Properties and Applications of Natural Polymers

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: closed (20 February 2023) | Viewed by 5255

Special Issue Editors


E-Mail Website
Guest Editor
1. LEPABE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2. ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Interests: thermoplastic starch; adhesives for cork and wood composites; natural adhesives; composites based on natural fillers

E-Mail Website
Guest Editor
1. LEPABE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2. ALiCE, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
Interests: synthetic and natural adhesives; lignocellulosic composites; graphene-based biomaterials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In a world where resource scarcity is an increasing concern, polymers obtained from renewable biological sources are promising candidates for obtaining advanced materials, with applications in agriculture, electronics, automotive, medical, building, clothing and environmental applications. High homogeneity and ease of modification previously made synthetic polymers particularly attractive. However, these are gradually becoming attainable in natural polymers. Additionally, the biodegradability and low toxicity of natural polymers are important advantages. Research on natural polymers has made important progress in recent years, thanks to advancements in structural investigation tools as well as the development of green synthesis methods and nanotechnologies.

This Special Issue is focused on our current understanding of the structure/processing/properties relationships in (bio)polymers containing naturally occurring compounds.

Dr. Diana Paiva
Dr. Fernão D. Magalhães
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural polymers
  • adhesives for cork and wood composites
  • starch-based materials
  • natural fillers

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

21 pages, 1752 KiB  
Article
Characterisation of Polypropylene Composite Reinforced with Chemi-Thermomechanical Pulp from Oil Palm Trunk via Injection Moulding Process
by Chuan Li Lee, Kit Ling Chin, Paik San H’ng, Pui San Khoo and Mohd Sahfani Hafizuddin
Polymers 2023, 15(6), 1338; https://doi.org/10.3390/polym15061338 - 07 Mar 2023
Cited by 1 | Viewed by 1139
Abstract
As the products made from wood–plastic composites (WPCs) become more sophisticated and required more detail profiles, the injection moulding processing method with wood pulp as the reinforcing material is the answer to cater to the rapid change and demands of composite products. The [...] Read more.
As the products made from wood–plastic composites (WPCs) become more sophisticated and required more detail profiles, the injection moulding processing method with wood pulp as the reinforcing material is the answer to cater to the rapid change and demands of composite products. The general objective of this study was to study the effects of the material formulation, as well as the injection moulding process parameters, on the properties of a polypropylene composite reinforced with chemi-thermomechanical pulp from oil palm trunks (PP/OPTP composite) via the injection moulding process. The PP/OPTP composite with a material formulation of 70% pulp/26% PP/4% Exxelor PO produced using injection moulding at 80 °C as the mould temperature and with 50 tonnes of injection pressure exhibited the highest physical and mechanical properties. The increment loading of pulp increased the water absorption capacity of the composite. Higher loading of the coupling agent effectively reduced the water absorption capacity and increased the flexural strength of the composite. The increase in mould temperature from unheated to 80 °C prevented excessive heat loss of the flowing material, which enabled the molten material to flow better and filled up all cavities in the mould. The increased injection pressure slightly improved the physical properties of the composite, but the effect on the mechanical properties was insignificant. For the future development of WPCs, further studies should be focused on the viscosity behaviour, as a greater understanding of the processing parameters’ effects on the PP/OPTP’s viscosity behaviour will lead to improved product design and enable great potential usage of WPCs. Full article
(This article belongs to the Special Issue Properties and Applications of Natural Polymers)
Show Figures

Figure 1

13 pages, 2661 KiB  
Article
Polyurethane Adhesives Based on Oxyalkylated Kraft Lignin
by Fernanda Rosa Vieira, Nuno Gama, Sandra Magina, Ana Barros-Timmons, Dmitry V. Evtuguin and Paula C. O. R. Pinto
Polymers 2022, 14(23), 5305; https://doi.org/10.3390/polym14235305 - 05 Dec 2022
Cited by 5 | Viewed by 1884
Abstract
Lignin-based polyol was obtained via oxyalkylation reaction with propylene carbonate using eucalyptus kraft lignin isolated from the industrial cooking liquor by the Lignoboost® procedure. This lignin-based polyol (LBP) was used without purification in the preparation of polyurethane (PU) adhesives combined with polymeric [...] Read more.
Lignin-based polyol was obtained via oxyalkylation reaction with propylene carbonate using eucalyptus kraft lignin isolated from the industrial cooking liquor by the Lignoboost® procedure. This lignin-based polyol (LBP) was used without purification in the preparation of polyurethane (PU) adhesives combined with polymeric 4,4′-methylenediphenyl diisocyanate (pMDI). A series of adhesives were obtained by varying the NCO/OH ratio of PU counterparts (pMDI and LBPs) and their performance was evaluated by gluing wood pieces under predefined conditions. The adhesion properties of the novel PU adhesive were compared with those of a commercial PU adhesive (CPA). The occurrence and extent of curing reactions and changes in the polymeric network of PA were monitored by Fourier transform infrared spectroscopy (FTIR) and dynamic mechanical analysis. Although the lap shear strength and glass transition temperature of the lignin-based PU adhesives have increased steadily with the NCO/OH ratio ranging from 1.1–2.2, chemical aging resistance can be compromised when the NCO/OH is very low. It was found that the lignin-based PU adhesive with an NCO/OH ratio of 1.3 showed better chemical resistance and adhesion efficiency than CPA possibly because the NCO/OH in the latter is too high as revealed by FTIR spectroscopy. Despite some lower thermal stability and shorter gelation time of lignin-based PU than CPA, the former revealed great potential to reduce the use of petroleum-derived polyols and isocyanates with potential application in the furniture industry as wood bonding adhesive. Full article
(This article belongs to the Special Issue Properties and Applications of Natural Polymers)
Show Figures

Figure 1

23 pages, 7035 KiB  
Article
Scaling-Up an Aqueous Self-Degassing Electrochemically Mediated ATRP in Dispersion for the Preparation of Cellulose–Polymer Composites and Films
by Francesco De Bon, Inês M. Azevedo, Diana C. M. Ribeiro, Rafael C. Rebelo, Jorge F. J. Coelho and Arménio C. Serra
Polymers 2022, 14(22), 4981; https://doi.org/10.3390/polym14224981 - 17 Nov 2022
Viewed by 1628
Abstract
Electrochemically mediated atom transfer radical polymerization (eATRP) is developed in dispersion conditions to assist the preparation of cellulose-based films. Self-degassing conditions are achieved by the addition of sodium pyruvate (SP) as a ROS scavenger, while an aluminum counter electrode provides a [...] Read more.
Electrochemically mediated atom transfer radical polymerization (eATRP) is developed in dispersion conditions to assist the preparation of cellulose-based films. Self-degassing conditions are achieved by the addition of sodium pyruvate (SP) as a ROS scavenger, while an aluminum counter electrode provides a simplified and more cost-effective electrochemical setup. Different polyacrylamides were grown on a model cellulose substrate which was previously esterified with 2-bromoisobutyrate (-BriB), serving as initiator groups. Small-scale polymerizations (15 mL) provided optimized conditions to pursue the scale-up up to 1000 mL (scale-up factor ~67). Cellulose-poly(N-isopropylacrylamide) was then chosen to prepare the tunable, thermoresponsive, solvent-free, and flexible films through a dissolution/regeneration method. The produced films were characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM), dynamic scanning calorimetry (DSC), and thermogravimetric analysis (TGA). Full article
(This article belongs to the Special Issue Properties and Applications of Natural Polymers)
Show Figures

Figure 1

Back to TopTop