Synthesis and Applications of Polymer-Based Nanocomposites

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 29715

Special Issue Editors


E-Mail Website
Guest Editor
M. V. Lomonosov Institute of Fine Chemical Technologies, Russian Technological University (MIREA), 119571 Moscow, Russia
Interests: polymer composites; nanocomposites; reduced graphene oxide; platinum-palladium nanoparticles; chemical power sources; fuel cells; hydrogen generation: membrane-electrode assemblies; nanocatalysts; nanomaterials; porous silicon
State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute at Sichuan University, Chengdu 610065, China
Interests: nanofibers; UHMWPE fibers; electrospinning; gel spinning; 3D printing; polymer composites; water treatment; biomaterials; energy storage materials
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
M. V. Lomonosov Institute of Fine Chemical Technologies, Russian Technological University (MIREA), 119571 Moscow, Russia
Interests: nanocomposites; polymer based composites; surface modification; adhesion control; fluorinated material; optical sensors; biosensors

Special Issue Information

Dear Colleagues,

Polymer nanocomposites are gaining increasing interest and applications due to their superior properties compared to conventional polymers. They can be defined as materials in which nanoscale particles, in at least one dimension, are dispersed in an organic polymer matrix to improve its performance properties. These include mechanical strength and toughness, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. Improvement of the synthesis parameters of such systems in order to customize the properties and adapt composites for a particular use is attracting more and more researchers. The materials created can have a wide variety of applications, for example, biomimetic materials and technologies, smart materials, renewable energy sources, various sensors and biosensors, packaging etc.

This Special Issue focuses on the synthesis, characterization, properties, modeling, and applications of various polymer-based nanocomposites. We invite researchers to share their latest investigations in the form of articles, reviews, and academic articles.

Dr. Nikolaj A. Yashtulov
Dr. Wei Zhang
Dr. Pavel V. Melnikov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • polymer-based nanocomposites
  • metal nanoparticles
  • carbon-based nanomaterials
  • biocomposite materials
  • fabrication optimization
  • polymer matrix enhancement
  • surface modification
  • interfacial bonding enhancement
  • energy applications
  • sensors

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2542 KiB  
Article
Copper Quantum Dot/Polyacrylamide Composite Nanospheres: Spreading on Quartz Flake Surfaces and Displacing Crude Oil in Microchannel Chips
by Xinru Ma, Haien Yang, Xiaofei Liu, Lixiang Zeng, Xinzi Li, Lijun Zheng, Yu Yang, Lei Cao, Weikai Meng and Junping Zheng
Polymers 2024, 16(8), 1085; https://doi.org/10.3390/polym16081085 - 12 Apr 2024
Viewed by 317
Abstract
Polyacrylamide, silica, and other nanoparticles have all been realized in the field of enhanced oil recovery. Researchers often explore the mechanisms of spreading behavior and simulated displacement to develop more efficient types of nanoparticles. In this study, copper quantum dots were introduced into [...] Read more.
Polyacrylamide, silica, and other nanoparticles have all been realized in the field of enhanced oil recovery. Researchers often explore the mechanisms of spreading behavior and simulated displacement to develop more efficient types of nanoparticles. In this study, copper quantum dots were introduced into a acrylamide copolymerization system to obtain composite nanospheres and its structure, topographic, and application performance were characterized. The results show that the composite nanospheres have a particle size of around 25 nm, are uniformly loaded with copper particles, and have good temperature resistance. The spreading ability on the quartz flake surfaces and displacement effect in microchannels of composite nanospheres, acrylamide copolymer nanospheres, and copper quantum dots were compared by nanofluid spreading experiments and microchannel chip oil displacement experiments. The results indicate that the composite nanospheres can effectively reduce the water contact angle, promote the spreading of aqueous phase, and accelerate the oil droplet removal process; the accelerating effect is stronger than other samples. Its oil displacement effect is also the strongest, and it is minimized by the influence of channel size, temperature, and dispersing medium, with better stratigraphic adaptability. This work supports the practical application of copper quantum dot/polyacrylamide composite nanospheres in the oilfield. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

12 pages, 6331 KiB  
Article
Preparation and Space Charge Properties of Functionalized Zeolite/Crosslinked Polyethylene Composites with High Thermal Conductivity
by Bai Han, Jinghui Dai, Wanliang Zhao, Wei Song, Zhi Sun and Xuan Wang
Polymers 2023, 15(22), 4363; https://doi.org/10.3390/polym15224363 - 09 Nov 2023
Viewed by 752
Abstract
Nanocomposite doping is an effective method to improve the dielectric properties of polyethylene. Meanwhile, the introduction of thermal conductivity groups in crosslinked polyethylene (XLPE) is also an effective way to improve the thermal conductivity. Nano-zeolite is an inorganic material with a porous structure [...] Read more.
Nanocomposite doping is an effective method to improve the dielectric properties of polyethylene. Meanwhile, the introduction of thermal conductivity groups in crosslinked polyethylene (XLPE) is also an effective way to improve the thermal conductivity. Nano-zeolite is an inorganic material with a porous structure that can be doped into polyethylene to improve the insulation performance. In this paper, hyperbranched polyarylamide (HBP) with a high thermal conductivity and an auxiliary crosslinking agent (TAIC) was grafted on the surface of ZSM-5 nano-zeolite successively to obtain functionalized nano-zeolite (TAICS-ZSM-5-HBP) (the “S” in TAICS means plural). The prepared functionalized nano-zeolite was doped in polyethylene and grafted under a thermal crosslinking reaction to prepare nanocomposites (XLPE/TAICS-ZSM-5-HBP). The structural characterization showed that the nanocomposite was successfully prepared and that the nanoparticles were uniformly dispersed in the polyethylene matrix. The space charge of the TAICS-ZSM-5-HBP 5wt% nanocomposite under a high electric field was obviously inhibited. The space charge short-circuit test showed that the porous structure of the nano-zeolite introduced more deep traps, which made the trapped charge difficult to break off, hindering the charge injection. The introduction of TAICS-ZSM-5-HBP particles can greatly improve the thermal conductivity of nanocomposites. The thermal conductivity of the XLPE/5wt% and XLPE/7wt% TAICS-ZSM-5-HBP nanocomposites increased by 42.21% and 69.59% compared to that of XLPE at 20 °C, and by 34.27% and 62.83% at 80 °C. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

18 pages, 2199 KiB  
Article
Modeling of Poly(Ethylene Terephthalate) Homogeneous Glycolysis Kinetics
by Kirill A. Kirshanov, Roman V. Toms, Mikhail S. Balashov, Sergey S. Golubkov, Pavel V. Melnikov and Alexander Yu. Gervald
Polymers 2023, 15(14), 3146; https://doi.org/10.3390/polym15143146 - 24 Jul 2023
Cited by 2 | Viewed by 1534
Abstract
Polymer composites with various recycled poly(ethylene terephthalate)-based (PET-based) polyester matrices (poly(ethylene terephthalate), copolyesters, and unsaturated polyester resins), similar in properties to the primary ones, can be obtained based on PET glycolysis products after purification. PET glycolysis allows one to obtain bis(2-hydroxyethyl) terephthalate and [...] Read more.
Polymer composites with various recycled poly(ethylene terephthalate)-based (PET-based) polyester matrices (poly(ethylene terephthalate), copolyesters, and unsaturated polyester resins), similar in properties to the primary ones, can be obtained based on PET glycolysis products after purification. PET glycolysis allows one to obtain bis(2-hydroxyethyl) terephthalate and oligo(ethylene terephthalates) with various molecular weights. A kinetic model of poly(ethylene terephthalate) homogeneous glycolysis under the combined or separate action of oligo(ethylene terephthalates), bis(2-hydroxyethyl) terephthalate, and ethylene glycol is proposed. The model takes into account the interaction of bound, terminal, and free ethylene glycol molecules in the PET feedstock and the glycolysis agent. Experimental data were obtained on the molecular weight distribution of poly(ethylene terephthalate) glycolysis products and the content of bis(2-hydroxyethyl) terephthalate monomer in them to verify the model. Homogeneous glycolysis of PET was carried out at atmospheric pressure in dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) solvents with catalyst based on antimony trioxide (Sb2O3) under the action of different agents: ethylene glycol at temperatures of 165 and 180 °C; bis(2-hydroxyethyl) terephthalate at 250 °C; and oligoethylene terephthalate with polycondensation degree 3 at 250 °C. Homogeneous step-by-step glycolysis under the successive action of the oligo(ethylene terephthalate) trimer, bis(2-hydroxyethyl) terephthalate, and ethylene glycol at temperatures of 250, 220, and 190 °C, respectively, was also studied. The composition of products was confirmed using FTIR spectroscopy. Molecular weight characteristics were determined using gel permeation chromatography (GPC), the content of bis(2-hydroxyethyl) terephthalate was determined via extraction with water at 60 °C. The developed kinetic model was found to be in agreement with the experimental data and it could be used further to predict the optimal conditions for homogeneous PET glycolysis and to obtain polymer-based composite materials with desired properties. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

12 pages, 4509 KiB  
Article
Folic Acid Adjustive Polydopamine Organic Nanoparticles Based Fluorescent Probe for the Selective Detection of Mercury Ions
by Lijuan Chen, Changchang Chen, Yehan Yan, Linlin Yang, Renyong Liu, Jiajia Zhang, Xin Zhang and Chenggen Xie
Polymers 2023, 15(8), 1892; https://doi.org/10.3390/polym15081892 - 14 Apr 2023
Cited by 1 | Viewed by 1243
Abstract
Polydopamine fluorescent organic nanomaterials present unique physicochemical and biological properties, which have great potential application in bio-imaging and chemical sensors. Here, folic acid (FA) adjustive polydopamine (PDA) fluorescent organic nanoparticles (FA-PDA FONs) were prepared by a facile one-pot self-polymerization strategy using dopamine (DA) [...] Read more.
Polydopamine fluorescent organic nanomaterials present unique physicochemical and biological properties, which have great potential application in bio-imaging and chemical sensors. Here, folic acid (FA) adjustive polydopamine (PDA) fluorescent organic nanoparticles (FA-PDA FONs) were prepared by a facile one-pot self-polymerization strategy using dopamine (DA) and FA as precursors under mild conditions. The as-prepared FA-PDA FONs had an average size of 1.9 ± 0.3 nm in diameter with great aqueous dispersibility, and the FA-PDA FONs solution exhibit intense blue fluorescence under 365 nm UV lamp, and the quantum yield is ~8.27%. The FA-PDA FONs could be stable in a relatively wide pH range and high ionic strength salt solution, and the fluorescence intensities are constant. More importantly, here we developed a method for rapidly selective and sensitive detection of mercury ions (Hg2+) within 10 s using FA-PDA FONs based probe, the fluorescence intensities of FA-PDA FONs presented a great linear relationship to Hg2+ concentration, the linear range and limit of detection (LOD) were 0–18 µM and 0.18 µM, respectively. Furthermore, the feasibility of the developed Hg2+ sensor was verified by determination of Hg2+ in mineral water and tap water samples with satisfactory results. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

20 pages, 4747 KiB  
Article
Polymer-Based Conductive Nanocomposites for the Development of Bioanodes Using Membrane-Bound Enzyme Systems of Bacteria Gluconobacter oxydans in Biofuel Cells
by Veronika Fedina, Daria Lavrova, Tatyana Dyachkova, Anastasia Pasko, Anton Zvonarev, Victor Panfilov, Olga Ponamoreva and Sergey Alferov
Polymers 2023, 15(5), 1296; https://doi.org/10.3390/polym15051296 - 03 Mar 2023
Cited by 1 | Viewed by 1641
Abstract
The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal [...] Read more.
The development of biofuel cells (BFCs) currently has high potential since these devices can be used as alternative energy sources. This work studies promising materials for biomaterial immobilization in bioelectrochemical devices based on a comparative analysis of the energy characteristics (generated potential, internal resistance, power) of biofuel cells. Bioanodes are formed by the immobilization of membrane-bound enzyme systems of Gluconobacter oxydans VKM V-1280 bacteria containing pyrroloquinolinquinone-dependent dehydrogenases into hydrogels of polymer-based composites with carbon nanotubes. Natural and synthetic polymers are used as matrices, and multi-walled carbon nanotubes oxidized in hydrogen peroxide vapor (MWCNTox) are used as fillers. The intensity ratio of two characteristic peaks associated with the presence of atoms C in the sp3 and sp2 hybridization for the pristine and oxidized materials is 0.933 and 0.766, respectively. This proves a reduced degree of MWCNTox defectiveness compared to the pristine nanotubes. MWCNTox in the bioanode composites significantly improve the energy characteristics of the BFCs. Chitosan hydrogel in composition with MWCNTox is the most promising material for biocatalyst immobilization for the development of bioelectrochemical systems. The maximum power density was 1.39 × 10−5 W/mm2, which is 2 times higher than the power of BFCs based on other polymer nanocomposites. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

16 pages, 4817 KiB  
Article
Synthesis and Characterization of a pH- and Temperature-Sensitive Fe3O4-SiO2-Poly(NVCL-co-MAA) Nanocomposite for Controlled Delivery of Doxorubicin Anticancer Drug
by Jorge Luis Sánchez-Orozco, Héctor Iván Meléndez-Ortiz, Bertha Alicia Puente-Urbina, Oliverio Santiago Rodríguez-Fernández, Antonia Martínez-Luévanos and Luis Alfonso García-Cerda
Polymers 2023, 15(4), 968; https://doi.org/10.3390/polym15040968 - 15 Feb 2023
Cited by 2 | Viewed by 1494
Abstract
This work reports the synthesis, characterization, and in vitro release studies of pH- and temperature-sensitive Fe3O4-SiO2-poly(NVCL-co-MAA) nanocomposite. Fe3O4 nanoparticles were prepared by chemical coprecipitation, coated with SiO2 by the Stöber method, and functionalized [...] Read more.
This work reports the synthesis, characterization, and in vitro release studies of pH- and temperature-sensitive Fe3O4-SiO2-poly(NVCL-co-MAA) nanocomposite. Fe3O4 nanoparticles were prepared by chemical coprecipitation, coated with SiO2 by the Stöber method, and functionalized with vinyl groups. The copolymer poly(N-vinylcaprolactam-co-methacrylic acid) (poly(NVCL-co-MAA)) was grafted onto the functionalized Fe3O4-SiO2 nanoparticles by free radical polymerization. XRD, FTIR, TGA, VSM, and TEM techniques were performed to characterize the nanocomposite. The release behavior of Doxorubicin (DOX) loaded in the nanocomposite at pH 5.8 and 7.4, and two temperatures, 25 and 37 °C, was studied. According to the release studies, approximately 55% of DOX is released in 72 h at pH 7.4, regardless of temperature. At pH 5.8, 78% of DOX was released in 48 h at 25 °C, and when increasing the temperature to 37 °C, more than 95 % of DOX was released in 24 h. The DOX release data treated with Zero-order, first-order, Higuchi, and Korsmeyer–Peppas models showed that Higuchi’s model best fits the data, indicating that the DOX is released by diffusion. The findings suggest that the synthesized nanocomposite may be useful as a DOX carrier in biomedical applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

17 pages, 7330 KiB  
Article
Biocompatible Silica-Polyethylene Glycol-Based Composites for Immobilization of Microbial Cells by Sol-Gel Synthesis
by Daria G. Lavrova, Anton N. Zvonarev, Valery A. Alferov, Tat’yana G. Khonina, Elena V. Shadrina, Sergey V. Alferov and Olga N. Ponamoreva
Polymers 2023, 15(2), 458; https://doi.org/10.3390/polym15020458 - 15 Jan 2023
Cited by 2 | Viewed by 2148
Abstract
Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene [...] Read more.
Biocatalysts based on the methylotrophic yeast Ogataea polymorpha VKM Y-2559 immobilized in polymer-based nanocomposites for the treatment of methanol-containing wastewater were developed. The organosilica composites with different matrix-to-filler ratios derived from TEOS/MTES in the presence of PEG (SPEG-composite) and from silicon-polyethylene glycol (STPEG-composite) differ in the structure of the silicate phase and its distribution in the composite matrix. Methods of fluorescent and scanning microscopy first confirmed the formation of an organosilica shell around living yeast cells during sol-gel bio-STPEG-composite synthesis. Biosensors based on the yeast cells immobilized in STPEG- and SPEG-composites are characterized by effective operation: the coefficient of sensitivity is 0.85 ± 0.07 mgO2 × min−1 × mmol−1 and 0.87 ± 0.05 mgO2 × min−1 × mmol−1, and the long-term stability is 10 and 15 days, respectively. The encapsulated microbial cells are protected from UV radiation and the toxic action of heavy metal ions. Biofilters based on the developed biocatalysts are characterized by high effectiveness in the utilization of methanol-rich wastewater—their oxidative power reached 900 gO2/(m3 × cycle), and their purification degree was up to 60%. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

15 pages, 3693 KiB  
Article
Polymer Hydrogel Supported Ni/Pd Alloys for Hydrogen Gas Production from Hydrolysis of Dimethylamine Borane with a Long Recyclable Lifetime
by Hao-Kun Cai, Zhong-Yi Jiang, Siyuan Xu, Ying Xu, Ping Lu and Jian Dong
Polymers 2022, 14(21), 4647; https://doi.org/10.3390/polym14214647 - 01 Nov 2022
Cited by 7 | Viewed by 1450
Abstract
Hydrogen gas production can be produced from dimethylamine borane by the catalytic effect of metal nanoparticles. Past research efforts were heavily focused on dehydrogenation in organic solvents. In this study, hydrolysis of the borane in aqueous solutions was investigated, which bears two significant [...] Read more.
Hydrogen gas production can be produced from dimethylamine borane by the catalytic effect of metal nanoparticles. Past research efforts were heavily focused on dehydrogenation in organic solvents. In this study, hydrolysis of the borane in aqueous solutions was investigated, which bears two significant advantages: that two-thirds of the hydrogen generated originate from water and that the hydrogen storage materials are non-flammable. Polymer hydrogels serve as good carriers for metal particles as catalysts in aqueous solutions. Kinetic analysis of hydrogen production was performed for Ni/Pd bimetallic nanoclusters dispersed in a polymer hydrogel with a 3-D network structure. The reaction catalyzed by the bimetallic nanoclusters has an activation energy of only 34.95 kJ/mol, considerably lower than that by Ni or other metal catalysts reported. A significant synergistic effect was observed in the Ni/Pd bimetallic catalysts (Ni–Pd = 20/1) with a higher activity than Pd or Ni alone. This proves the alloy nature of the nanoparticles in the borane hydrolysis and the activation of water and borane by both metals to break the O–H and B–H bonds. The hydrogel with the Ni/Pd metal can be recycled with a much longer lifetime than all the previously prepared catalysts. The aqueous borane solutions with a polymer hydrogel can become a more sustainable hydrogen supplier for long-term use. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

14 pages, 2495 KiB  
Article
Networking Skills: The Effect of Graphene on the Crosslinking of Natural Rubber Nanocomposites with Sulfur and Peroxide Systems
by Bettina Strommer, Dietmar Schulze, Bernhard Schartel and Martin Böhning
Polymers 2022, 14(20), 4363; https://doi.org/10.3390/polym14204363 - 16 Oct 2022
Cited by 3 | Viewed by 1545
Abstract
Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The [...] Read more.
Tailored crosslinking in elastomers is crucial for their technical applications. The incorporation of nanoparticles with high surface-to-volume ratios not only leads to the formation of physical networks and influences the ultimate performance of nanocomposites, but it also affects the chemical crosslinking reactions. The influence of few-layer graphene (FLG) on the crosslinking behavior of natural rubber is investigated. Four different curing systems, two sulfur-based with different accelerator-to-sulfur ratios, and two peroxide-based with different peroxide concentrations, are combined with different FLG contents. Using differential scanning calorimetry (DSC), vulcametry (MDR) and swelling measurements, the results show an accelerating effect of FLG on the kinetics of the sulfur-based curing systems, with an exothermic reaction peak in DSC shifted to lower temperatures and lower scorch and curing times in the MDR. While a higher accelerator-to-sulfur ratio in combination with FLG leads to reduced crosslinking densities, the peroxide crosslinkers are hardly affected by the presence of FLG. The good agreement of crosslink densities obtained from the swelling behavior confirms the suitability of vulcameter measurements for monitoring the complex vulcanization process of such nanocomposite systems in a simple and efficient way. The reinforcing effect of FLG shows the highest relative improvements in weakly crosslinked nanocomposites. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

12 pages, 4073 KiB  
Article
Chemical Structural Coherence Principle on Polymers for Better Adhesion
by Alena L. Krapivko, Yegor D. Ryabkov, Fedor V. Drozdov, Nikolay A. Yashtulov, Nikolay K. Zaitsev and Aziz M. Muzafarov
Polymers 2022, 14(14), 2829; https://doi.org/10.3390/polym14142829 - 12 Jul 2022
Cited by 1 | Viewed by 1409
Abstract
Composite materials are the most variative type of materials employed in almost every task imaginable. In the present study, a synthesis of a novel perfluoroalkyltriethoxysilane is reported to be used in creating composites with polyhexafluoropropylene—one of the most indifferent and adhesion-lacking polymers existing. [...] Read more.
Composite materials are the most variative type of materials employed in almost every task imaginable. In the present study, a synthesis of a novel perfluoroalkyltriethoxysilane is reported to be used in creating composites with polyhexafluoropropylene—one of the most indifferent and adhesion-lacking polymers existing. The mechanism of adhesion of hexafluoropropylene is proved to be due to chemical structural coherence of perfluoroalkyltriethoxysilane to a link of polyhexafluoropropylene chain. The ability of perfluoroalkyltriethoxysilane to attach to surfaces was studied by FT-IR spectroscopy of modified glass microspheres. Although the perfluoroalkyltriethoxysilane surface modifier allowed partial adhesion of polyhexafluoropropylene, some detachment took place; therefore, the surface nanostructuring was used to increase its specific area by aluminum foil anodizing. An anodized aluminum surface was studied by scanning electron microscopy. The resulting composite consisting of anodized aluminum, perfluoroalkyl surface modifier, and polyhexafluoropropylene layer was proved to be stable, showed no signs of detachment, and is a promising material for usage in harsh environments. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

10 pages, 1378 KiB  
Communication
Modeling of the Electrotransport Process in PP-Based and PLA-Based Composite Fibers Filled with Carbon Nanofibers
by Olga Moskalyuk, Diana Vol‘nova and Ekaterina Tsobkallo
Polymers 2022, 14(12), 2362; https://doi.org/10.3390/polym14122362 - 11 Jun 2022
Cited by 5 | Viewed by 1397
Abstract
Polypropylene and polylactide-based composite fibers have been produced by a melt technology. Long vapor-grown carbon fibers (CNFs) have been used as electrical conductivity fillers. It is clearly shown by experimental methods that the CNFs are evenly distributed in the polymer matrix, orienting themselves [...] Read more.
Polypropylene and polylactide-based composite fibers have been produced by a melt technology. Long vapor-grown carbon fibers (CNFs) have been used as electrical conductivity fillers. It is clearly shown by experimental methods that the CNFs are evenly distributed in the polymer matrix, orienting themselves along the direction of fiber extrusion and retaining their initial dimensions. It is shown that for composites fibers based on crystallizing (polypropylene) and amorphous (polylactide acid) polymer matrix, the dependence of electrical resistance on the filler concentration is percolation character and can be described as a double Boltzmann function. Four sections are identified on the dependences of the electrical resistance on the filler concentration for composite fibers, and the reasons for this character of this dependence on the formation of electrically conductive circuits are analyzed. Investigated in this work are the PP-based and PLA-based composites filled with carbon nanofibers that can be used as antistatic, shielding materials, or as sensors. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

15 pages, 5379 KiB  
Article
Unsaturated Polyester Resin Nanocomposites Based on Post-Consumer Polyethylene Terephthalate
by Kirill Kirshanov, Roman Toms, Pavel Melnikov and Alexander Gervald
Polymers 2022, 14(8), 1602; https://doi.org/10.3390/polym14081602 - 14 Apr 2022
Cited by 14 | Viewed by 4674
Abstract
A method for producing nanocomposites of unsaturated polyester resins (UPR) based on recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain exchange of oligoesters with PET, (3) [...] Read more.
A method for producing nanocomposites of unsaturated polyester resins (UPR) based on recycled polyethylene terephthalate (PET) as a matrix has been proposed. The upcycling method involves three successive stages: (1) oligoesters synthesis, (2) simultaneous glycolysis and interchain exchange of oligoesters with PET, (3) interaction of the obtained resins with glycol and maleic anhydride. UPRs were characterized by FTIR spectroscopy and gel permeation chromatography. The mechanical properties of nanocomposites obtained on the basis of these resins and titanium dioxide have been investigated. It has been shown that 1,2-propylene glycol units, despite their lower reactivity, significantly improve the properties of UPR. The most promising nanocomposite sample exhibited tensile strength 112.62 MPa, elongation at break 157.94%, and Young’s modulus 29.95 MPa. These results indicate that the proposed method made it possible to obtain nanocomposites with high mechanical properties based on recycled PET thus allowing one to create a valuable product from waste. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

18 pages, 4037 KiB  
Article
Development of Nanocomposite Materials Based on Conductive Polymers for Using in Glucose Biosensor
by Lyubov S. Kuznetsova, Vyacheslav A. Arlyapov, Olga A. Kamanina, Elizaveta A. Lantsova, Sergey E. Tarasov and Anatoly N. Reshetilov
Polymers 2022, 14(8), 1543; https://doi.org/10.3390/polym14081543 - 11 Apr 2022
Cited by 9 | Viewed by 2774
Abstract
Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were [...] Read more.
Electropolymerized neutral red, thionine, and aniline were used as part of hybrid nanocomposite conductive polymers, to create an amperometric reagent-less biosensor for glucose determination. The structure of the obtained polymers was studied using infrared (IR) spectroscopy and scanning electron microscopy. Electrochemical characteristics were studied by cyclic voltammetry and impedance spectroscopy. It was shown that, from the point of view of both the rate of electron transfer to the electrode, and the rate of interaction with the active center of glucose oxidase (GOx), the most promising is a new nanocomposite based on poly(neutral red) (pNR) and thermally expanded graphite (TEG). The sensor based on the created nanocomposite material is characterized by a sensitivity of 1000 ± 200 nA × dm3/mmol; the lower limit of the determined glucose concentrations is 0.006 mmol/L. The glucose biosensor based on this nanocomposite was characterized by a high correlation (R2 = 0.9828) with the results of determining the glucose content in human blood using the standard method. Statistical analysis did not reveal any deviations of the results obtained using this biosensor and the reference method. Therefore, the developed biosensor can be used as an alternative to the standard analysis method and as a prototype for creating sensitive and accurate glucometers, as well as biosensors to assess other metabolites. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 5747 KiB  
Review
Chitosan-Based Polymer Nanocomposites for Environmental Remediation of Mercury Pollution
by Mvula Confidence Goci, Anny Leudjo Taka, Lynwill Martin and Michael John Klink
Polymers 2023, 15(3), 482; https://doi.org/10.3390/polym15030482 - 17 Jan 2023
Cited by 12 | Viewed by 2660
Abstract
Mercury is a well-known heavy metal pollutant of global importance, typically found in effluents (lakes, oceans, and sewage) and released into the atmosphere. It is highly toxic to humans, animals and plants. Therefore, the current challenge is to develop efficient materials and techniques [...] Read more.
Mercury is a well-known heavy metal pollutant of global importance, typically found in effluents (lakes, oceans, and sewage) and released into the atmosphere. It is highly toxic to humans, animals and plants. Therefore, the current challenge is to develop efficient materials and techniques that can be used to remediate mercury pollution in water and the atmosphere, even in low concentrations. The paper aims to review the chitosan-based polymer nanocomposite materials that have been used for the environmental remediation of mercury pollution since they possess multifunctional properties, beneficial for the adsorption of various kinds of pollutants from wastewater and the atmosphere. In addition, these chitosan-based polymer nanocomposites are made of non-toxic materials that are environmentally friendly, highly porous, biocompatible, biodegradable, and recyclable; they have a high number of surface active sites, are earth-abundant, have minimal surface defects, and are metal-free. Advances in the modification of the chitosan, mainly with nanomaterials such as multi-walled carbon nanotube and nanoparticles (Ag, TiO2, S, and ZnO), and its use for mercury uptake by batch adsorption and passive sampler methods are discussed. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

36 pages, 5442 KiB  
Review
On the Use of Polymer-Based Composites for the Creation of Optical Sensors: A Review
by Pavel Melnikov, Alexander Bobrov and Yuriy Marfin
Polymers 2022, 14(20), 4448; https://doi.org/10.3390/polym14204448 - 21 Oct 2022
Cited by 17 | Viewed by 2895
Abstract
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles [...] Read more.
Polymers are widely used in many areas, but often their individual properties are not sufficient for use in certain applications. One of the solutions is the creation of polymer-based composites and nanocomposites. In such materials, in order to improve their properties, nanoscale particles (at least in one dimension) are dispersed in the polymer matrix. These properties include increased mechanical strength and durability, the ability to create a developed inner surface, adjustable thermal and electrical conductivity, and many others. The materials created can have a wide range of applications, such as biomimetic materials and technologies, smart materials, renewable energy sources, packaging, etc. This article reviews the usage of composites as a matrix for the optical sensors and biosensors. It highlights several methods that have been used to enhance performance and properties by optimizing the filler. It shows the main methods of combining indicator dyes with the material of the sensor matrix. Furthermore, the role of co-fillers or a hybrid filler in a polymer composite system is discussed, revealing the great potential and prospect of such matrixes in the field of fine properties tuning for advanced applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Figure 1

Back to TopTop