Pathogenesis and Disease Control in Crops

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Protection and Biotic Interactions".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 28115

Special Issue Editors


E-Mail Website
Guest Editor
Institute of Biotechnology, Zhejiang University, Hangzhou, China
Interests: molecular plant pathology; plant–microbe interactions; phage–plant interactions; nanobiotechnology; molecular genetics; metagenomics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
2. Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
Interests: agricultural microbiology; nanobiotechnology; plant pathology; plant–microbe interactions; environmental microbiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Biotechnology, Zhejiang University, Hangzhou, China
Interests: molecular plant pathology; nanobiotechnology; plant physiology; phage–plant interactions
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
Interests: molecular plant pathology; nanobiotechnology; plant physiology; plant–microbe interactions; environmental microbiology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Plant Breeding and Acclimitization Institiue-IHAR, 60-479 Poznan, Poland
Interests: plant pathogens; disease resistance; nanobiotechnology; genome editing; genomics and transcriptomics

Special Issue Information

Dear Colleagues,

Global climate change and its associated impacts on crop productivity worldwide pose challenges for crop breeders to maintain crop yields. In this scenario, phytopathogens are always opportunistic, and they are known to destroy crop cultivations that are under stress. Plant pathogenesis and disease control have remained topics of great interest in plant science, with researchers constantly searching for environmentally friendly approaches to prevent, or minimize, the spread of disease. Concerning the increasing number of problems associated with environmental pollution, through the use of conventional pesticides, plant breeders are focused on employing new plant breeding tools and biodegradable nanoparticles to control plant disease. The topics in the current proposed Special Issue include plant disease spread, innate immunity in plants against different phytopathogens, host–pathogen interactions, engineered plant immunity against phytopathogens with next-generation genomic toolsets, and nanobiotechnology applications in agriculture for controlling plant disease. The proposed Special Issue will attract a wide audience, including phytopathologists, virologists, mycologists, agricultural researchers, nanotechnologists, and, most importantly, plant biotechnologists involved in plant disease control.

Prof. Dr. Bin Li
Dr. Muhammad Shahid
Dr. Temoor Ahmed
Dr. Muhammad Noman
Dr. Amir Hameed
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • integrated disease management
  • plant disease resistance
  • biological control agents
  • plant–pathogen interactions
  • nanopesticides
  • phytopahtogen biology
  • sustainable crop protection
  • resistance host inducers
  • integrated pest management
  • microbial interactions
  • microbial ecology

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

24 pages, 16739 KiB  
Article
Potential of Trichoderma virens HZA14 in Controlling Verticillium Wilt Disease of Eggplant and Analysis of Its Genes Responsible for Microsclerotial Degradation
by Ali Athafah Tomah, Iman Sabah Abd Alamer, Arif Ali Khattak, Temoor Ahmed, Ashraf Atef Hatamleh, Munirah Abdullah Al-Dosary, Hayssam M. Ali, Daoze Wang, Jingze Zhang, Lihui Xu and Bin Li
Plants 2023, 12(21), 3761; https://doi.org/10.3390/plants12213761 - 03 Nov 2023
Cited by 1 | Viewed by 953
Abstract
Verticillium dahliae is a soilborne fungal pathogen that causes vascular wilt diseases in a wide range of economically important crops, including eggplant. Trichoderma spp. are effective biological control agents that suppress a wide range of plant pathogens through a variety of mechanisms, including [...] Read more.
Verticillium dahliae is a soilborne fungal pathogen that causes vascular wilt diseases in a wide range of economically important crops, including eggplant. Trichoderma spp. are effective biological control agents that suppress a wide range of plant pathogens through a variety of mechanisms, including mycoparasitism. However, the molecular mechanisms of mycoparasitism of Trichoderma spp. in the degradation of microsclerotia of V. dahliae are not yet fully understood. In this study, the ability of 15 isolates of Trichoderma to degrade microsclerotia of V. dahliae was evaluated using a dual culture method. After 15 days, isolate HZA14 showed the greatest potential for microsclerotial degradation. The culture filtrate of isolate HZA14 also significantly inhibited the mycelial growth and conidia germination of V. dahliae at different dilutions. Moreover, this study showed that T. virens produced siderophores and indole-3-acetic acid (IAA). In disease control tests, T. virens HZA14 reduced disease severity in eggplant seedlings by up to 2.77%, resulting in a control efficacy of 96.59% at 30 days after inoculation. Additionally, inoculation with an HZA14 isolate increased stem and root length and fresh and dry weight, demonstrating plant growth promotion efficacy. To further investigate the mycoparasitism mechanism of T. virens HZA14, transcriptomics sequencing and real-time fluorescence quantitative PCR (RT-qPCR) were used to identify the differentially expressed genes (DEGs) of T. virens HZA14 at 3, 6, 9, 12, and 15 days of the interaction with microsclerotia of V. dahliae. In contrast to the control group, the mycoparasitic process of T. virens HZA14 exhibited differential gene expression, with 1197, 1758, 1936, and 1914 genes being up-regulated and 1191, 1963, 2050, and 2114 genes being down-regulated, respectively. Among these genes, enzymes associated with the degradation of microsclerotia, such as endochitinase A1, endochitinase 3, endo-1,3-beta-glucanase, alpha-N-acetylglucosaminidase, laccase-1, and peroxidase were predicted based on bioinformatics analysis. The RT-qPCR results confirmed the RNA-sequencing data, showing that the expression trend of the genes was consistent. These results provide important information for understanding molecular mechanisms of microsclerotial degradation and integrated management of Verticillium wilt in eggplant and other crops. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

13 pages, 5184 KiB  
Article
Higher Virulence of Diplodia seriata Isolates on Vines of cv. Cabernet Sauvignon Associated with 10-Year-Old Wood Compared to Young Tissue
by Alejandra Larach, Paulina Vega-Celedón, Eduardo Salgado, Aldo Salinas, Natalia Riquelme, Diyanira Castillo-Novales, Paulina Sanhueza, Michael Seeger and Ximena Besoain
Plants 2023, 12(16), 2984; https://doi.org/10.3390/plants12162984 - 18 Aug 2023
Cited by 3 | Viewed by 865
Abstract
Botryosphaeria dieback (BD) occurs in young and old plants. In the field, the prevalence and severity of the disease increase proportionally with the age of vineyards. Among the pathogens that cause BD, Diplodia seriata is the most prevalent species in Chile and other [...] Read more.
Botryosphaeria dieback (BD) occurs in young and old plants. In the field, the prevalence and severity of the disease increase proportionally with the age of vineyards. Among the pathogens that cause BD, Diplodia seriata is the most prevalent species in Chile and other countries with a Mediterranean climate. To date, no information is available on the susceptibility of adult wood to infection by this pathogen since most of the pathogenicity tests have been carried out on 1- or 2-year-old shoots or detached canes. Therefore, a pathogenicity test was carried out on plants under field conditions, with inoculations in 1-year-old shoots and 2- and 10-year-old wood in grapevine cv. Cabernet Sauvignon. A pathogenicity test was carried out with two isolates of D. seriata. The results for the plants show that D. seriata was significantly more aggressive on the 10-year-old than on the one- or two-year-old tissue, where the lesions were 4.3 and 2.3 cm on average, respectively. These results were compared with the lesions obtained from two-year-old canes after the isolates were activated in grape berries. Also, the Chilean isolates of D. seriata were compared phylogenetically with those from other countries, and no major differences were found between them. Our results are consistent with the damage observed in the field, contributing to the knowledge of the epidemiology of this disease in Mediterranean climates. In the future, the effect observed in cv. Cabernet Sauvignon with D. seriata on virulence at different tissue ages should be tested for other BD-causing agents and wine varieties. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

19 pages, 9383 KiB  
Article
Biocontrol Efficacy of Endophyte Pseudomonas poae to Alleviate Fusarium Seedling Blight by Refining the Morpho-Physiological Attributes of Wheat
by Ezzeldin Ibrahim, Raghda Nasser, Rahila Hafeez, Solabomi Olaitan Ogunyemi, Yasmine Abdallah, Arif Ali Khattak, Linfei Shou, Yang Zhang, Temoor Ahmed, Ashraf Atef Hatamleh, Munirah Abdullah Al-Dosary, Hayssam M. Ali, Jinyan Luo and Bin Li
Plants 2023, 12(12), 2277; https://doi.org/10.3390/plants12122277 - 12 Jun 2023
Cited by 3 | Viewed by 1581
Abstract
Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify [...] Read more.
Some endophyte bacteria can improve plant growth and suppress plant diseases. However, little is known about the potential of endophytes bacteria to promote wheat growth and suppress the Fusarium seedling blight pathogen Fusarium graminearum. This study was conducted to isolate and identify endophytic bacteria and evaluate their efficacy for the plant growth promotion and disease suppression of Fusarium seedling blight (FSB) in wheat. The Pseudomonas poae strain CO showed strong antifungal activity in vitro and under greenhouse conditions against F. graminearum strain PH-1. The cell-free supernatants (CFSs) of P. poae strain CO were able to inhibit the mycelium growth, the number of colonies forming, spore germination, germ tube length, and the mycotoxin production of FSB with an inhibition rate of 87.00, 62.25, 51.33, 69.29, and 71.08%, respectively, with the highest concentration of CFSs. The results indicated that P. poae exhibited multifarious antifungal properties, such as the production of hydrolytic enzymes, siderophores, and lipopeptides. In addition, compared to untreated seeds, wheat plants treated with the strain showed significant growth rates, where root and shoot length increased by about 33% and the weight of fresh roots, fresh shoots, dry roots, and dry shoots by 50%. In addition, the strain produced high levels of indole-3-acetic acid, phosphate solubilization, and nitrogen fixation. Finally, the strain demonstrated strong antagonistic properties as well as a variety of plant growth-promoting properties. Thus, this result suggest that this strain could be used as an alternate to synthetic chemicals, which can serve as an effective method of protecting wheat from fungal infection. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

10 pages, 1323 KiB  
Communication
A PHLID Model for Tomato Bacterial Canker Predicting on Epidemics of the Pathogen
by Akira Kawaguchi, Shoya Kitabayashi, Koji Inoue and Koji Tanina
Plants 2023, 12(11), 2099; https://doi.org/10.3390/plants12112099 - 25 May 2023
Cited by 1 | Viewed by 959
Abstract
A pathogen, healthy, latently infected, infectious, and diseased plant (PHLID) model for botanical epidemics was defined for tomato bacterial canker (TBC) caused by the pathogenic plant bacteria, Clavibacter michiganensis subsp. michiganensis (Cmm). First, the incubation period had to be defined to [...] Read more.
A pathogen, healthy, latently infected, infectious, and diseased plant (PHLID) model for botanical epidemics was defined for tomato bacterial canker (TBC) caused by the pathogenic plant bacteria, Clavibacter michiganensis subsp. michiganensis (Cmm). First, the incubation period had to be defined to develop this type of model. To estimate the parameter of incubation period, inoculation experiments were conducted in which it was assumed that infection is transferred to healthy plants by cutting with contaminated scissors after cutting infected plants with early symptoms or symptomless. The concentration of Cmm was increased over 1 × 106 cells/g plant tissue at 20 cm away from the inoculated point on the stem 10 days after inoculation, and then the approximate incubation period of TBC in symptomless infected plants was defined as 10 days. The developed PHLID model showed the dynamics of diseased plants incidence and fitted the curve of the proportion of diseased plants observed in fields well. This model also contains the factors of pathogen and disease control, and it was able to simulate the control effects and combined two different control methods, which were the soil and scissors disinfections to prevent primary and secondary transmissions, respectively. Thus, this PHLID model for TBC can be used to simulate not only the increasing number of diseased plants but also suppressing disease increase. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

14 pages, 2305 KiB  
Article
Synergistic Action of Biosynthesized Silver Nanoparticles and Culture Supernatant of Bacillus amyloliquefacience against the Soft Rot Pathogen Dickeya dadantii
by Afsana Hossain, Jinyan Luo, Md. Arshad Ali, Rongyao Chai, Muhammad Shahid, Temoor Ahmed, Mohamed M. Hassan, Roqayah H. Kadi, Qianli An, Bin Li and Yanli Wang
Plants 2023, 12(9), 1817; https://doi.org/10.3390/plants12091817 - 28 Apr 2023
Cited by 4 | Viewed by 1916
Abstract
Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and [...] Read more.
Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410–420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20–100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL−1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL−1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

13 pages, 2315 KiB  
Article
Improved Diaphorina citri (Hemiptera: Liviidae) Adults Biocontrol in Citrus by Hirsutella citriformis (Hypocreales: Ophiocordycipitaceae) Gum-Enhanced Conidia Formulation
by Orquídea Pérez-González, Ricardo Gomez-Flores, Roberto Montesinos-Matías, Marco A. Mellín-Rosas, Servando H. Cantú-Bernal and Patricia Tamez-Guerra
Plants 2023, 12(6), 1409; https://doi.org/10.3390/plants12061409 - 22 Mar 2023
Cited by 3 | Viewed by 1315
Abstract
Hirsutella citriformis Speare is the only entomopathogenic fungus involved in Diaphorina citri Kuwayama natural epizootics. The aim of the present study was to evaluate different protein sources as supplements to stimulate Hirsutella citriformis growth, improve conidiation on solid culture, and evaluate its produced [...] Read more.
Hirsutella citriformis Speare is the only entomopathogenic fungus involved in Diaphorina citri Kuwayama natural epizootics. The aim of the present study was to evaluate different protein sources as supplements to stimulate Hirsutella citriformis growth, improve conidiation on solid culture, and evaluate its produced gum for conidia formulation against D. citri adults. Hirsutella citriformis INIFAP-Hir-2 strain was grown on agar media enriched with wheat bran, wheat germ, soy, amaranth, quinoa, and pumpkin seed, in addition to oat with wheat bran and/or amaranth. The results demonstrated that 2% wheat bran significantly (p < 0.05) promoted mycelium growth. However, 4% and 5% wheat bran achieved the highest conidiation (3.65 × 107 conidia/mL and 3.68 × 107 conidia/mL, respectively). Higher conidiation (p < 0.05) was observed on oat grains supplemented with wheat bran, as compared with culturing on oat grains without supplements (7.25 × 107 versus 5.22 × 107 conidia/g), after a 14 d instead of 21 d incubation period. After supplementing synthetic medium or oat grains with wheat bran and/or amaranth, INIFAP-Hir-2 conidiation increased, whereas production time was reduced. After using Acacia and Hirsutella gums to formulate conidia produced on wheat bran and amaranth at 4%, field trial results showed that the highest (p < 0.05) D. citri mortality was achieved by Hirsutella gum-formulated conidia (80.0%), followed by the Hirsutella gum control (57.8%). Furthermore, Acacia gum-formulated conidia caused 37.8%, whereas Acacia gum and negative controls induced 9% mortality. In conclusion, Hirsutella citriformis gum used to formulate its conidia improved biological control against D. citri adults. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Graphical abstract

30 pages, 4440 KiB  
Article
Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform
by Sara Francesconi, Riccardo Ronchetti, Emidio Camaioni, Stefano Giovagnoli, Francesco Sestili, Samuela Palombieri and Giorgio Mariano Balestra
Plants 2023, 12(6), 1223; https://doi.org/10.3390/plants12061223 - 08 Mar 2023
Cited by 5 | Viewed by 1982
Abstract
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by [...] Read more.
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

14 pages, 2026 KiB  
Article
Investigation and Analysis of Rhizosphere Soil of Bayberry-Decline-Disease Plants in China
by Gang Li, Jingjing Liu, Yu Tian, Han Chen and Haiying Ren
Plants 2022, 11(23), 3394; https://doi.org/10.3390/plants11233394 - 06 Dec 2022
Cited by 1 | Viewed by 927
Abstract
The rampant bayberry decline disease has been regarded as related to soil with the long-term plantation bayberry. These parameters, hydrogen, aluminum, other alkali cations, and plant-related nutrients, were measured from the soil around diseased tree roots 10, 20, and 30 years old. The [...] Read more.
The rampant bayberry decline disease has been regarded as related to soil with the long-term plantation bayberry. These parameters, hydrogen, aluminum, other alkali cations, and plant-related nutrients, were measured from the soil around diseased tree roots 10, 20, and 30 years old. The pH significantly declined in topsoil with increasing tree age and rose with increasing depth of the soil layer with an age of 10, 20, and 30 years. The concentration of exchangeable aluminum has risen significantly with the increase of the tree ages in the top soil layer and also in 0 to 40 cm soils layer with ten-year-old trees. In the top soil layer with a depth of 0 to 10 cm, the cation concentrations of Ca2+, Mg2+, and K+ has fallen significantly with the increase of tree ages. A higher concentration of exchangeable aluminum was observed in the soil with trees more seriously affected by the disease and was accompanied with lower concentrations of Ca2+, Mg2+, and K+. The correlation analysis showed that the soil pH is significantly positively related to the concentration of exchangeable Ca2+, total nitrogen, and total phosphorus and negatively to exchangeable aluminum. These findings provided a new insight to mitigate the disease by regulating the soil parameters. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

14 pages, 2866 KiB  
Article
Occurrence and Distribution of Tomato Brown Rugose Fruit Virus Infecting Tomato Crop in Saudi Arabia
by Ahmed Sabra, Mahmoud Ahmed Amer, Khadim Hussain, Adel Zakri, Ibrahim Mohammed Al-Shahwan and Mohammed Ali Al-Saleh
Plants 2022, 11(22), 3157; https://doi.org/10.3390/plants11223157 - 18 Nov 2022
Cited by 3 | Viewed by 3582
Abstract
During the growing season of 2021–2022, a total of 145 symptomatic tomato leaf and fruit samples were collected from different locations in Riyadh Region, Saudi Arabia, showing a moderate-to-severe mosaic with dark green wrinkling, blistering, narrowing, and deformation with necrosis spot on tomato [...] Read more.
During the growing season of 2021–2022, a total of 145 symptomatic tomato leaf and fruit samples were collected from different locations in Riyadh Region, Saudi Arabia, showing a moderate-to-severe mosaic with dark green wrinkling, blistering, narrowing, and deformation with necrosis spot on tomato leaves, while irregular brown necrotic lesions, deformation, and yellowing spots rendering the fruits non-marketable were observed on tomato fruits. These samples were tested serologically against important tomato viruses using enzyme-linked immunosorbent assay (ELISA), and the obtained results showed that 52.4% of symptomatic tomato samples were found positive for Tomato brown rugose fruit virus (ToBRFV), wherein 12 out of 76 samples were singly infected; however, 64 out of 145 had mixed infection. A sample with a single infection of ToBRFV was used for mechanical inoculation into a range of different host plants; symptoms were observed weekly, and the presence of the ToBRFV was confirmed by ELISA and reverse transcription–polymerase chain reaction (RT-PCR). A total RNA was extracted from selected ELISA-positive samples, and RT-PCR was carried out using specific primers F-3666 and R-4718, which amplified a fragment of 1052 bp. RT-PCR products were sequenced in both directions, and partial genome nucleotide sequences were submitted to GenBank under the following accession numbers: MZ130501, MZ130502, and MZ130503. BLAST analysis of Saudi isolates of ToBRFV showed that the sequence shared nucleotide identities (99–99.5%) among them and 99–100% identity with ToBRFV isolates in different countries. A ToBRFV isolate (MZ130503) was selected for mechanical inoculation and to evaluate symptom severity responses of 13 commonly grown tomato cultivars in Saudi Arabia. All of the tomato cultivars showed a wide range of symptoms. The disease severity index of the tested cultivars ranged between 52% and 96%. The importance ToBRFV disease severity and its expanding host range due to its resistance breaking ability was discussed. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

15 pages, 3219 KiB  
Article
Bioinspired Green Synthesis of Silver Nanoparticles Using Three Plant Extracts and Their Antibacterial Activity against Rice Bacterial Leaf Blight Pathogen Xanthomonas oryzae pv. oryzae
by Ye Tian, Jinyan Luo, Hui Wang, Haitham E. M. Zaki, Shanhong Yu, Xiao Wang, Temoor Ahmed, Muhammad Shafiq Shahid, Chengqi Yan, Jianping Chen and Bin Li
Plants 2022, 11(21), 2892; https://doi.org/10.3390/plants11212892 - 28 Oct 2022
Cited by 8 | Viewed by 2254
Abstract
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three [...] Read more.
Rice bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is responsible for a significant reduction in rice production. Due to the small impact on the environment, biogenic nanomaterials are regarded as a new type of antibacterial agent. In this research, three colloids of silver nanoparticles (AgNPs) were synthesized with different biological materials such as Arctium lappa fruit, Solanum melongena leaves, and Taraxacum mongolicum leaves, and called Al-AgNPs, Sm-AgNPs and Tm-AgNPs, respectively. The appearance of brown colloids and the UV-Visible spectroscopy analysis proved the successful synthesis of the three colloids of AgNPs. Moreover, FTIR and XRD analysis revealed the formation of AgNPs structure. The SEM and TEM analysis indicated that the average diameters of the three synthesized spherical AgNPs were 20.18 nm, 21.00 nm, and 40.08 nm, respectively. The three botanical AgNPs had the strongest bacteriostatic against Xoo strain C2 at 20 μg/mL with the inhibition zone of 16.5 mm, 14.5 mm, and 12.4 mm, while bacterial numbers in a liquid broth (measured by OD600) decreased by 72.10%, 68.19%, and 65.60%, respectively. Results showed that the three AgNPs could inhibit biofilm formation and swarming motility of Xoo. The ultrastructural observation showed that Al-AgNPs adhered to the surface of bacteria and broke the bacteria. Overall, the three synthetic AgNPs could be used to inhibit the pathogen Xoo of rice bacterial leaf blight. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

12 pages, 1821 KiB  
Article
Integrative Pathogenicity Assay and Operational Taxonomy-Based Detection of New Forma Specialis of Fusarium oxysporum Causing Datepalm Wilt
by Imran Ul Haq, Siddra Ijaz, Nabeeha Aslam Khan, Iqrar Ahmad Khan, Hayssam M. Ali and Ernesto A. Moya-Elizondo
Plants 2022, 11(19), 2643; https://doi.org/10.3390/plants11192643 - 08 Oct 2022
Cited by 2 | Viewed by 1893
Abstract
Pathogenicity-associated genes are highly host-specific and contribute to host-specific virulence. We tailored the traditional Koch’s postulates with integrative omics by hypothesizing that the effector genes associated with host-pathogenicity are determinant markers for virulence, and developed Integrative Pathogenicity (IP) postulates for authenticated pathogenicity testing [...] Read more.
Pathogenicity-associated genes are highly host-specific and contribute to host-specific virulence. We tailored the traditional Koch’s postulates with integrative omics by hypothesizing that the effector genes associated with host-pathogenicity are determinant markers for virulence, and developed Integrative Pathogenicity (IP) postulates for authenticated pathogenicity testing in plants. To set the criteria, we experimented on datepalm (Phoenix dactylifera) for the vascular wilt pathogen and confirmed the pathogen based on secreted in xylem genes (effectors genes) using genomic and transcriptomic approaches, and found it a reliable solution when pathogenicity is in question. The genic regions ITS, TEF1-α, and RPBII of Fusarium isolates were examined by phylogenetic analysis to unveil the validated operational taxonomy at the species level. The hierarchical tree generated through phylogenetic analysis declared the fungal pathogen as Fusarium oxysporum. Moreover, the Fusarium isolates were investigated at the subspecies level by probing the IGS, TEF1-α, and Pgx4 genic regions to detect the forma specialis of F. oxysporum that causes wilt in datepalm. The phylogram revealed a new forma specialis in F. oxysporum that causes vascular wilt in datepalm. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

15 pages, 3002 KiB  
Article
Effects of Different Microbial Fertilizers on Growth and Rhizosphere Soil Properties of Corn in Newly Reclaimed Land
by Xuqing Li, Qiujun Lu, Dingyi Li, Daoze Wang, Xiaoxu Ren, Jianli Yan, Temoor Ahmed and Bin Li
Plants 2022, 11(15), 1978; https://doi.org/10.3390/plants11151978 - 29 Jul 2022
Cited by 5 | Viewed by 1769
Abstract
Land reclamation may expand the supply of usable land for food security. Soil microorganisms have been considered as an amendment in immature soil to improve its quality. However, different microbial fertilizers’ effects on plant growth in immature soil have largely been unexplored. In [...] Read more.
Land reclamation may expand the supply of usable land for food security. Soil microorganisms have been considered as an amendment in immature soil to improve its quality. However, different microbial fertilizers’ effects on plant growth in immature soil have largely been unexplored. In order to evaluate the effects of different microbial fertilizers on immature soil, the soil quality and microbial community structure of corn rhizosphere soil samples under different microbial fertilizers were investigated. The results revealed a significant difference between microbial fertilizers (especially seaweed microbial fertilizer, SMF) and commercial chemical compound fertilizers in the soil properties and microbial community structure. Indeed, SMF caused a 486.21%, 23.17%, 21.08%, 38.33%, and 482.39% increase in Flavobacteriaceae, Planctomycetaceae, Chitinophagaceae, Acidobacteria_Gp3, and Mortierellaceae but a 23.82%, 18.66%, 42.36%, 29.12%, 81.97%, 42.19%, and 99.33% reduction in Cytophagales, Comamonadaceae, Rhodospirillaceae, Sinobacteaceae, Aspergillaceae, Myrmecridiaceae, and Typhulaceae, respectively; while CCF caused an 85.68% and 183.22% increase in Xanthomonadaceae and Mortierellaceae but a 31.29%, 36.02%, and 65.74% reduction in Cytophagales, Spartobacteria, and Cyphellophoraceae compared with the control based on 16S and ITS amplicon sequencing of soil microflora. Furthermore, redundancy discriminant analysis of the microbial communities and soil properties indicated that the main variables of the bacterial and fungal communities included exchangeable Ca, organic matter content, total N, and available P. Overall, the results of this study revealed significant changes under different fertilizer conditions in the microbiota and chemical properties of corn soil. Microbial fertilizers, particularly SMF and SM, can be used as a good amendment for newly reclaimed land. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

19 pages, 3690 KiB  
Article
Evaluation of Bacterial Perpetuation Assays and Plant Biomolecules Antimicrobial Activity against Cotton Blight Bacterium Xanthomonas citri subsp. malvacearum; An Alternative Source for Food Production and Protection
by Syed Atif Hasan Naqvi, Shehzad Iqbal, Hafeez-ur-Rehman, Umar Farooq, Muhammad Zeeshan Hassan, Muhammad Nadeem Shahid, Adnan Noor Shah, Aqleem Abbas, Iqra Mubeen, Ammara Farooq, Rehab Y. Ghareeb, Hazem M. Kalaji, Abdulwahed Fahad Alrefaei and Mohamed A. A. Ahmed
Plants 2022, 11(10), 1278; https://doi.org/10.3390/plants11101278 - 10 May 2022
Cited by 1 | Viewed by 2637
Abstract
Cotton (Gossypium hirsutum) is a global cash crop which has gained importance in earning foreign exchange for each country. Bacterial blight caused by Xanthomonascitri subsp. malvacearum (Xcm) has been a seriousdisease in Pakistan’s cotton belt on multiple occasions. Bacterium [...] Read more.
Cotton (Gossypium hirsutum) is a global cash crop which has gained importance in earning foreign exchange for each country. Bacterial blight caused by Xanthomonascitri subsp. malvacearum (Xcm) has been a seriousdisease in Pakistan’s cotton belt on multiple occasions. Bacterium was isolated and identified through various biochemical and diagnostic tests wherehypersensitivity reaction, Gram staining, KOH (potassium hydroxide), catalase, starch hydrolysis, lecithinase and Tween 80 hydrolysis tests confirmed bacterium as Gram-negative and plant pathogenic. Xcm perpetuation assays wereevaluated on various cotton varieties under glasshouse conditions in completely randomized design by three different methods, wherein the scratch method proved to be the best upon CIM-496 and showed 83.33% disease incidence as compared with the other two methods, where Bt-3701 responded with 53.33% incidence via the spray gun method, and 50% with the water splash method on CIM-616, as compared with the control. Similarly, for disease severity percentage, Bt-3701 was pragmatic with 47.21% through scratch method, whereas, in the spray gun method, 45.51% disease severity was noted upon Bt-802, and 31.27% was calculated on Cyto-179 through the water splash method. Owing to the unique antibacterial properties of aqueous plant extracts, the poison food technique showed Aloe vera, Mentha piperita, Syzygiumcumini and Azadirachta indica with 17.77, 29.33, 18.33 and 20.22 bacterial colonies counted on nutrient agarmedium petri plate, respectively, as compared with the control. Measurement of the inhibition zone by disk diffusion technique showed Mentha piperita, Syzygiumcumini, Citrus limon, Moringa oleifera and Syzygium aromaticum to present the most promising results by calculating the maximum diameter of the inhibition zone, viz., 8.58, 8.55, 8.52, 8.49 and 8.41 (mm), respectively, at the highest tested concentration (75 ppm, parts per million) compared with the control. It is probable that the decoction’s interaction with the pathogen population on the host plant will need to be considered in future experiments. However, at this moment, more research into the effective management of cotton bacterial blight by plant extracts in terms of concentration determination and development of biopesticides will provide future avenues to avoid environmental pollution. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1635 KiB  
Review
Beneficial Effect and Potential Risk of Pantoea on Rice Production
by Luqiong Lv, Jinyan Luo, Temoor Ahmed, Haitham E. M. Zaki, Ye Tian, Muhammad Shafiq Shahid, Jianping Chen and Bin Li
Plants 2022, 11(19), 2608; https://doi.org/10.3390/plants11192608 - 04 Oct 2022
Cited by 17 | Viewed by 3361
Abstract
Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe [...] Read more.
Bacteria from the genus Pantoea have been reported to be widely distributed in rice paddy environments with contradictory roles. Some strains promoted rice growth and protected rice from pathogen infection or abiotic stress, but other strain exhibited virulence to rice, even causing severe rice disease. In order to effectively utilize Pantoea in rice production, this paper analyzed the mechanisms underlying beneficial and harmful effects of Pantoea on rice growth. The beneficial effect of Pantoea on rice plants includes growth promotion, abiotic alleviation and disease inhibition. The growth promotion may be mainly attributed to nitrogen-fixation, phosphate solubilization, plant physiological change, the biosynthesis of siderophores, exopolysaccharides, 1-aminocyclopropane-1-carboxylic acid deaminase and phytohormones, including cytokinin, indole-3-acetic acid (IAA), auxins, abscisic acid and gibberellic acid, while the disease inhibition may be mainly due to the induced resistance, nutrient and spatial competition, as well as the production of a variety of antibiotics. The pathogenic mechanism of Pantoea can be mainly attributed to bacterial motility, production of phytohormones such as IAA, quorum sensing-related signal molecules and a series of cell wall-degrading enzymes, while the pathogenicity-related genes of Pantoea include genes encoding plasmids, such as the pPATH plasmid, the hypersensitive response and pathogenicity system, as well as various types of secretion systems, such as T3SS and T6SS. In addition, the existing scientific problems in this field were discussed and future research prospects were proposed. Full article
(This article belongs to the Special Issue Pathogenesis and Disease Control in Crops)
Show Figures

Graphical abstract

Back to TopTop