Latest Review Papers in Plasma Science 2023

A special issue of Plasma (ISSN 2571-6182).

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 9342

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08540, USA
Interests: nonequilibrium plasma; pulsed discharges; plasmachemistry; combustion; detonation waves; shock waves; plasma aerodynamics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to collect high quality review papers in all the fields of Plasma Science. We encourage scholars from related fields to contribute review papers highlighting the latest developments in plasma science and its applications, or to invite relevant experts and colleagues to do so.

The scope of this collection includes but is not limited to:

  • Atmospheric pressure plasma;
  • Dusty plasma;
  • Electron, ion, and plasma sources;
  • Low-temperature plasma;
  • Plasma diagnostics;
  • Plasma dynamics;
  • Plasma theory and modelling;
  • Atomic and molecular processes in plasmas;
  • Collision cross-sections;
  • Fundamentals of low-temperature plasmas;
  • Fundamentals of high-temperature plasmas;
  • Plasma–surface interactions;
  • Catalytic reactions with plasmas;
  • Plasma sources design and characterization;
  • Modelling and numerical simulations of plasmas;
  • Atmospheric/high-pressure plasmas;
  • Plasmas in contact with surfaces;
  • Plasmas in liquids/plasma–liquid interaction;
  • Plasma processing of materials, including etching and deposition;
  • Plasma-deposited protective and tribological coatings;
  • Plasma-deposited coatings for optical, electronical and other functionalities;
  • Plasma application for nanotechnologies;
  • Plasma application for biology, medicine, and agriculture;
  • Plasma application for aerospace;
  • Plasma application for energy;
  • Plasma application for environmental issues and resource recovery.

Prof. Dr. Andrey Starikovskiy
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plasma is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

25 pages, 2858 KiB  
Review
Cold Atmospheric Plasma Medicine: Applications, Challenges, and Opportunities for Predictive Control
by Ali Kazemi, McKayla J. Nicol, Sven G. Bilén, Girish S. Kirimanjeswara and Sean D. Knecht
Plasma 2024, 7(1), 233-257; https://doi.org/10.3390/plasma7010014 - 16 Mar 2024
Viewed by 786
Abstract
Plasma medicine is an emerging field that applies the science and engineering of physical plasma to biomedical applications. Low-temperature plasma, also known as cold plasma, is generated via the ionization of atoms in a gas, generally via exposure to strong electric fields, and [...] Read more.
Plasma medicine is an emerging field that applies the science and engineering of physical plasma to biomedical applications. Low-temperature plasma, also known as cold plasma, is generated via the ionization of atoms in a gas, generally via exposure to strong electric fields, and consists of ions, free radicals, and molecules at varying energy states. Plasmas generated at low temperatures (approximately room temperature) have been used for applications in dermatology, oncology, and anti-microbial strategies. Despite current and ongoing clinical use, the exact mechanisms of action and the full range of effects of cold plasma treatment on cells are only just beginning to be understood. Direct and indirect effects of plasma on immune cells have the potential to be utilized for various applications such as immunomodulation, anti-infective therapies, and regulating inflammation. In this review, we combine diverse expertise in the fields of plasma chemistry, device design, and immunobiology to cover the history and current state of plasma medicine, basic plasma chemistry and their implications, the effects of cold atmospheric plasma on host cells with their potential immunological consequences, future directions, and the outlook and recommendations for plasma medicine. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

32 pages, 12144 KiB  
Review
Optimal Conditions for the Generation of Runaway Electrons in High-Pressure Gases
by Andrey Kozyrev and Victor Tarasenko
Plasma 2024, 7(1), 201-232; https://doi.org/10.3390/plasma7010013 - 15 Mar 2024
Viewed by 545
Abstract
Runaway electron (RAE) generation in high-pressure gases is an important physical phenomenon that significantly influences discharge shapes and properties of initiated plasma. The diffuse discharges formed due to RAEs in the air and other gases at atmospheric pressure find wide applications. In the [...] Read more.
Runaway electron (RAE) generation in high-pressure gases is an important physical phenomenon that significantly influences discharge shapes and properties of initiated plasma. The diffuse discharges formed due to RAEs in the air and other gases at atmospheric pressure find wide applications. In the present review, theoretical and experimental results that explain the reason for RAE occurrence at high pressures are analyzed, and recommendations are given for the implementation of conditions under which the runaway electron beam (RAEB) with the highest current can be obtained at atmospheric pressure. The experimental results were obtained using subnanosecond, nanosecond, and submicrosecond generators, including those specially developed for runaway electron generation. The RAEBs were recorded using oscilloscopes and collectors with picosecond time resolution. To theoretically describe the phenomenon of continuous electron acceleration, the method of physical kinetics was used based on the Boltzmann kinetic equation that takes into account the minimum but sufficient number of elementary processes, including shock gas ionization and elastic electron scattering. The results of modeling allowed the main factors to be established that control the RAE appearance, the most important of which is electron scattering on neutral atoms and/or molecules. Theoretical modeling has allowed the influence of various parameters (including the voltage, pressure, gas type, and geometrical characteristics of the discharge gap) to be taken into account. The results of the research presented here allow RAE accelerators with desirable parameters to be developed and the possibility of obtaining diffuse discharges to be accessed under various conditions. The review consists of the Introduction, five sections, the Conclusion, and the References. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

18 pages, 3294 KiB  
Review
Plasma-Driven Sciences: Exploring Complex Interactions at Plasma Boundaries
by Kenji Ishikawa, Kazunori Koga and Noriyasu Ohno
Plasma 2024, 7(1), 160-177; https://doi.org/10.3390/plasma7010011 - 27 Feb 2024
Viewed by 1020
Abstract
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be [...] Read more.
Plasma-driven science is defined as the artificial control of physical plasma-driven phenomena based on complex interactions between nonequilibrium open systems. Recently, peculiar phenomena related to physical plasma have been discovered in plasma boundary regions, either naturally or artificially. Because laboratory plasma can be produced under nominal conditions around atmospheric pressure and room temperature, phenomena related to the interaction of plasma with liquid solutions and living organisms at the plasma boundaries are emerging. Currently, the relationships between these complex interactions should be solved using science-based data-driven approaches; these approaches require a reliable and comprehensive database of dynamic changes in the chemical networks of elementary reactions. Consequently, the elucidation of the mechanisms governing plasma-driven phenomena and the discovery of the latent actions behind these plasma-driven phenomena will be realized through plasma-driven science. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

20 pages, 4928 KiB  
Review
A Tutorial on the One-Dimensional Theory of Electron-Beam Space-Charge Effect and Steady-State Virtual Cathode
by Weihua Jiang
Plasma 2024, 7(1), 29-48; https://doi.org/10.3390/plasma7010003 - 05 Jan 2024
Cited by 1 | Viewed by 1308
Abstract
The space-charge effects of pulsed high-current electron beams are very important to high-power particle beam accelerators and high-power microwave devices. The related physical phenomena have been studied for decades, and a large number of informative publications can be found in numerous scientific journals [...] Read more.
The space-charge effects of pulsed high-current electron beams are very important to high-power particle beam accelerators and high-power microwave devices. The related physical phenomena have been studied for decades, and a large number of informative publications can be found in numerous scientific journals over many years. This review article is aimed at systematically summarizing most of the previous findings in a logical manner. Using a normalized one-dimensional mathematical model, analytical solutions have been obtained for the space-charge-limited current of both planar diode and drifting space. In addition, in the case of a beam current higher than the space-charge-limited current, the virtual cathode behavior and beam current reflection are quantitively studied. Furthermore, the criteria of steady-state virtual cathode formation are investigated, which leads to the physical understanding of the unstable nature of the virtual cathode. This review article is expected to serve as an integrated source of related information for young researchers and students working on high-power microwaves and pulsed particle beams. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

17 pages, 7958 KiB  
Review
Flexible Cold Atmospheric Plasma Jet Sources
by Carles Corbella, Sabine Portal and Michael Keidar
Plasma 2023, 6(1), 72-88; https://doi.org/10.3390/plasma6010007 - 16 Feb 2023
Cited by 4 | Viewed by 4599
Abstract
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas [...] Read more.
The properties of non-thermal atmospheric pressure plasma jets (APPJs) make them suitable for industrial and biomedical applications. They show many advantages when it comes to local and precise surface treatments, and there is interest in upgrading their performance for irradiation on large areas and uneven surfaces. The generation of charged species (electrons and ions) and reactive species (radicals), together with emitted UV photons, enables a rich plasma chemistry that should be uniform on arbitrary sample profiles. Lateral gradients in plasma parameters from multi-jets should, therefore, be minimized and addressed by means of plasma monitoring techniques, such as electrical diagnostics and optical emission spectroscopy analysis (OES). This article briefly reviews the main strategies adopted to build morphing APPJ arrays and ultra-flexible and long tubes to project cold plasma jets. Basic aspects, such as inter-jet interactions and nozzle shape, have also been discussed, as well as potential applications in the fields of polymer processing and plasma medicine. Full article
(This article belongs to the Special Issue Latest Review Papers in Plasma Science 2023)
Show Figures

Figure 1

Back to TopTop