Preparation and Application of Biomass-Based Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Biomacromolecules, Biobased and Biodegradable Polymers".

Deadline for manuscript submissions: 15 June 2024 | Viewed by 44066

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
Interests: biomass-based materials; polymer composites; pretreatment of biomass; valorization of low-cost waste
Special Issues, Collections and Topics in MDPI journals
State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
Interests: biomass-based composites; carbon-based nanomaterials; electrocatalysis; electrochemical energy storage and conversion; environmental remediation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To prevent global catastrophic climate change, carbon peak and carbon neutrality targets have been put forward worldwide. In this context, as renewable and biodegradable biomass resources, the most common natural polymers such as cellulose, lignin, chitin, collagen, and so on have also dramatically attracted significant attention in recent decades. Moreover, a large number of biomass-based materials have been developed from these natural polymers, which have a wide range of applications in various fields, such as the packaging, energy, and biomedical fields.

To promote the development of biomass-based materials and expand their application, this Special Issue is focused on the “Preparation and Application of Biomass-Based Materials”. 

Dr. Guangmei Xia
Dr. Peng Jia
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomass-based materials
  • preparation
  • application
  • renewable
  • biodegradable

Published Papers (11 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 4702 KiB  
Article
Preparation of Environmentally Friendly Oil- and Water-Resistant Paper Using Holo-Lignocellulosic Nanofibril (LCNF)-Based Composite Coating
by Shengdan Wang, Lihua Pei, Jichao Wei, Jiabao Xie, Xingxiang Ji, Yukang Wang, Peng Jia and Yajuan Jiao
Polymers 2024, 16(8), 1078; https://doi.org/10.3390/polym16081078 - 12 Apr 2024
Viewed by 268
Abstract
In the present study, an environmentally friendly oil- and water-resistant paper was developed using a holo-lignocellulosic nanofibril (LCNF)-based composite coating. The LCNF was prepared from wheat straw using a biomechanical method. Characterizations of oil- and water-resistant coated paper and the effect of LCNF [...] Read more.
In the present study, an environmentally friendly oil- and water-resistant paper was developed using a holo-lignocellulosic nanofibril (LCNF)-based composite coating. The LCNF was prepared from wheat straw using a biomechanical method. Characterizations of oil- and water-resistant coated paper and the effect of LCNF content on the performance of the coated paper were confirmed by combining contact angle analysis, Cobb 300s, and mechanical performance tests. The results show that the barrier performance and mechanical strength of the coated paper were greatly improved with the increase of LCNF content. The contact angle of oil and water of coated paper containing 50% LCNF were 69° and 78°, respectively, while the contact angle of oil and water of the base paper were only 30° and 20°, respectively. Cobb 300s values reduced from 110 g/m2 to 30 g/m2 when the LCNF content increased from 50% to 90%. Moreover, under the coating amount of 20 g/m2, the tensile strength of the coating paper was 0.980 KN/m, an increase of 10.11% compared with the base paper. The bursting strength reached 701.930 KPa, which was 10.75% higher than the base paper. In short, it is feasible to prepare LCNF from wheat straw, and apply it to produce water-proof and oil-proof paper. The water-proof and oil-proof paper developed in this study not only offers a novel approach to addressing white pollution but also presents a new research avenue for exploring the potential applications of agricultural waste. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

15 pages, 3390 KiB  
Article
Using Plantain Rachis Fibers and Mopa-Mopa Resin to Develop a Fully Biobased Composite Material
by Valeria Sánchez Morales, Brenda Alejandra Martínez Salinas, Jose Herminsul Mina Hernandez, Estivinson Córdoba Urrutia, Lety del Pilar Fajardo Cabrera de Lima, Harry Maturana Peña, Alex Valadez González, Carlos R. Ríos-Soberanis and Emilio Pérez-Pacheco
Polymers 2024, 16(3), 329; https://doi.org/10.3390/polym16030329 - 25 Jan 2024
Viewed by 624
Abstract
A completely biobased composite material was developed using a matrix of natural resin extracted from the Elaegia pastoensis Mora plant, commonly known as Mopa-Mopa or “Barniz de Pasto”, reinforced with fibers extracted from plantain rachis agricultural residues. A solvent process, involving grinding, distillation, [...] Read more.
A completely biobased composite material was developed using a matrix of natural resin extracted from the Elaegia pastoensis Mora plant, commonly known as Mopa-Mopa or “Barniz de Pasto”, reinforced with fibers extracted from plantain rachis agricultural residues. A solvent process, involving grinding, distillation, filtration, and drying stages, was implemented to extract the resin from the plant bud. To obtain the resin from the plant bud, the vegetable material was ground and then dissolved in a water-alcohol blend, followed by distillation, filtration, and grinding until the powdered resin was ready for use in the preparation of the biocomposite. Likewise, using mechanical techniques, the plantain rachis fibers were extracted and worked in their native condition and with a previous alkalinization surface treatment. Finally, the biocomposite material was developed with and without incorporating stearic acid, which was included to reduce the material’s moisture absorption. Ultimately stearic acid was used as an additive to reduce biocomposite moisture absorption. The tensile mechanical results showed that the Mopa-Mopa resin reached a maximum strength of 20 MPa, which decreased with the incorporation of the additive to 12 MPa, indicating its plasticization effect. Likewise, slight decreases in moisture absorption were also evidenced with the incorporation of stearic acid. With the inclusion of rachis plantain fibers in their native state, a reduction in the tensile mechanical properties was found, proportional to the amount added. On the other hand, with the alkalinization treatment of the fibers, the behavior was the opposite, evidencing increases in tensile strength, indicating that the fiber modification improved the interfacial adhesion with the Mopa-Mopa matrix. On the other hand, the evaluation of the moisture absorption of the biocomposite material evidenced, as expected, that the absorption level was favored by the relative humidity used in the conditioning (47, 77, and 97%), which also had an impact on the decrease of the mechanical tensile properties, being this was slightly counteracted by the inclusion of stearic acid in the formulation of the material. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

19 pages, 13906 KiB  
Article
The Preparation and Characterization of Chitosan/Calcium Phosphate Composite Microspheres for Biomedical Applications
by Meng-Ying Wu, Shih-Wei Huang, I-Fang Kao and Shiow-Kang Yen
Polymers 2024, 16(2), 167; https://doi.org/10.3390/polym16020167 - 05 Jan 2024
Cited by 2 | Viewed by 1057
Abstract
In this study, we successfully prepared porous composite microspheres composed of hydroxyapatite (HAp), di-calcium phosphate di-hydrated (DCPD), and chitosan through the hydrothermal method. The chitosan played a crucial role as a chelating agent to facilitate the growth of related calcium phosphates. The synthesized [...] Read more.
In this study, we successfully prepared porous composite microspheres composed of hydroxyapatite (HAp), di-calcium phosphate di-hydrated (DCPD), and chitosan through the hydrothermal method. The chitosan played a crucial role as a chelating agent to facilitate the growth of related calcium phosphates. The synthesized porous composite microspheres exhibit a specific surface area of 38.16 m2/g and a pore volume of 0.24 cm3/g, with the pore size ranging from 4 to 100 nm. Given the unique properties of chitosan and the exceptional porosity of these composite microspheres, they may serve as carriers for pharmaceuticals. After being annealed, the chitosan transforms into a condensed form and the DCPD transforms into Ca2P2O7 at 300 °C. Then, the Ca2P2O7 initially combines with HAp to transform into β tricalcium phosphate (β-TCP) at 500 °C where the chitosan is also completely combusted. Finally, the microspheres are composed of Ca2P2O7, β-TCP, and HAp, also making them suitable for applications such as injectable bone graft materials. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

11 pages, 6674 KiB  
Article
AKD Emulsions Stabilized by Guar Gel: A Highly Efficient Agent to Improve the Hydrophobicity of Cellulose Paper
by Xiaona Liu, Yingpu Li, Huili Wang, Zhaoping Song, Congping Tan, Guodong Li, Dehai Yu and Wenxia Liu
Polymers 2023, 15(24), 4669; https://doi.org/10.3390/polym15244669 - 11 Dec 2023
Viewed by 31005
Abstract
The aim of the present study was to investigate highly efficient alkyl ketene dimer (AKD) emulsions to improve the hydrophobicity of cellulose paper. AKD emulsions stabilized by guar gel were obtained; the guar gel was prepared by hydrogen bond cross-linking sodium tetraborate and [...] Read more.
The aim of the present study was to investigate highly efficient alkyl ketene dimer (AKD) emulsions to improve the hydrophobicity of cellulose paper. AKD emulsions stabilized by guar gel were obtained; the guar gel was prepared by hydrogen bond cross-linking sodium tetraborate and guar gum. The cross-linking was confirmed by combining FTIR and SEM. The effect of guar gel on the performance of the AKD emulsions was also studied by testing AKD emulsions stabilized by different guar gel concentrations. The results showed that with increasing guar gel concentration, the stability of the AKD emulsions improved, the droplet diameter decreased, and the hydrophobicity and water resistance of the sized packaging paper were gradually enhanced. Through SEM, the guar gel film covering the AKD emulsion droplet surface and the three-dimensional structure in the aqueous dispersion phase were assessed. This study constructed a scientific and efficient preparation method for AKD emulsions and provided a new method for the application of carbohydrate polymer gels which may avoid the adverse effect of surfactant on paper sizing and environmental problems caused by surfactant bioaccumulation. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

13 pages, 1941 KiB  
Article
Effect of Lithium Salts on the Properties of Cassava Starch Solid Biopolymer Electrolytes
by Alvaro A. Arrieta, Oriana Palma Calabokis and Jorge Mario Mendoza
Polymers 2023, 15(20), 4150; https://doi.org/10.3390/polym15204150 - 19 Oct 2023
Viewed by 774
Abstract
This study evaluates the effect of lithium salts on the structural, electrochemical, and thermal properties of cassava starch solid biopolymer electrolytes (SBPEs). Films of SBPEs were synthesized using plasticizing agents and lithium salts (LiCl, Li2SO4, and CF3LiSO [...] Read more.
This study evaluates the effect of lithium salts on the structural, electrochemical, and thermal properties of cassava starch solid biopolymer electrolytes (SBPEs). Films of SBPEs were synthesized using plasticizing agents and lithium salts (LiCl, Li2SO4, and CF3LiSO3) via thermochemical method. The SBPEs with lithium salts exhibited characteristic FTIR bands starch, with slight variations in the vibration oxygen-related functional groups compared to salt-free biopolymer spectra. The RCOH/COC index (short-range crystallinity) was higher in the films synthesized without lithium salt and the lowest value was established in the films synthesized with Li2SO4. Thermal degradation involved dehydration between 40 to 110 °C and molecular decomposition between 245 to 335 °C. Degradation temperatures were close when synthesized with salts but differed in films without lithium salt. DSC revealed two endothermic processes: one around 65 °C linked to crystalline structure changes and the second at approximately 271 °C associated with glucose ring decomposition. The electrochemical behavior of the SBPEs varied with the salts used, resulting in differences in the potential and current of peaks from the redox processes and its conductivity, presenting the lowest value (8.42 × 10−5 S cm−1) in the SBPE films without salt and highest value (9.54 × 10−3 S cm−1) in the films with Li2SO4. It was concluded that the type of lithium salt used in SBPEs synthesis affected their properties. SBPEs with lithium triflate showed higher molecular ordering, thermal stability, and lower redox potentials in electrochemical processes. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

11 pages, 2852 KiB  
Article
Fabrication of N-Doped Porous Carbon with Micro/Mesoporous Structure from Furfural Residue for Supercapacitors
by Xia Meng, Xiaohui Wang, Wei Li, Fangong Kong and Fengshan Zhang
Polymers 2023, 15(19), 3976; https://doi.org/10.3390/polym15193976 - 03 Oct 2023
Viewed by 736
Abstract
N-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To [...] Read more.
N-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To obtain an N-doped PC with a high specific surface area (SSA) and hierarchical porous structure, the urea-KOH synergistic activation method was proposed. The obtained FRPCK-Urea showed a high SSA of 1850 m2 g−1, large pore volume of 0.9973 cm3 g−1, and interconnected micro/mesoporous structure. Besides, urea can also serve as a nitrogen source, resulting in a high N content of 5.31% in FRPCK-Urea. These properties endow FRPCK-Urea with an excellent capacitance of 222.7 F g−1 at 0.5 A g−1 in 6 mol L−1 KOH aqueous electrolyte in a three-electrode system. The prepared FRPCK-Urea possessed a well capacitance retention at current densities from 0.5 to 20 A g−1 (81.90%) and cycle durability (96.43% after 5000 cycles), leading to FRPCK-Urea to be a potential electrode material for supercapacitors. Therefore, this work develops an effective way for the high-valued utilization of FR. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

17 pages, 3388 KiB  
Article
Utilizing Novel Lignocellulosic Material from Hart’s-Tongue Fern (Asplenium scolopendrium) Leaves for Crystal Violet Adsorption: Characterization, Application, and Optimization
by Giannin Mosoarca, Cosmin Vancea, Simona Popa, Mircea Dan and Sorina Boran
Polymers 2023, 15(19), 3923; https://doi.org/10.3390/polym15193923 - 28 Sep 2023
Viewed by 582
Abstract
In this work, a new lignocellulosic adsorbent was obtained and tested for crystal violet dye removal from water. The material was obtained from hart’s-tongue fern (Asplenium scolopendrium) leaves after minimal processing, without chemical or thermal treatment. The surface of the material [...] Read more.
In this work, a new lignocellulosic adsorbent was obtained and tested for crystal violet dye removal from water. The material was obtained from hart’s-tongue fern (Asplenium scolopendrium) leaves after minimal processing, without chemical or thermal treatment. The surface of the material was characterized using a variety of techniques, including FTIR, SEM, and color analysis. The effect of various factors on the adsorption capacity was then investigated and discussed. The kinetic and equilibrium studies showed that the general-order kinetic model and the Sips isotherm are the most suitable to describe the adsorption process. The equilibrium time was reached after 20 min and the maximum calculated value of the adsorption capacity was 224.2 (mg g−1). The determined values for the thermodynamic parameters indicated physical adsorption as the main mechanism involved in the process. The Taguchi method was used to optimize the adsorption conditions and identify the most influential controllable factor, which was pH. ANOVA (general linear model) was used to calculate the percentage contribution of each controllable factor to dye removal efficiency. Analysis of all the results shows that hart’s-tongue fern (Asplenium scolopendrium) leaves are a very inexpensive, readily available, and effective adsorbent for removing crystal violet dye from aqueous solutions. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

12 pages, 4436 KiB  
Article
Incorporation of Bayberry Tannin into a Locust Bean Gum/Carboxycellulose Nanocrystals/ZnO Coating: Properties and Its Application in Banana Preservation
by Wenrui Chi, Tingting Li, Na Wei, Zijing Pan and Lijuan Wang
Polymers 2023, 15(16), 3364; https://doi.org/10.3390/polym15163364 - 10 Aug 2023
Cited by 1 | Viewed by 880
Abstract
The application of polysaccharide-based coatings to prolong the shelf-life of fruits has attracted increasing attention. This study aims to develop a fruit coating comprising locust bean gum/carboxycellulose nanocrystals/ZnO (LCZ) blended with bayberry tannins (BT). The results revealed a significant increase from 4.89% and [...] Read more.
The application of polysaccharide-based coatings to prolong the shelf-life of fruits has attracted increasing attention. This study aims to develop a fruit coating comprising locust bean gum/carboxycellulose nanocrystals/ZnO (LCZ) blended with bayberry tannins (BT). The results revealed a significant increase from 4.89% and 11.04% to 29.92% and 45.01% in the free radical scavenging rates of 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-di-[3-ethylbenzthiazthiazoline sulfonate] with the percentage of BT increasing from 0% to 5%, respectively. At a 5% of BT, the antibacterial activity against both E.coli and S. aureus exceeded 90% while simultaneously achieving excellent UV shielding (transmittance of 380–200 nm ≤ 0.19%). After 3 days of storage, uncoated bananas showed signs of browning, and their titratable acid and vitamin C (Vc) contents decreased from 0.57% to 0.30% and from 7.37 mg/100 g to 4.77 mg/100 g, respectively. However, bananas coated with LCZ containing 3% BT not only exhibited a better appearance, but also possessed higher titratable acid (0.44%) and Vc content (5.31 mg/100 g). This study provides a sustainable and multifunctional coating for fruit preservation. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

11 pages, 2325 KiB  
Article
Dual-Cure Adhesives Using a Newly Synthesized Itaconic Acid-Based Epoxy Acrylate Oligomer
by Hae-Chan Kim, Yong-Rok Kwon, Jung-Soo Kim, Ju-Hee So and Dong-Hyun Kim
Polymers 2023, 15(15), 3304; https://doi.org/10.3390/polym15153304 - 04 Aug 2023
Viewed by 1076
Abstract
Herein, a novel biomass-derived itaconic acid (IA)-based epoxy acrylate oligomer (EAO) is synthesized by means of the esterification reaction of the epoxy group of bisphenol A diglycidyl ether (BADGE) with the carboxylic group of IA. The detailed chemical structure of the as-prepared bisphenol [...] Read more.
Herein, a novel biomass-derived itaconic acid (IA)-based epoxy acrylate oligomer (EAO) is synthesized by means of the esterification reaction of the epoxy group of bisphenol A diglycidyl ether (BADGE) with the carboxylic group of IA. The detailed chemical structure of the as-prepared bisphenol A diglycidyl ether diitaconate (BI) is characterized via the KOH value, FT-IR spectrum, and 1H-NMR spectrum. Further, a dual-cure adhesive system is formulated using BADGE, acrylic acid, and trimethylolpropane triacrylate with various BI contents, and the adhesive performance is investigated by measuring the thermal stability, adhesive properties, pencil hardness, and surface energy properties. Thus, the dual-cure adhesive with a BI content of 0.3 mol is shown to provide excellent thermal stability, along with an adhesive strength of 10.7 MPa, a pencil hardness of 2H, and a similar surface energy to that of a typical polycarbonate film. In addition, the properties of the BI-based dual-cure adhesive are compared with those of the dual-cure adhesives based on bisphenol A glycerolate diacrylate or bisphenol A glycerolate dimethacrylate. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

15 pages, 3959 KiB  
Article
Cellulose/Grape-Seed-Extract Composite Films with High Transparency and Ultraviolet Shielding Performance Fabricated from Old Cotton Textiles
by Xiaoqian Ji, Zhen Xu, Xinqun Xia, Zhaoning Wei, Jun Zhang, Guangmei Xia and Xingxiang Ji
Polymers 2023, 15(6), 1451; https://doi.org/10.3390/polym15061451 - 14 Mar 2023
Viewed by 1383
Abstract
Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on [...] Read more.
Plastics displaying many merits have been indispensable in daily life and they still maintain the strong momentum of development. Nevertheless, petroleum-based plastics possess a stable polymer structure and most of them are incinerated or accumulated in the environment, leading to devastating impacts on our ecology system. Thus, exploiting renewable and biodegradable materials to substitute or replace these traditional petroleum-derived plastics is an urgent and important task. In this work, renewable and biodegradable all-biomass cellulose/grape-seed-extract (GSEs) composite films with high transparency and anti-ultraviolet performance were fabricated successfully from pretreated old cotton textiles (P-OCTs) using a relatively simple, green, yet cost-effective, approach. It is proved that the obtained cellulose/GSEs composite films exhibit good ultraviolet shielding performance without sacrificing their transparency, and their UV-A and UV-B blocking values can reach as high as nearly 100%, indicating the good UV-blocking performance of GSEs. Meanwhile, the cellulose/GSEs film show higher thermal stability and water vapor transmission rate (WVTR) than most common plastics. Moreover, the mechanical property of the cellulose/GSEs film can be adjusted by the addition of a plasticizer. Briefly, the transparent all-biomass cellulose/grape-seed-extracts composite films with high anti-ultraviolet capacity were manufactured successfully and they can be used as potential materials in the packaging field. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 5670 KiB  
Review
Eco-Friendly Methods for Extraction and Modification of Cellulose: An Overview
by Solange Magalhães, Catarina Fernandes, Jorge F. S. Pedrosa, Luís Alves, Bruno Medronho, Paulo J. T. Ferreira and Maria da Graça Rasteiro
Polymers 2023, 15(14), 3138; https://doi.org/10.3390/polym15143138 - 24 Jul 2023
Cited by 4 | Viewed by 4275
Abstract
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on [...] Read more.
Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose’s use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed. Full article
(This article belongs to the Special Issue Preparation and Application of Biomass-Based Materials)
Show Figures

Graphical abstract

Back to TopTop