Protein-Based Biopolymer

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 31 May 2024 | Viewed by 1339

Special Issue Editors


E-Mail Website
Guest Editor
Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, China
Interests: protein biopolymer; protein engineering; structure conformation; structure analysis; structure dynamics; drug design; drug delivery

E-Mail Website
Guest Editor
Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, China
Interests: biomaterials and biomedical application; bio-printing and tissue engineering; high-throughput screening; polymer and surface chemistry

Special Issue Information

Dear Colleagues,

Proteins are polymers that are composed of amino acid monomers with amide bonds. The structural and biological properties of proteins are influenced by amino acid sequences.

Due to increasingly prominent environmental issues, people are more and more interested in protein and other natural degradable polymer materials and sustainable polymer materials. At the same time, protein has good biocompatibility in the application of biopolymer materials. Therefore, our primary research focuses on protein engineering, protein folding, drug design, and protein dynamics.

This Special Issue aims to discuss recent advances in protein biopolymers and their applications. We welcome both research and review articles.

Dr. Faez Iqbal Khan
Dr. Xuan Xue
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • protein engineering
  • protein folding
  • drug design
  • protein dynamics

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 4091 KiB  
Article
Synthesis of Thermo-Responsive Monofunctionalized Diblock Copolymer Worms
by Xuan Xue, Feifei Wang, Minhao Shi and Faez Iqbal Khan
Polymers 2023, 15(23), 4590; https://doi.org/10.3390/polym15234590 - 30 Nov 2023
Viewed by 755
Abstract
Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures [...] Read more.
Poly(glycerol monomethacrylate)-block-poly(2-hydroxypropyl methacrylate) (PGMA-PHPMA) with worm-like morphology is a typical example of reversible addition–fragmentation chain transfer (RAFT) dispersion polymerized thermo-responsive copolymer via polymerization-induced self-assembly (PISA) in aqueous solution. Chain transfer agents (CTAs) are the key component in controlling RAFT, the structures of which determine the end functional groups of the polymer chain. It is therefore of interest to monofunctionalize the polymers via CTA moiety, for bioactive functionality conjugation and in the meantime maintain the precisely controlled morphology of the copolymers and the related property. In this work, a newly designed CTA 5-(2-(tert-butoxycarbonylamino) ethylamino)-2-cyano-5-oxopentan-2-yl benzodithioate (t-Boc CPDB) was synthesized and used for the RAFT polymerization of PGMA45-PHPMA120. Subsequently, PGMA45-PHPMA120 copolymers with primary amine, maleimide, and reduced L-glutathione (a tripeptide) monofunctionalized terminals were synthesized via deprotection and conjugation reactions. These monofunctionalized copolymers maintain worm-like morphology and thermo-responsive property in aqueous solution (10% w/v), as confirmed by the transmission electron microscopy (TEM) images, and the observation of the phase transition behavior in between 4 °C and room temperature (~20 °C), respectively. Summarily, a range of thermo-responsive monofunctionalized PGMA45-PHPMA120 diblock copolymer worms were successfully synthesized, which are expected to offer potential biomedical applications, such as in polymer therapeutics, drug delivery, and diagnostics. Full article
(This article belongs to the Special Issue Protein-Based Biopolymer)
Show Figures

Figure 1

Back to TopTop