Journal Description
Pollutants
Pollutants
is an international, peer-reviewed, open access journal on all aspects of environmental pollution published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within AGRIS, and many other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 16.8 days after submission; acceptance to publication is undertaken in 14.6 days (median values for papers published in this journal in the second half of 2022).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Latest Articles
Pesticide Pollution in the Brazilian Pampa: Detrimental Impacts on Ecosystems and Human Health in a Neglected Biome
Pollutants 2023, 3(2), 280-292; https://doi.org/10.3390/pollutants3020020 - 01 Jun 2023
Abstract
►
Show Figures
The Brazilian Pampa biome covers half of Rio Grande do Sul state, in the extreme south of Brazil, creating an ecotone zone with the Atlantic Forest and bordering Pampa’s territory belonging to Uruguay and Argentina. Pampa is a non-forest biome mainly composed of
[...] Read more.
The Brazilian Pampa biome covers half of Rio Grande do Sul state, in the extreme south of Brazil, creating an ecotone zone with the Atlantic Forest and bordering Pampa’s territory belonging to Uruguay and Argentina. Pampa is a non-forest biome mainly composed of grasslands and mosaics of grassland-forest vegetation. This biome shows significant animal and plant diversity, contributing to the maintenance of important ecosystem services, including CO2 capture, pollination, and water cycle regulation. However, forestry plantations, inappropriate cattle ranching, mining activities, unplanned urbanization, and the cultivation of monocultures (soy, rice, tobacco, and other cash crops) significantly threaten the conservation of the Pampa biome. A major problem observed in the Pampa, due to the great connection of this biome with agricultural areas, is pesticide pollution, which significantly affects the health of humans and animals that occupy the region. A robust body of evidence indicates that aquatic and terrestrial ecosystems in the Brazilian Pampa are extensively contaminated with pesticides, as indicated by studies involving animal biomarkers and pesticide analyses performed on water and soil samples. Human studies also suggest that pesticides affect different body systems, facilitating the onset of various chronic diseases. Brazil’s conservation actions and policies have a special focus on forest ecosystems, neglecting non-forest biomes and thus aggravating the problems related to Pampa’s conservation. In this article, we discuss some problems caused by pesticide pollution in the Brazilian Pampa, drawing attention to the need for intensification of policies focused on the promotion of human and environmental health. Finally, we suggest the bioecological bioeconomy as an alternative for Rio Grande do Sul to progress its economic development but with less dependency on detrimental activities to the Pampa biome.
Full article
Open AccessArticle
Monitoring Trends of CO, NO2, SO2, and O3 Pollutants Using Time-Series Sentinel-5 Images Based on Google Earth Engine
by
, , , , and
Pollutants 2023, 3(2), 255-279; https://doi.org/10.3390/pollutants3020019 - 22 May 2023
Abstract
►▼
Show Figures
Air pollution (AP) is a significant risk factor for public health, and its impact is becoming increasingly concerning in developing countries where it is causing a growing number of health issues. It is therefore essential to map and monitor AP sources in order
[...] Read more.
Air pollution (AP) is a significant risk factor for public health, and its impact is becoming increasingly concerning in developing countries where it is causing a growing number of health issues. It is therefore essential to map and monitor AP sources in order to facilitate local action against them. This study aims at assessing the suitability of Sentinel-5 AP products based on Google Earth Engine (GEE) to monitor air pollutants, including CO, NO2, SO2, and O3 in Arak city, Iran from 2018 to 2019. Our process involved feeding satellite images to a cloud-free GEE platform that identified pollutant-affected areas monthly, seasonally, and annually. By coding in the JavaScript language in the GEE, four pollution parameters of Sentinel-5 satellite images were obtained. Following that, images with clouds were filtered by defining cloud filters, and average maps were extracted by defining average filters for both years. The employed model, which solely used Sentinel-5 AP products, was tested and assessed using ground data collected from the Environmental Organization of Central Province. Our findings revealed that annual CO, NO2, SO2, and O3 were estimated with RMSE of 0.13, 2.58, 4.62, and 2.36, respectively, for the year 2018. The annual CO, NO2, SO2, and O3 for the year 2019 were also calculated with RMSE of 0.17, 2.41, 4.31, and 4.6, respectively. The results demonstrated that seasonal AP was estimated with RMSE of 0.09, 5.39, 0.70, and 7.81 for CO, NO2, SO2, and O3, respectively, for the year 2018. Seasonal AP was also estimated with RMSE of 0.12, 4.99, 1.33, and 1.27 for CO, NO2, SO2, and O3, respectively, for the year 2019. The results of this study revealed that Sentinel-5 data combined with automated-based approaches, such as GEE, can perform better than traditional approaches (e.g., pollution measuring stations) for AP mapping and monitoring since they are capable of providing spatially distributed data that is sufficiently accurate.
Full article

Graphical abstract
Open AccessArticle
Influence of Seasons and Tides on the Distribution of Enteric Protozoa on the Shores of the Atlantic Ocean in Kribi (South Region of Cameroon): Health Risks Related to Bathing
by
, , , , , and
Pollutants 2023, 3(2), 243-254; https://doi.org/10.3390/pollutants3020018 - 04 May 2023
Abstract
Beaches are major sites of microbiological pollution. Assessment of the abundance of resistant forms of enteric protozoa on these recreational waters is important for the prevention and management of health risks. Based on sedimentation and flotation methods, this study found that Kribi beach
[...] Read more.
Beaches are major sites of microbiological pollution. Assessment of the abundance of resistant forms of enteric protozoa on these recreational waters is important for the prevention and management of health risks. Based on sedimentation and flotation methods, this study found that Kribi beach waters concentrate considerable amounts of enteric protozoa, which are potentially pathogenic. They include Coccidia (Cryptosporidium sp. and Cyclospora cayetanensis), Amoebae (Endolimax nana, Entamoeba histolytica and Entamoeba coli) and Flagellates (Giardia intestinalis). In general, seasonal changes and tidal cycles have significantly impacted the spread of these parasites along Kribi beaches. Thus, at all sites surveyed (Mpalla, Ngoyè and Mboamanga), maximum protozoan abundances were recorded at low tide and during the rainy seasons. It should also be noted that at each sampling site, significant correlations were recorded between certain protozoa and certain physico-chemical variables (p < 0.05). At Mboamanga, for example, Cryptosporidium sp. and Endolimax nana were positively correlated during the Short Rainy Season with temperature (r = 0.601, p = 0.044 and r = 0.632, p = 0.042). At Mpalla, a positive and significant correlation was observed during the Short Rainy Season between Entamoeba coli and pH (r = 0.605, p = 0.033). The high concentration of resistant forms of these enteric protozoa at Kribi beaches is a real public health threat for bathers. Therefore, in this tourist town, it is urgent to put in place an effective plan for the collection and sustainable treatment of solid and liquid waste, which are the main sources of contamination.
Full article
(This article belongs to the Section Waste Pollution)
►▼
Show Figures

Figure 1
Open AccessBrief Report
Effects of Ammonia on Juvenile Sunray Surf Clam (Mactra chinensis Philippi) in Laboratory Tests
Pollutants 2023, 3(2), 232-242; https://doi.org/10.3390/pollutants3020017 - 14 Apr 2023
Abstract
The current study aimed to determine the acute and sub-chronic toxicity of ammonia to juvenile surf clams (Mactra chinensis Philippi). Acute toxicity tests were conducted with seven concentrations of ammonium chloride using a 96 h static-renewal approach. Sub-chronic ammonia exposure tests (20
[...] Read more.
The current study aimed to determine the acute and sub-chronic toxicity of ammonia to juvenile surf clams (Mactra chinensis Philippi). Acute toxicity tests were conducted with seven concentrations of ammonium chloride using a 96 h static-renewal approach. Sub-chronic ammonia exposure tests (20 d exposures) were conducted with 6 concentrations at 20 °C. The 96 h median lethal concentration (96 h LC50) was 11.1 (10.0; 12.0) mg/L total ammonia nitrogen (TAN) and 0.56 (0.50; 0.60) mg/L unionized ammonia (NH3). The relative growth rate was significantly reduced at concentrations higher than 1.6 mg/L TAN (0.075 mg/L NH3) in the 20 d tests. The estimated maximum acceptable toxicant concentration (MATC) based on the reduced growth of juvenile M. chinensis was between 0.8 and1.6 mg/L TAN (0.038–0.075 mg/L NH3). Histopathological changes were evaluated in the surviving clams after 20 days of exposure. Exposure to 14.1 mg/L TAN (0.661 mg/L NH3) resulted in changes in the mantle, foot and digestive diverticulum. We also examined the antioxidant enzyme activities of superoxide dismutase (SOD) and catalase (CAT) in 10 d and 20 d at 6 different levels (plus a control) of ammonia from 0.8 mg/L to 14.1 mg/L TAN. Ammonia exposure at 0.8 mg/L TAN (0.038 mg/L NH3) significantly affected SOD and CAT activities. The level of enzymic activity decreased with the increasing concentration of TAN. The results improved our understanding of oxidative damage under ammonia exposure and provided data for the aquaculture of sunray surf clams.
Full article
(This article belongs to the Special Issue Marine Pollutants - Volume 2)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Soil Texture, Nanoparticle Size, and Incubation Period on the Dissolution of ZnO Nanoparticles
by
, , , , , and
Pollutants 2023, 3(2), 220-231; https://doi.org/10.3390/pollutants3020016 - 06 Apr 2023
Abstract
Zinc is an essential plant and human nutrient and its primary source is Zn-rich food consumption. The only way to enrich plants with Zn is through the application of Zn fertilizers including various chemical and organic sources of ZnO nanoparticles (NPs). The Zn
[...] Read more.
Zinc is an essential plant and human nutrient and its primary source is Zn-rich food consumption. The only way to enrich plants with Zn is through the application of Zn fertilizers including various chemical and organic sources of ZnO nanoparticles (NPs). The Zn bioavailability from ZnO NPs must be considered for their recommendation as a fertilizer, and very little is known about the efficacy of such fertilizers in the Hungarian soil environment. In the present investigation, we prepared ZnO NPs of different sizes and applied them in two distinct textures of soils (sandy loam (SL) and silty clay (SC)) in an incubation experiment. The prepared ZnO NPs were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). ZnO NPs were applied in both soil types at 500 mg L−1 in the form of a suspension, and ZnSO4 was applied in the form of a solution. The soils were incubated for 7 and 14 days. Column leaching was performed to analyze the dissolved Zn. Retained Zn in the soil matrix was extracted using 0.05 M EDTA. The results showed that approximately 21–23% and 10–13% higher Zn was observed in the pore water of SL and SC soils, respectively, when spiked with small-sized NPs compared to large-sized NPs, while 14–26% higher dissolved Zn was observed in SL soil compared to SC soil. It is concluded that the size of NPs and the soil texture are the main factors that play important roles in deciding the fate of NPs under an alkaline soil environment.
Full article
(This article belongs to the Section Soil Pollution)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessment of Air Pollution Levels during Sugarcane Stubble Burning Event in La Feria, South Texas, USA
Pollutants 2023, 3(2), 197-219; https://doi.org/10.3390/pollutants3020015 - 24 Mar 2023
Abstract
Agricultural stubble burning is the third largest source of air pollution after vehicular and industrial emissions. Fine particulate matter (PM2.5), volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon (BC) are some of the pollutants
[...] Read more.
Agricultural stubble burning is the third largest source of air pollution after vehicular and industrial emissions. Fine particulate matter (PM2.5), volatile organic compounds (VOCs), carbon monoxide (CO), nitrogen dioxide (NO2), and black carbon (BC) are some of the pollutants emitted during such burning events. The Lower Rio Grande Valley (RGV) region of South Texas is a major hub of agricultural activity, and sugarcane farming is one of them. Unfortunately, this activity results in episodic events of high air pollution in this low-resourced, Hispanic/Latino majority region of the U.S.–Mexico border. This study presents results from a sugarcane site in La Feria, South Texas, where the air quality was monitored before, during, and after the sugarcane stubble burning. Various parameters were monitored on an hourly basis from 24 February 2022 to 4 April 2022. Our results demonstrate high levels of all the monitored pollutants during the burning phase in contrast to the pre- and post-burning period. The black carbon levels went up to 6.43 µg m−3 on the day of burning activity. An increase of 10%, 11.6%, 25.29%, 55%, and 67.57% was recorded in the PM1, PM2.5, PM10, Black Carbon, and CO levels, respectively, during the burning period in comparison with the total study period. The absorption Ångström exponent value reached a maximum value of 2.03 during the burning activity. ThePM2.5/PM10 ratio was 0.87 during the burning activity. This study also highlights the importance for continuous monitoring of air quality levels due to stubble burning in the Lower Rio Grande Valley Region of South Texas.
Full article
(This article belongs to the Topic Accessing and Analyzing Air Quality and Atmospheric Environment)
►▼
Show Figures

Figure 1
Open AccessArticle
Mercury Accumulation in Food Crops and Phytoremediation Potential of Wild Plants Thriving in Artisanal and Small-Scale Gold Mining Areas in Uganda
by
, , , , and
Pollutants 2023, 3(2), 181-196; https://doi.org/10.3390/pollutants3020014 - 23 Mar 2023
Abstract
►▼
Show Figures
Mercury (Hg) has been used for millennia in artisanal and small-scale gold mining (ASGM) to extract gold from ore as an amalgam that is heated to recover gold. Since there is hardly any sustainable technology that can be used to recover it, the
[...] Read more.
Mercury (Hg) has been used for millennia in artisanal and small-scale gold mining (ASGM) to extract gold from ore as an amalgam that is heated to recover gold. Since there is hardly any sustainable technology that can be used to recover it, the vast percentage of released Hg finds its way into the environment. Currently, ASGM is the largest source of mercury pollution on Earth. Mercury (Hg) is listed among the top 10 most harmful metals by the World Health Organization (WHO), and it is known to cause several neurological disorders in humans. Thus, Hg levels in environmental systems surrounding pollution hotspots such as ASGM mines need to be monitored to ensure their proper management and protect vulnerable ecosystems and human health. This work was aimed to study the level of Hg pollution in soils and plants thriving around ASGM mines in Eastern Uganda and to evaluate the Hg phytoremediation potential of the plants. The total Hg contents were determined for soils, food crops and wild plants growing around ASGM mines. The results for the pH, organic carbon (OC) and electric conductivity (EC) of the soils in the study area were comparable to those of the control soils. The soils in the studied ASGM areas exhibited high Hg concentrations ranging between 723 and 2067 folds more than those of the control soils. All soils were moderately to heavily contaminated according to geoaccumulation (Igeo) index values that ranged between 1.16 and 3.31. The results of this study also showed that the food crops and wild plants accumulated Hg levels that were above the 20 ng/g (0.02 ppm) permissible limit. This study revealed relatively higher levels of Hg in the aerial parts of the plants compared with the underground organs, which can be attributed to Hg deposition, entry through stomata and foliar adsorption. Mercury levels in 47% of the food crop samples were above the FAO/WHO permissible mercury limit of 0.5 µg/g. Similarly, medicinal plants accumulated Hg to levels that were several folds higher than the 0.2 ppm permissible limit of mercury in herbal materials of Canada. Interestingly, this study showed that some wild plant species, especially sedges, exhibited relatively higher levels of mercury accumulation than others thriving in the same environment, an indication that such plants could be utilized in the phytoremediation of Hg-contaminated sites.
Full article

Figure 1
Open AccessArticle
A Study of Real-Time and Satellite Data of Atmospheric Pollutants during Agricultural Crop Residue Burning at a Downwind Site in the Indo-Gangetic Plain
Pollutants 2023, 3(1), 166-180; https://doi.org/10.3390/pollutants3010013 - 07 Mar 2023
Cited by 1
Abstract
►▼
Show Figures
Crop residue burning emits a variety of air pollutants that drastically affect air quality, both locally and regionally. To study the impact of crop residue burning, in the present study, concentrations of particulate matter (PM2.5), trace gases (tropospheric ozone (O3
[...] Read more.
Crop residue burning emits a variety of air pollutants that drastically affect air quality, both locally and regionally. To study the impact of crop residue burning, in the present study, concentrations of particulate matter (PM2.5), trace gases (tropospheric ozone (O3), nitrogen oxides (NOx), carbon monoxide (CO), and volatile organic compounds (VOCs)) were recorded in Agra, a suburban downwind site. The study was conducted during the pre-harvest (15 September to 5 October 2021) and post-harvest periods (6 October to 10 November 2021). During the post-harvest period, PM2.5 concentrations were recorded to be three to four times higher than the NAAQ Standards (35 µg/m3), while O3 and VOC concentrations showed an increment of 16% and 30.4%, respectively. NOx and CO concentrations also showed higher levels (19.7 ± 7.5 ppb and 1498.5 ± 1077.5 ppb) during this period. Moderate resolution imaging spectroradiometer (MODIS), along with air mass backward trajectory analysis (HYSPLIT Model), were used to detect fire hotspots that suggested that the enhanced pollutant levels may be due to the burning of crop residue in agricultural fields over the northwest Indo-Gangetic Plain (NW-IGP). Field emission scanning electron microscopy with energy dispersive X-ray spectroscopy (FESEM-EDX) analysis showed high K concentrations during the post-harvest period, which may be attributed to crop residue burning or biomass combustion.
Full article

Figure 1
Open AccessArticle
Design and Implementation of a Low-Cost Air Quality Network for the Aburra Valley Surrounding Mountains
by
, , , , , , , , , , and
Pollutants 2023, 3(1), 150-165; https://doi.org/10.3390/pollutants3010012 - 01 Mar 2023
Abstract
The densest network for measuring air pollutant concentrations in Colombia is in Medellin, where most sensors are located in the heavily polluted lower parts of the valley. Measuring stations in the higher elevations on the mountains surrounding the valley are not available, which
[...] Read more.
The densest network for measuring air pollutant concentrations in Colombia is in Medellin, where most sensors are located in the heavily polluted lower parts of the valley. Measuring stations in the higher elevations on the mountains surrounding the valley are not available, which limits our understanding of the valley’s pollutant dynamics and hinders the effectiveness of data assimilation studies using chemical transport models such as LOTOS-EUROS. To address this gap in measurements, we have designed a new network of low-cost sensors to be installed at altitudes above 2000 m.a.s.l. The network consists of custom-built, solar-powered, and remotely connected sensors. Locations were strategically selected using the LOTOS-EUROS model driven by diverse meteorology-simulated fields to explore the effects of the valley wind representation on the transport of pollutants. The sensors transmit collected data to internet gateways for posterior analysis. Various tests to verify the critical characteristics of the equipment, such as long-range transmission modeling and experiments with an R score of 0.96 for the best propagation model, energy power system autonomy, and sensor calibration procedures, besides case exposure to dust and water experiments, to ensure IP certifications. An inter-calibration procedure was performed to characterize the sensors against reference sensors and describe the observation error to provide acceptable ranges for the data assimilation algorithm (<10% nominal). The design, installation, testing, and implementation of this air quality network, oriented towards data assimilation over the Aburrá Valley, constitute an initial experience for the simulation capabilities toward the system’s operative capabilities. Our solution approach adds value by removing the disadvantages of low-cost devices and offers a viable solution from a developing country’s perspective, employing hardware explicitly designed for the situation.
Full article
(This article belongs to the Special Issue Advances in Air Pollutant Monitoring through Low-Cost Sensors)
►▼
Show Figures

Figure 1
Open AccessReview
Exigency for the Control and Upgradation of Indoor Air Quality—Forefront Advancements Using Nanomaterials
Pollutants 2023, 3(1), 123-149; https://doi.org/10.3390/pollutants3010011 - 14 Feb 2023
Abstract
Due to increasing health and environmental issues, indoor air quality (IAQ) has garnered much research attention with regard to incorporating advanced clean air technologies. Various physicochemical air treatments have been used to monitor, control, and manage air contaminants, such as monitoring devices (gas
[...] Read more.
Due to increasing health and environmental issues, indoor air quality (IAQ) has garnered much research attention with regard to incorporating advanced clean air technologies. Various physicochemical air treatments have been used to monitor, control, and manage air contaminants, such as monitoring devices (gas sensors and internet of things-based systems), filtration (mechanical and electrical), adsorption, UV disinfection, UV photocatalysts, a non-thermal plasma approach, air conditioning systems, and green technologies (green plants and algae). This article reviews presently viable technologies for cleaning indoor air and enhancing IAQ. However, regarding the integration of each technology, there are certain limitations to these methods, including the types of pollutants released. As a result, advanced nanomaterials have been applied to monitoring sensors, filtration and adsorption media, and UV photocatalysts to improve IAQ values. The most important nanomaterials used in this regard include polymeric nanofibrous membranes, nanoporous nanomaterials, nanocomposite hydrogels, polymer/nanocarbon nanocomposite, polymer/metal oxide nanocomposite, polymeric nanohybrids, etc. Accordingly, through the use of nanotechnology, optimal solutions linking IAQ regulation techniques to novel nanomaterials can be achieved to attain safe IAQ levels.
Full article
(This article belongs to the Section Impact Assessment of Environmental Pollution)
►▼
Show Figures

Figure 1
Open AccessCommunication
Unravelling the Concentrations of Five Rare Earth Elements in Two Vineyard Red Soils
by
, , , and
Pollutants 2023, 3(1), 114-122; https://doi.org/10.3390/pollutants3010010 - 08 Feb 2023
Abstract
►▼
Show Figures
The La Mancha region is a primary food production area in central Spain, with extensive zones used as vineyards. This article aims to present information about rare earth elements’ (REEs) contents and deals with their distribution in two representative soil profiles (Alfisols) in
[...] Read more.
The La Mancha region is a primary food production area in central Spain, with extensive zones used as vineyards. This article aims to present information about rare earth elements’ (REEs) contents and deals with their distribution in two representative soil profiles (Alfisols) in this area. The presence of carbonates and a semiarid climate are its main characteristic environmental factors. Lanthanum (La), Cerium (Ce), Neodymium (Nd), Scandium (Sc) and Yttrium (Y) concentrations were determined using X-ray fluorescence spectroscopy (XRF). The results revealed the following maximum REEs’ contents (mg·kg–1): Ce 93.3, La 46.8, Nd 38.6, Y 25.5 and Sc 13.0. The REEs’ concentrations in the two soil profiles were in the following order: Ce > La > Nd > Y > Sc. The application of fungicides and the addition of fertilisers in vineyards can increase the soil concentration of rare earths up to this region’s normal background levels. According to the Geo-Accumulation Index (Igeo), soil samples were non-contaminated or slightly contaminated by REEs.
Full article

Figure 1
Open AccessArticle
Influence of Precipitation on the Spatial Distribution of 210Pb, 7Be, 40K and 137Cs in Moss
Pollutants 2023, 3(1), 102-113; https://doi.org/10.3390/pollutants3010009 - 06 Feb 2023
Abstract
Mosses have been widely used as biomonitors of a variety of atmospheric pollutants, including radionuclides. Here we determine the radionuclide activity concentration of 210Pb, 137Cs, 7Be, and 40K in moss tissue (Hylocomium splendens) collected from 24 sites
[...] Read more.
Mosses have been widely used as biomonitors of a variety of atmospheric pollutants, including radionuclides. Here we determine the radionuclide activity concentration of 210Pb, 137Cs, 7Be, and 40K in moss tissue (Hylocomium splendens) collected from 24 sites across Ireland and assess the influence of precipitation on radionuclide spatial distribution. Lead-210 was the most abundant radionuclide (range: 226–968 Bq kg–1), followed by 7Be (range: <DL—604 Bq kg–1), 40K (range: <DL—155 Bq kg–1), and 137Cs (range: <DL—41 Bq kg–1). Albeit nearly thirty years since the Chernobyl disaster, 137Cs activity concentration was detected at 67% of the study sites; however, the spatial distribution was not fully consistent with the 1986 Chernobyl deposition pattern. Rather, 137Cs was weakly correlated with rainfall, with higher concentrations along the west coast, suggesting that the 2011 Fukushima Dai-ichi nuclear accident was also a potential source. Average annual rainfall was a significant predictor of 210Pb activity (linear regression, R2 = 0.63, p < 0.001). As such, the highest radionuclide activity was observed for 210Pb (average: 541 Bq kg–1), owing to the high levels of precipitation across the study sites (average: 1585 mm). In contrast, 7Be or 40K were not correlated with precipitation; rather, 40K and 7Be were significantly correlated to each other (rs = 0.7), suggesting that both radionuclides were transferred from the substrate or through soil re-suspension. Precipitation is widely reported as an important factor in the spatial distribution of radionuclides; however, only 210Pb activity concentrations in moss were strongly influenced by precipitation in the current study.
Full article
(This article belongs to the Special Issue Surveys and Case Studies in Biomonitoring of Atmospheric Pollution)
►▼
Show Figures

Figure 1
Open AccessArticle
Accumulation of Atmospheric Metals and Nitrogen Deposition in Mosses: Temporal Development between 1990 and 2020, Comparison with Emission Data and Tree Canopy Drip Effects
Pollutants 2023, 3(1), 89-101; https://doi.org/10.3390/pollutants3010008 - 01 Feb 2023
Abstract
Mosses are suitable for recording the bioaccumulation of atmospheric deposition over large areas at many sites. In Europe, such monitoring has been carried out every five years since 1990. Mosses have been collected and chemically analysed for metals (since 1990), nitrogen (since 2005),
[...] Read more.
Mosses are suitable for recording the bioaccumulation of atmospheric deposition over large areas at many sites. In Europe, such monitoring has been carried out every five years since 1990. Mosses have been collected and chemically analysed for metals (since 1990), nitrogen (since 2005), persistent organic pollutants (since 2010) and microplastics (2020). The aims of this study were the following: (1) to analyse the temporal trends of metal and nitrogen accumulation in mosses between 1990 or 2005, respectively, and 2020 in Germany; (2) to compare the accumulation trends with emission data; and (3) to determine the effect of tree canopy drip on metal and nitrogen accumulation in mosses. For the temporal trend analysis, the minimum sample number required for a reliable estimation of arithmetic mean values and statistical parameters based on it was calculated. It was only achieved for nitrogen, but not for metals. Therefore, the temporal trends of the bioaccumulation of metals and nitrogen were calculated on the basis of median values. For the analysis of tree canopy effects on element accumulation in mosses, 14 vegetation structure measures were used, which together with 80 other descriptors characterise each moss collection site and its environment. The comparison of the data obtained during the first monitoring campaign with those of the 2020 survey showed a significant decrease in metal bioaccumulation. However, in contrast to the emission data, an increase in the accumulation of some metals was observed between 2000 and 2005 and of all metals from 2015 to 2020. Trends in Germany-wide nitrogen medians over the last three campaigns (2005, 2015 and 2020) show that nitrogen medians decreased by −2% between 2005 and 2015 and increased by +8% between 2015 and 2020. These differences are not significant and do not match the emission trends. Inferential statistics confirmed significantly higher metals and nitrogen accumulation in mosses collected under tree canopies compared to adjacent open areas. Measured concentrations of metals and nitrogen were significantly higher under tree canopies than outside of them, by 18–150%.
Full article
(This article belongs to the Special Issue Surveys and Case Studies in Biomonitoring of Atmospheric Pollution)
Open AccessArticle
Pollution Status, Source Apportionment, Ecological and Human Health Risks of Potentially (Eco)toxic Element-Laden Dusts from Urban Roads, Highways and Pedestrian Bridges in Uganda
Pollutants 2023, 3(1), 74-88; https://doi.org/10.3390/pollutants3010007 - 20 Jan 2023
Abstract
►▼
Show Figures
The occurrence of potentially (eco)toxic elements (PTEs) in street, indoor and roadside dusts have been associated with potential human health risks. For the first time, the pollution levels of PTEs—copper (Cu), nickel (Ni), manganese (Mn), zinc (Zn), lead (Pb), cadmium (Cd) and chromium
[...] Read more.
The occurrence of potentially (eco)toxic elements (PTEs) in street, indoor and roadside dusts have been associated with potential human health risks. For the first time, the pollution levels of PTEs—copper (Cu), nickel (Ni), manganese (Mn), zinc (Zn), lead (Pb), cadmium (Cd) and chromium (Cr)—were investigated in 24 dust samples from eight selected sampling sites on urban roads, highways and pedestrian bridges constructed over River Manafwa, a flood-prone river in Eastern Uganda. Concentration of PTEs in the sample digests were quantified by atomic absorption spectrometry. Multivariate geostatistical (Pearson’s Correlation, Principal Components and Hierarchical Cluster) analyses were used to apportion sources of the contaminants. Contamination, ecological and human health assessment indices and models were employed to establish any potential risks the elements could pose to the environment and humans. The study revealed that there is severe PTE pollution of dusts from roads, highways and pedestrian bridges in Eastern Uganda when compared with their crustal averages, except for Cu, Ni and Cr. The mean concentrations (mg kg−1) of Cu (11.4–23.2), Ni (0.20–23.20), Mn (465.0–2630.0), Zn (26.8–199.0), Pb (185.0–244.0), Cd (0.178–1.994) and Cr (5.40–56.60) were highest in samples obtained near high-traffic areas. Source apportionment studies suggested that Cu, Ni, Mn and Cr are from combustion processes and vehicular traffic, whereas Pb, Zn and Cd came from traffic and geogenic contributions. Assessment using the pollution load index indicated that only dust from Zikoye–Bushika road, the junction of Zikoye–Bushika and Bududa–Manafwa roads and Manafwa town were substantially polluted as the indices were greater than 1. Further assessment of pollution degree of the dust samples using index of geo-accumulation revealed that the dusts were practically uncontaminated to medium-to-strongly contaminated. Health risk assessment showed that there are non-carcinogenic health risks that could emanate from direct ingestion of PTEs in dusts by children. This study therefore opens the lead for investigation of the contamination levels and the health risks of PTEs in dusts from industrial areas as well as busy Ugandan cities such as Kampala, Jinja, Mbarara and Gulu.
Full article

Figure 1
Open AccessArticle
Eutrophic Status Assessment Based on Very High-Resolution Satellite Imagery in the Coastline Environment of Korea
by
, , , , , and
Pollutants 2023, 3(1), 59-73; https://doi.org/10.3390/pollutants3010006 - 16 Jan 2023
Abstract
Anthropoid activities are severely altering natural land cover and growing the transport of soil, organic and inorganic compounds, nutrients, toxic chemicals, and other pollutants to the water ecosystem. The eutrophication of the coastal water environment is one of the furthermost bitter consequences of
[...] Read more.
Anthropoid activities are severely altering natural land cover and growing the transport of soil, organic and inorganic compounds, nutrients, toxic chemicals, and other pollutants to the water ecosystem. The eutrophication of the coastal water environment is one of the furthermost bitter consequences of human activities. In this research, we have used three different satellite images for efficient land-use land-cover (LULC) classification, comparison, and further coastal water quality assessment over the coastal zone of the Boseong County of South Korea. The results of LULC classification showed that Landsat-8, Sentinel-2, and WorldView-3 gave an overall accuracy of about 74%, 82%, and 96% with Kappa coefficient of 0.71, 0.78, and 0.91, respectively. By comparing, LULC accuracies and kappa coefficient, the very high-resolution Worldview-3 satellite imagery is considered one of the best-suited satellite imageries for water quality assessment. The study used recently developed algorithms for the calculation of the transparency of Secchi depth, concentration of Chlorophyll-a, Total Phosphorus, and Total Nitrogen; whereas the eutrophication status of the coastal water has been identified using the Carlson Trophic State Index (CTSI) method. The result show that the medium state of eutrophication occurred nearby agricultural regions and urban settlements. Overall, trophic status of the coastal water is ranged from 61.56 to 74.37 with a mean value of 65.63 (CTSI) and placed under the medium eutrophic state. The study analysed that the nutrient entrance from the surrounding land cover is high and needs proper water treatment before releasing into a coastal ecosystem. Hence, these investigations will assist the various local and international agencies in improving the reliability of the monitoring of eutrophication state, dynamics, and potential impacts.
Full article
(This article belongs to the Special Issue Surface Water Pollution and Quality Assessment, Monitoring and Modelling)
►▼
Show Figures

Figure 1
Open AccessEditorial
Acknowledgment to the Reviewers of Pollutants in 2022
Pollutants 2023, 3(1), 57-58; https://doi.org/10.3390/pollutants3010005 - 13 Jan 2023
Abstract
High-quality academic publishing is built on rigorous peer review [...]
Full article
Open AccessArticle
Prediction and Analysis of Nuclear Explosion Radioactive Pollutant Diffusion Model
Pollutants 2023, 3(1), 43-56; https://doi.org/10.3390/pollutants3010004 - 03 Jan 2023
Cited by 1
Abstract
This study presents a model for the dispersion of radioactive smoke clouds from a nuclear weapon explosion. A model based on a modified Settlement model is chosen to simulate the dispersion of radioactive contaminants from a nuclear explosion in the atmosphere. The arrival
[...] Read more.
This study presents a model for the dispersion of radioactive smoke clouds from a nuclear weapon explosion. A model based on a modified Settlement model is chosen to simulate the dispersion of radioactive contaminants from a nuclear explosion in the atmosphere. The arrival time and dose rate of radioactive fallout at various distances in the downwind direction are given for different equivalents of the surface explosion and typical meteorological conditions. Thus, the prediction of the dispersion of radioactive contaminants from a nuclear explosion can be achieved under the conditions of known nuclear explosion equivalence and local meteorological parameters. This provides a theoretical basis for the estimation of the affected environment and the input of rescue forces after the explosion.
Full article
(This article belongs to the Section Radioactive Pollution)
►▼
Show Figures

Figure 1
Open AccessArticle
Wastewater Characterization of Chiniot Drain and Evaluation of Groundwater Contamination Using Water Quality Index (WQI) and GIS Techniques
by
, , , , , , , , and
Pollutants 2023, 3(1), 27-42; https://doi.org/10.3390/pollutants3010003 - 03 Jan 2023
Abstract
Groundwater pollution is considered a major concern in today’s world. Most industries in Pakistan produce untreated wastewater, extracting from and contaminating a nearby water source and the soil. This study was conducted in the Nithar Ke area of Chiniot District to assess the
[...] Read more.
Groundwater pollution is considered a major concern in today’s world. Most industries in Pakistan produce untreated wastewater, extracting from and contaminating a nearby water source and the soil. This study was conducted in the Nithar Ke area of Chiniot District to assess the impact of the flow of wastewater over the area on groundwater quality. It aimed to: (1) investigate the conditions of industrial wastewater; (2) study the spatial variability of different parameters in groundwater using a GIS map; and (3) check the appropriateness of groundwater for drinking purposes using the water quality index (WQI). Physical and chemical characteristics, including pH, electrical conductivity, total dissolved solids, TSS, CO3, HCO3, chlorides, alkalinity, total hardness, Ca, Mg, arsenic, copper, chromium, nickel, iron, manganese, and sulfate, were tested using groundwater samples, and variance in groundwater was analyzed using a GIS (geographic information system). The water quality index (WQI) was developed for the Nithar Ke area to determine the appropriateness of the groundwater for drinking purposes. WQI values were determined within the range of 41 to 89.5, which showed a poor to good water quality. It was discovered that parameters such as BOD, COD, iron, and TDS had average concentrations of 192 mg/L, 264 mg/L, 2.62 mg/L, and 6039 mg/L, respectively, in the polluted water, which exceeded the permissible limit. Iron and manganese were the most common contaminants found in that area. The biplot and correlation circle showed that iron and turbidity had a positive relationship. Further study on soil stratification and soil characteristics is recommended in this area for a detailed analysis of the causes of metal contamination.
Full article
(This article belongs to the Special Issue Sustainability of Groundwater System: Bridging Emerging Issues and Their Underlying Mechanisms)
►▼
Show Figures

Figure 1
Open AccessArticle
Interference of Past Soil Contaminations in the Biomonitoring of PCB Emissions from a Recovered Derived Fuels (RDFs) Co-Powered Cement Plant
by
and
Pollutants 2023, 3(1), 12-26; https://doi.org/10.3390/pollutants3010002 - 29 Dec 2022
Abstract
Although the intentional production of polychlorinated biphenyls (PCBs) has totally been banned, these pollutants are still released into the atmosphere by industrial and domestic burning processes and by volatilization from soils locally contaminated by PCB spill-overs. The present work aims at identifying the
[...] Read more.
Although the intentional production of polychlorinated biphenyls (PCBs) has totally been banned, these pollutants are still released into the atmosphere by industrial and domestic burning processes and by volatilization from soils locally contaminated by PCB spill-overs. The present work aims at identifying the PCB sources in a mixed land use area of northeastern Italy around a cement plant co-powered with recovered derived fuels (RDFs) from 2018. Leaves of Robinia pseudoacacia trees were systematically sampled over c. 40 km2 in 37 sites and analyzed for 12 dioxin-like and 20 non-dioxin-like congeners. The samples of most sampling sites had a PCB content < LOD, whereas those with higher content were located in urban sites. The spatial distribution of PCB leaf content was not centered on the purported emission sources. The samples of three spatially unrelated sites had high contents of 2, 12 and 18 PCB congeners, with the last two having combinations fully compatible with past commercial mixtures traded under different names. Comparison of these results with those of previous (bio-)monitoring surveys supports the hypothesis that the area has been subjected to punctiform PCB spill-overs, which overwhelm the contribution from present day industrial emissions, comprised of those actually derived from the use of RDFs.
Full article
(This article belongs to the Special Issue Surveys and Case Studies in Biomonitoring of Atmospheric Pollution)
►▼
Show Figures

Figure 1
Open AccessArticle
Spatiotemporal Effect of Land Use on Water Quality in a Peri-Urban Watershed in a Brazilian Metropolitan Region: An Approach Considering GEP-Based Artificial Intelligence
by
, , , , and
Pollutants 2023, 3(1), 1-11; https://doi.org/10.3390/pollutants3010001 - 20 Dec 2022
Cited by 1
Abstract
The suppression of natural spaces due to urban sprawl and increases in built and agricultural environments has affected water resource quality, especially in areas with high population densities. Considering the advances in the Brazilian environmental legal framework, the present study aimed to verify
[...] Read more.
The suppression of natural spaces due to urban sprawl and increases in built and agricultural environments has affected water resource quality, especially in areas with high population densities. Considering the advances in the Brazilian environmental legal framework, the present study aimed to verify whether land use has still affected water quality through a case study of a peri-urban watershed in a Brazilian metropolitan region. Analyses of physical–chemical indicators, collected at several sample points with various land-use parameters at different seasons of the year, were carried out based on an approach combining variance analysis and genetic programming. As a result, some statistically significant spatiotemporal effects on water quality associated with the land use, such as urban areas and thermotolerant coliform (R = −0.82, p < 0.01), mixed vegetation and dissolved oxygen (R = 0.80, p < 0.001), agriculture/pasture and biochemical oxygen demand (R = 0.40, p < 0.001), and sugarcane and turbidity (R = 0.65, p < 0.001), were verified. In turn, gene expression programming allowed for the computing of the importance of land-use typologies based on their capability to explain the variances of the water quality parameter. In conclusion, in spite of the advances in the Brazilian law, land use has still significantly affected water quality. Public policies and decisions are required to ensure effective compliance with legal guidelines.
Full article
(This article belongs to the Section Urban Pollution)
►▼
Show Figures

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agronomy, Environments, IJERPH, Pollutants, Water
Soil and Water Pollution Process and Remediation Technologies
Topic Editors: Hongbiao Cui, Yu Shi, Haiying Lu, Lin Chen, Ru WangDeadline: 30 June 2023
Topic in
IJERPH, JoX, Pollutants, Toxics, Toxins
Environmental Exposure, Biomonitoring and Exposure Assessment
Topic Editors: Roel Vermeulen, Lauren Petrick, Maaike van GerwenDeadline: 30 September 2023
Topic in
ChemEngineering, Clean Technol., IJERPH, Pollutants, Water
Emerging Solutions for Water, Sanitation and Hygiene, 2nd Volume
Topic Editors: Panagiotis Karanis, Layla Ben Ayed, Eleni Golomazou, Patrick Scheid, Ourania Tzoraki, Anna LassDeadline: 31 December 2023
Topic in
Earth, Hydrology, Pollutants, Water, Land
Monitoring Inland Water Quality and Ecological Status
Topic Editors: Fei Xiao, Mengyuan Zhu, Lingling ZhuDeadline: 28 February 2024

Conferences
Special Issues
Special Issue in
Pollutants
Surveys and Case Studies in Biomonitoring of Atmospheric Pollution
Guest Editors: Simonetta Giordano, Valeria Spagnuolo, Fiore CapozziDeadline: 30 June 2023
Special Issue in
Pollutants
Sustainability of Groundwater System: Bridging Emerging Issues and Their Underlying Mechanisms
Guest Editors: Arfan Arshad, Quoc Bao PhamDeadline: 20 July 2023
Special Issue in
Pollutants
Analysis of Trace Pollutants in Complex Matrices
Guest Editors: Salvatore Barreca, Santino OrecchioDeadline: 31 July 2023
Special Issue in
Pollutants
Pollution and Media: How Are Citizens Informed about Environmental Pollution via Media and Social Networks
Guest Editor: Farshad AmiraslaniDeadline: 20 November 2023