evaluation and rapid identification of reservoir fluid properties. Full article
Show Figures

Figure 1

Article
Analysis of the Influence of Micro-Pore Structure on Oil Occurrence Using Nano-CT Scanning and Nuclear Magnetic Resonance Technology: An Example from Chang 8 Tight Sandstone Reservoir, Jiyuan, Ordos Basin
Processes 2023, 11(4), 1127; https://doi.org/10.3390/pr11041127 - 06 Apr 2023
Viewed by 488
Abstract
The micro-pore structure of a tight sandstone reservoir remarkably impacts the occurrence characteristics of the tight oil. The micro-pore structure of the Jiyuan Chang 8 tight sandstone reservoir in the Ordos Basin was examined in this research using a core physical property test, [...] Read more.
The micro-pore structure of a tight sandstone reservoir remarkably impacts the occurrence characteristics of the tight oil. The micro-pore structure of the Jiyuan Chang 8 tight sandstone reservoir in the Ordos Basin was examined in this research using a core physical property test, an environmental scanning electron microscope, thin section identification, and high-pressure mercury intrusion. Using nano-CT scanning and nuclear magnetic resonance technologies, representative core samples were chosen for studies evaluating the tight oil occurrence statically and dynamically. The micro-pore structure effect of a tight sandstone reservoir on the occurrence of tight oil was investigated, and the occurrence of tight oil in the reservoir forming process was discussed. It was significant to the study of tight oil in the reservoir forming process in Ordos Basin. Findings indicated that the Chang 8 reservoir in Jiyuan, Ordos Basin has poor physical properties and exhibits a high degree of heterogeneity. In addition, the oil charging simulation experiment (oil charging) can be separated into the following three stages: fast growth, gradual growth, and stability. In the process of crude oil charging, oil always preferentially entered into medium pores and large pores. These pores were the primary areas of tight oil distribution. Furthermore, the occurrence of tight oil was affected by pore type, pore structure parameters, throat parameters, and combination mode of pore and throat. First, substantially large and medium pores lead to effective pore connectivity and generate a considerable amount of tight oil. The occurrence morphology includes oil film, cluster, porous, and isolated. Second, the greater the degree of intergranular pore growth and soluble feldspar pore development, the thicker the throat, the more developed the effective throat, and the greater the quantity of tight oil. Finally, oil saturation was negatively correlated with median pressure and displacement pressure and positively correlated with sorting factors, median radius, maximum pore throat radius, and efficiency of inverted mercury. Full article
Show Figures

Figure 1

Article
Low Permeability Gas-Bearing Sandstone Reservoirs Characterization from Geophysical Well Logging Data: A Case Study of Pinghu Formation in KQT Region, East China Sea
Processes 2023, 11(4), 1030; https://doi.org/10.3390/pr11041030 - 29 Mar 2023
Cited by 1 | Viewed by 590
Abstract
The Pinghu Formation is a low permeability sandstone reservoir in the KQT Region, East China Sea. Its porosity ranges from 3.6 to 18.0%, and permeability is distributed from 0.5 to 251.19 mD. The relationship between porosity and permeability was poor due to strong [...] Read more.
The Pinghu Formation is a low permeability sandstone reservoir in the KQT Region, East China Sea. Its porosity ranges from 3.6 to 18.0%, and permeability is distributed from 0.5 to 251.19 mD. The relationship between porosity and permeability was poor due to strong heterogeneity. This led to the difficulty of quantitatively evaluating effective reservoirs and identifying pore fluids by using common methods. In this study, to effectively evaluate low permeability sandstones in the Pinghu Formation of KQT Region, pore structure was first characterized from nuclear magnetic resonance (NMR) logging based on piecewise function calibration (PFC) method. Effective formation classification criteria were established to indicate the “sweet spot”. Afterwards, several effective methods were proposed to calculate formation of petrophysical parameters, e.g., porosity, permeability, water saturation (Sw), irreducible water saturation (Swirr). Finally, two techniques, established based on the crossplots of mean value of apparent formation water resistivity (Rwam) versus variance of apparent formation water resistivity (Rwav)—Sw versus Swirr—were adopted to distinguish hydrocarbon-bearing formations from water saturated layers. Field applications in two different regions illustrated that the established methods and techniques were widely applicable. Computed petrophysical parameters matched well with core-derived results, and pore fluids were obviously identified. These methods were valuable in improving low permeability sandstone reservoirs characterization. Full article
Show Figures

Figure 1

Back to TopTop