Improvement and Genetic Analysis of Germplasm Resources in Major Crops

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Plant Genetics, Genomics and Biotechnology".

Deadline for manuscript submissions: closed (20 April 2023) | Viewed by 28397

Special Issue Editors

College of Agronomy, Northwest A&F University, Yangling 712100, China
Interests: germplasm improvement; molecular genetics; maize breeding
Special Issues, Collections and Topics in MDPI journals
Department of Crop Genetics and Breeding,China Agricultural University, Beijing 100193, China
Interests: rice grain yield; lodging resistance
Special Issues, Collections and Topics in MDPI journals
Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
Interests: genetics, germplasm, maize breeding
Special Issues, Collections and Topics in MDPI journals
Department of Plant Genetics and Breeding, Huazhong Agricultural University, Wuhan 430070, China
Interests: quantitative genetics, genomics, enviromics, maize breeding
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Germplasm resources of major crops have been becoming more and more important in terms of food security. It is not only the core during crop breeding, but also a key factor for crop genetics and biology, which can be used to dissect the genetic mechanism of important traits and feedback to germplasm improvement. However, the genetic background of commercial varieties is restricted; many newer varieties are developed from restricted elite inbred lines or their derived materials. Thus, it is necessary to achieve an expansion of genetic diversity in major crops. Along with the development of technology, including next-generation sequencing and genomics, high-throughput phenotypes and the modified analytical method, significant advancements have enabled us to understand the regulation mechanism of the important traits, such as agronomic traits, biotic and abiotic stress, seed quality and metabolism. Some effective molecular markers have been explored and applied with the aim of achieving germplasm improvement. Meanwhile, the application of genome-wide selection technology accelerated germplasm improvement and breeding. Thus, this journal (Plants) organized a Special Issue on “Improvement and Genetic Analysis of Germplasm Resources in Major Crops”, which can provide an excellent platform to present the advancements in germplasm improvement and genetics of important traits in the breeding process.

Dr. Shutu Xu
Dr. Zhanying Zhang
Dr. Kun Li
Dr. Xiaojun Nie
Prof. Dr. Tingting Guo
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • germplasm improvement
  • genetics mechanism
  • genome-wide selection
  • major crops

Published Papers (18 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 3714 KiB  
Article
Characterization of the Isocitrate Dehydrogenase Gene Family and Their Response to Drought Stress in Maize
Plants 2023, 12(19), 3466; https://doi.org/10.3390/plants12193466 - 02 Oct 2023
Viewed by 837
Abstract
Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the tricarboxylic acid cycle and acts in glutamine synthesis. IDH also participates in plant growth and development and in response to abiotic stresses. We identified 11 maize IDH genes (ZmIDH) and classified [...] Read more.
Isocitrate dehydrogenase (IDH) is a key rate-limiting enzyme in the tricarboxylic acid cycle and acts in glutamine synthesis. IDH also participates in plant growth and development and in response to abiotic stresses. We identified 11 maize IDH genes (ZmIDH) and classified these genes into ZmNAD-IDH and ZmNADP-IDH groups based on their different coenzymes (NAD+ or NADP+). The ZmNAD-IDH group was further divided into two subgroups according to their catalytic and non-catalytic subunits, as in Arabidopsis. The ZmIDHs significantly differed in physicochemical properties, gene structure, conserved motifs, and protein tertiary structure. Promoter prediction analysis revealed that the promoters of these ZmIDHs contain cis-acting elements associated with light response, abscisic acid, phytohormones, and abiotic stresses. ZmIDH is predicted to interact with proteins involved in development and stress resistance. Expression analysis of public data revealed that most ZmIDHs are specifically expressed in anthers. Different types of ZmIDHs responded to abiotic stresses with different expression patterns, but all exhibited responses to abiotic stresses to some extent. In addition, analysis of the public sequence from transcription data in an association panel suggested that natural variation in ZmIDH1.4 will be associated with drought tolerance in maize. These results suggested that ZmIDHs respond differently and/or redundantly to abiotic stresses during plant growth and development, and this analysis provides a foundation to understand how ZmIDHs respond to drought stress in maize. Full article
Show Figures

Figure 1

20 pages, 10288 KiB  
Article
Comparative Analysis of Circadian Transcriptomes Reveals Circadian Characteristics between Arabidopsis and Soybean
Plants 2023, 12(19), 3344; https://doi.org/10.3390/plants12193344 - 22 Sep 2023
Viewed by 791
Abstract
The circadian clock, an endogenous timing system, exists in nearly all organisms on Earth. The plant circadian clock has been found to be intricately linked with various essential biological activities. Extensive studies of the plant circadian clock have yielded valuable applications. However, the [...] Read more.
The circadian clock, an endogenous timing system, exists in nearly all organisms on Earth. The plant circadian clock has been found to be intricately linked with various essential biological activities. Extensive studies of the plant circadian clock have yielded valuable applications. However, the distinctions of circadian clocks in two important plant species, Arabidopsis thaliana and Glycine max (soybean), remain largely unexplored. This study endeavors to address this gap by conducting a comprehensive comparison of the circadian transcriptome profiles of Arabidopsis and soybean to uncover their distinct circadian characteristics. Utilizing non-linear regression fitting (COS) integrated with weights, we identified circadian rhythmic genes within both organisms. Through an in-depth exploration of circadian parameters, we unveiled notable differences between Arabidopsis and soybean. Furthermore, our analysis of core circadian clock genes shed light on the distinctions in central oscillators between these two species. Additionally, we observed that the homologous genes of Arabidopsis circadian clock genes in soybean exert a significant influence on the regulation of flowering and maturity of soybean. This phenomenon appears to stem from shifts in circadian parameters within soybean genes. These findings highlight contrasting biological activities under circadian regulation in Arabidopsis and soybean. This study not only underscores the distinctive attributes of these species, but also offers valuable insights for further scrutiny into the soybean circadian clock and its potential applications. Full article
Show Figures

Figure 1

14 pages, 2711 KiB  
Article
Genome-Wide Identification, Expression and Evolution Analysis of m6A Writers, Readers and Erasers in Aegilops_tauschii
Plants 2023, 12(14), 2747; https://doi.org/10.3390/plants12142747 - 24 Jul 2023
Viewed by 940
Abstract
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, [...] Read more.
N6-methyladenosine modifications (m6A) is one of the most abundant and prevalent post-transcriptional RNA modifications in plants, playing the crucial role in plant growth and development and stress adaptation. However, the m6A regulatory machinery in Aegilops_tauschii, the D genome progenitor of common wheat, is not well understood at present. Here, we systematically identified the m6A-related genes in Aegilops with a genome-wide search approach. In total, 25 putative m6A genes composed of 5 writers, 13 readers and 7 erasers were obtained. A phylogenetic analysis clearly grouped them into three subfamilies with the same subfamily showing similar gene structures and conserved domains. These m6A genes were found to contain a large number of cis-acting elements associating with plant hormones, regulation of growth and development as well as stress response, suggesting their widespread regulation function. Furthermore, the expression profiling of them was investigated using RNA-seq data to obtain stress-responsive candidates, of which 5 were further validated with a qPCR analysis. Finally, the genetic variation of m6A-related genes was investigated between Aegilops and D subgenome of wheat based on re-sequencing data, and an obvious genetic bottleneck occurred on them during the wheat domestication process. The promising haplotype association with domestication and agronomic traits was also detected. This study provided some insights on the genomic organization and evolutionary features of m6A-related genes in Aegilops, which will facilitate the further functional study and also contribute to broaden the genetic basis for genetic improvement in wheat and other crops. Full article
Show Figures

Figure 1

21 pages, 4330 KiB  
Article
Meta-Analysis of Microarray Data and Their Utility in Dissecting the Mapped QTLs for Heat Acclimation in Rice
Plants 2023, 12(8), 1697; https://doi.org/10.3390/plants12081697 - 18 Apr 2023
Cited by 1 | Viewed by 1264
Abstract
In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been [...] Read more.
In the current global warming scenario, it is imperative to develop crops with improved heat tolerance or acclimation, for which knowledge of major heat stress-tolerant genes or genomic regions is a prerequisite. Though several quantitative trait loci (QTLs) for heat tolerance have been mapped in rice, candidate genes from these QTLs have not been reported yet. The meta-analysis of microarray datasets for heat stress in rice can give us a better genomic resource for the dissection of QTLs and the identification of major candidate genes for heat stress tolerance. In the present study, a database, RiceMetaSys-H, comprising 4227 heat stress-responsive genes (HRGs), was created using seven publicly available microarray datasets. This included in-house-generated microarray datasets of Nagina 22 (N22) and IR64 subjected to 8 days of heat stress. The database has provisions for searching the HRGs through genotypes, growth stages, tissues, and physical intervals in the genome, as well as Locus IDs, which provide complete information on the HRGs with their annotations and fold changes, along with the experimental material used for the analysis. The up-regulation of genes involved in hormone biosynthesis and signalling, sugar metabolism, carbon fixation, and the ROS pathway were found to be the key mechanisms of enhanced heat tolerance. Integrating variant and expression analysis, the database was used for the dissection of the major effect of QTLs on chromosomes 4, 5, and 9 from the IR64/N22 mapping population. Out of the 18, 54, and 62 genes in these three QTLs, 5, 15, and 12 genes harboured non-synonymous substitutions. Fifty-seven interacting genes of the selected QTLs were identified by a network analysis of the HRGs in the QTL regions. Variant analysis revealed that the proportion of unique amino acid substitutions (between N22/IR64) in the QTL-specific genes was much higher than the common substitutions, i.e., 2.58:0.88 (2.93-fold), compared to the network genes at a 0.88:0.67 (1.313-fold) ratio. An expression analysis of these 89 genes showed 43 DEGs between IR64/N22. By integrating the expression profiles, allelic variations, and the database, four robust candidates (LOC_Os05g43870, LOC_Os09g27830, LOC_Os09g27650, andLOC_Os09g28000) for enhanced heat stress tolerance were identified. The database thus developed in rice can be used in breeding to combat high-temperature stress. Full article
Show Figures

Figure 1

19 pages, 1808 KiB  
Article
Recurrent Interpopulation Selection in Popcorn: From Heterosis to Genetic Gains
Plants 2023, 12(5), 1056; https://doi.org/10.3390/plants12051056 - 27 Feb 2023
Viewed by 1524
Abstract
In view of the need to develop new popcorn cultivars and considering the uncertainties in choosing the most appropriate breeding methods to ensure consistent genetic progress, simultaneously for both popping expansion and grain yield, this study addressed the efficiency of interpopulation recurrent selection [...] Read more.
In view of the need to develop new popcorn cultivars and considering the uncertainties in choosing the most appropriate breeding methods to ensure consistent genetic progress, simultaneously for both popping expansion and grain yield, this study addressed the efficiency of interpopulation recurrent selection regarding genetic gains, the study of the response in genetic parameters as well as heterotic effects on the control of the main agronomic traits of popcorn. Two populations were established, Pop1 and Pop2. A total of 324 treatments were evaluated, which consisted of 200 half-sib families (100 from Pop1 and 100 from Pop2), 100 full-sib families from the two populations and 24 controls. The field experiment was arranged in a lattice design with three replications in two environments, in the north and northwest regions of the State of Rio de Janeiro, Brazil. The genotype × environment interaction was partitioned and the genetic parameters, heterosis and predicted gains were estimated by the Mulamba and Mock index, based on selection results in both environments. The genetic parameters detected variability that can be explored in successive interpopulation recurrent selection cycles. Exploring heterosis for GY, PE and yield components is a promising option to increase grain yield and quality. The Mulamba and Mock index was efficient in predicting the genetic gains in GY and PE. Interpopulation recurrent selection proved effective to provide genetic gains for traits with predominantly additive and dominance inheritance. Full article
Show Figures

Figure 1

15 pages, 2218 KiB  
Article
Evaluating Introgression Sorghum Germplasm Selected at the Population Level While Exploring Genomic Resources as a Screening Method
Plants 2023, 12(3), 444; https://doi.org/10.3390/plants12030444 - 18 Jan 2023
Cited by 1 | Viewed by 1270
Abstract
To exploit the novel genetic diversity residing in tropical sorghum germplasm, an expansive backcross nested-association mapping (BC-NAM) resource was developed in which novel genetic diversity was introgressed into elite inbreds. A major limitation of exploiting this type of genetic resource in hybrid improvement [...] Read more.
To exploit the novel genetic diversity residing in tropical sorghum germplasm, an expansive backcross nested-association mapping (BC-NAM) resource was developed in which novel genetic diversity was introgressed into elite inbreds. A major limitation of exploiting this type of genetic resource in hybrid improvement programs is the required evaluation in hybrid combination of the vast number of BC-NAM populations and lines. To address this, the utility of genomic information was evaluated to predict the hybrid performance of BC-NAM populations. Two agronomically elite BC-NAM populations were chosen for evaluation in which elite inbred RTx436 was the recurrent parent. Each BC1F3 line was evaluated in hybrid combination with an elite tester in two locations with phenotypes of grain yield, plant height, and days to anthesis collected on all test cross hybrids. Lines from both populations were found to outperform their recurrent parent. Efforts to utilize genetic distance based on genotyping-by-sequence (GBS) as a predictive tool for hybrid performance was ineffective. However, utilizing genomic prediction models using additive and dominance GBLUP kernels to screen germplasm appeared to be an effective method to eliminate inferior-performing lines that will not be useful in a hybrid breeding program. Full article
Show Figures

Figure 1

19 pages, 1206 KiB  
Article
Mapping QTL for Phenological and Grain-Related Traits in a Mapping Population Derived from High-Zinc-Biofortified Wheat
Plants 2023, 12(1), 220; https://doi.org/10.3390/plants12010220 - 03 Jan 2023
Cited by 2 | Viewed by 1995
Abstract
Genomic regions governing days to heading (DH), days to maturity (DM), plant height (PH), thousand-kernel weight (TKW), and test weight (TW) were investigated in a set of 190 RILs derived from a cross between a widely cultivated wheat-variety, Kachu (DPW-621-50), and a high-zinc [...] Read more.
Genomic regions governing days to heading (DH), days to maturity (DM), plant height (PH), thousand-kernel weight (TKW), and test weight (TW) were investigated in a set of 190 RILs derived from a cross between a widely cultivated wheat-variety, Kachu (DPW-621-50), and a high-zinc variety, Zinc-Shakti. The RIL population was genotyped using 909 DArTseq markers and phenotyped in three environments. The constructed genetic map had a total genetic length of 4665 cM, with an average marker density of 5.13 cM. A total of thirty-seven novel quantitative trait loci (QTL), including twelve for PH, six for DH, five for DM, eight for TKW and six for TW were identified. A set of 20 stable QTLs associated with the expression of DH, DM, PH, TKW, and TW were identified in two or more environments. Three novel pleiotropic genomic-regions harboring co-localized QTLs governing two or more traits were also identified. In silico analysis revealed that the DArTseq markers were located on important putative candidate genes such as MLO-like protein, Phytochrome, Zinc finger and RING-type, Cytochrome P450 and pentatricopeptide repeat, involved in the regulation of pollen maturity, the photoperiodic modulation of flowering-time, abiotic-stress tolerance, grain-filling duration, thousand-kernel weight, seed morphology, and plant growth and development. The identified novel QTLs, particularly stable and co-localized QTLs, will be validated to estimate their effects in different genetic backgrounds for subsequent use in marker-assisted selection (MAS). Full article
Show Figures

Figure 1

14 pages, 7176 KiB  
Article
Transcriptome Analysis Identifies Novel Genes Associated with Low-Temperature Seed Germination in Sweet Corn
Plants 2023, 12(1), 159; https://doi.org/10.3390/plants12010159 - 29 Dec 2022
Cited by 3 | Viewed by 1443
Abstract
Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet [...] Read more.
Typically, sweet corn, particularly sh2 sweet corn, has low seed vigor owing to its high sugar and low starch content, which is a major problem in sweet corn production, particularly at low temperatures. There is considerable variation in the germination rates among sweet corn varieties under low-temperature conditions, and the underlying mechanisms behind this phenomenon remain unclear. In this study, we screened two inbred sweet corn lines (tolerant line L282 and sensitive line L693) differing in their low-temperature germination rates; while no difference was observed in their germination rates at normal temperatures. To identify the specifically induced genes influencing the germination capacity of sweet corn at low temperatures, a transcriptome analysis of the two lines was conducted at both normal and low temperatures. Compared to the lines at a normal temperature, 3926 and 1404 differently expressed genes (DEGs) were identified from L282 and L693, respectively, under low-temperature conditions. Of them, 830 DEGs were common DEGs (cDEGs) that were identified from both L282 and L693, which were majorly enriched in terms of microtubule-based processes, histone H3-K9 modification, single-organism cellular processes, and carbohydrate metabolic processes. In addition, 3096 special DEGs (sDEGs), with 2199 upregulated and 897 downregulated, were detected in the tolerant line L282, but not in the sensitive line L693. These sDEGs were primarily related to plasma membranes and oxygen-containing compounds. Furthermore, electric conductivity measurements demonstrated that the membrane of L282 experienced less damage, which is consistent with its strong tolerance at low temperatures. These results expand our understanding of the complex mechanisms involved in the cold germination of sweet corn and provide a set of candidate genes for further genetic analysis. Full article
Show Figures

Figure 1

22 pages, 5570 KiB  
Article
Comparison of the Phenotypic Performance, Molecular Diversity, and Proteomics in Transgenic Rice
Plants 2023, 12(1), 156; https://doi.org/10.3390/plants12010156 - 29 Dec 2022
Cited by 1 | Viewed by 1073
Abstract
The extent of molecular diversity and differentially expressed proteins (DEPs) in transgenic lines provide valuable information to understand the phenotypic performance of transgenic crops compared with their parents. Here, we compared the differences in the phenotypic variation of twelve agronomic and end-use quality [...] Read more.
The extent of molecular diversity and differentially expressed proteins (DEPs) in transgenic lines provide valuable information to understand the phenotypic performance of transgenic crops compared with their parents. Here, we compared the differences in the phenotypic variation of twelve agronomic and end-use quality traits, the extent of microsatellite diversity, and DEPs of a recurrent parent line with three transgenic rice restorer lines carrying either CRY1C gene on chromosome 11 or CRY2A gene on chromosome 12 or both genes. The three transgenic lines had significantly smaller stem borer infestation than the recurrent parent without showing significant differences among most agronomic traits, yield components, and end-use quality traits. Using 512 microsatellite markers, the three transgenic lines inherited 2.9–4.3% of the Minghui 63 donor genome and 96.3–97.1% of the CH891 recurrent parent genome. As compared with the recurrent parent, the number of upregulated and down-regulated proteins in the three transgenic lines varied from 169 to 239 and from 131 to 199, respectively. Most DEPs were associated with the secondary metabolites biosynthesis transport and catabolism, carbohydrate transport and metabolism, post-translational modification, and signal transduction mechanisms. Although several differentially expressed proteins were observed between transgenic rice and its recurrent parent, the differences may not have been associated with grain yield and most other phenotypic traits in transgenic rice. Full article
Show Figures

Figure 1

15 pages, 1456 KiB  
Article
Photosynthetic Plasticity and Stomata Adjustment in Chromosome Segment Substitution Lines of Rice Cultivar KDML105 under Drought Stress
Plants 2023, 12(1), 94; https://doi.org/10.3390/plants12010094 - 24 Dec 2022
Cited by 3 | Viewed by 1875
Abstract
The impact of increasing drought periods on crop yields as a result of global climate change is a major concern in modern agriculture. Thus, a greater understanding of crop physiological responses under drought stress can guide breeders to develop new cultivars with enhanced [...] Read more.
The impact of increasing drought periods on crop yields as a result of global climate change is a major concern in modern agriculture. Thus, a greater understanding of crop physiological responses under drought stress can guide breeders to develop new cultivars with enhanced drought tolerance. In this study, selected chromosome segment substitution lines of KDML105 (KDML105-CSSL) were grown in the Plant Phenomics Center of Kasetsart University in Thailand under well-watered and drought-stressed conditions. Physiological traits were measured by observing gas exchange dynamics and using a high-throughput phenotyping platform. Furthermore, because of its impact on plant internal gas and water regulation, stomatal morphological trait variation was recorded. The results show that KDML105-CSS lines exhibited plasticity responses to enhance water-use efficiency which increased by 3.62%. Moreover, photosynthesis, stomatal conductance and transpiration decreased by approximately 40% and plant height was reduced by 17.69%. Stomatal density tended to decrease and was negatively correlated with stomatal size, and stomata on different sides of the leaves responded differently under drought stress. Under drought stress, top-performing KDML105-CSS lines with high net photosynthesis had shorter plant height and improved IWUE, as influenced by an increase in stomatal density on the upper leaf side and a decrease on the lower leaf side. Full article
Show Figures

Figure 1

15 pages, 4233 KiB  
Article
Genome-Wide Identification and Expression Analysis of TUA and TUB Genes in Wheat (Triticum aestivum L.) during Its Development
Plants 2022, 11(24), 3495; https://doi.org/10.3390/plants11243495 - 13 Dec 2022
Viewed by 1501
Abstract
Microtubules play a fundamental role in plant development, morphogenesis, and cytokinesis; they are assembled from heterodimers containing an α-tubulin (TUA) and a β-tubulin (TUB) protein. However, little research has been conducted on the TUA and TUB gene families in hexaploid wheat (Triticum [...] Read more.
Microtubules play a fundamental role in plant development, morphogenesis, and cytokinesis; they are assembled from heterodimers containing an α-tubulin (TUA) and a β-tubulin (TUB) protein. However, little research has been conducted on the TUA and TUB gene families in hexaploid wheat (Triticum aestivum L.). In this study, we identified 15 TaTUA and 28 TaTUB genes in wheat. Phylogenetic analysis showed that 15 TaTUA genes were divided into two major subfamilies, and 28 TaTUB genes were divided into five major subfamilies. Mostly, there were similar motif compositions and exon-intron structures among the same subfamilies. Segmental duplication of genes (WGD/segmental) is the main process of TaTUA and TaTUB gene family expansion in wheat. It was found that TaTUA and TaTUB genes presented specific temporal and spatial characteristics based on the expression profiles of 17 tissues during wheat development using publicly available RNA-seq data. It was worth noting, via qRT-PCR, that two TaTUA and five TaTUB genes were highly expressed in fertile anthers compared to male sterility. These were quite different between physiological male sterile lines and S-type cytoplasmic male sterile lines at different stages of pollen development. This study offers fundamental information on the TUA and TUB gene families during wheat development and provides new insights for exploring the molecular mechanism of wheat male sterility. Full article
Show Figures

Figure 1

19 pages, 2607 KiB  
Article
Field Evaluation of Wheat Varieties Using Canopy Temperature Depression in Three Different Climatic Growing Seasons
Plants 2022, 11(24), 3471; https://doi.org/10.3390/plants11243471 - 12 Dec 2022
Cited by 1 | Viewed by 1152
Abstract
During the breeding progress, screening excellent wheat varieties and lines takes lots of labor and time. Moreover, different climatic conditions will bring more complex and unpredictable situations. Therefore, the selection efficiency needs to be improved by applying the proper selection index. This study [...] Read more.
During the breeding progress, screening excellent wheat varieties and lines takes lots of labor and time. Moreover, different climatic conditions will bring more complex and unpredictable situations. Therefore, the selection efficiency needs to be improved by applying the proper selection index. This study evaluates the capability of CTD as an index for evaluating wheat germplasm in field conditions and proposes a strategy for the proper and efficient application of CTD as an index in breeding programs. In this study, 186 bread wheat varieties were grown in the field and evaluated for three continuous years with varied climatic conditions: normal, spring freezing, and early drought climatic conditions. The CTD and photosynthetic parameters were investigated at three key growth stages, canopy structural traits at the early grain filling stage, and yield traits at maturity. The variations in CTD among varieties were the highest in normal conditions and lowest in spring freezing conditions. CTD at the three growing stages was significantly and positively correlated for each growing season, and CTD at the middle grain filling stage was most significantly correlated across the three growing seasons, suggesting that CTD at the middle grain filling stage might be more important for evaluation. CTD was greatly affected by photosynthetic and canopy structural traits, which varied in different climatic conditions. Plant height, peduncle length, and the distance of the flag leaf to the spike were negatively correlated with CTD at the middle grain filling stage in both normal and drought conditions but positively correlated with CTD at the three stages in spring freezing conditions. Flag leaf length was positively correlated with CTD at the three stages in normal conditions but negatively correlated with CTD at the heading and middle grain filling stages in spring freezing conditions. Further analysis showed that CTD could be an index for evaluating the photosynthetic and yield traits of wheat germplasm in different environments, with varied characteristics in different climatic conditions. In normal conditions, the varieties with higher CTDs at the early filling stage had higher photosynthetic capacities and higher yields; in drought conditions, the varieties with high CTDs had better photosynthetic capacities, but those with moderate CTD had higher yield, while in spring freezing conditions, there were no differences in yield and biomass among the CTD groups. In sum, CTD could be used as an index to screen wheat varieties in specific climatic conditions, especially in normal and drought conditions, for photosynthetic parameters and some yield traits. Full article
Show Figures

Figure 1

37 pages, 17231 KiB  
Article
Genetic Improvement in Plant Architecture, Maturity Duration and Agronomic Traits of Three Traditional Rice Landraces through Gamma Ray-Based Induced Mutagenesis
Plants 2022, 11(24), 3448; https://doi.org/10.3390/plants11243448 - 09 Dec 2022
Cited by 2 | Viewed by 1872
Abstract
Mutation breeding offers a simple, fast and efficient way to rectify major defects without altering their original identity. The present study deployed radiation (gamma rays @ 300Gy)-induced mutation breeding for the improvement and revival of three traditional rice landraces, viz., Samundchini, Vishnubhog and [...] Read more.
Mutation breeding offers a simple, fast and efficient way to rectify major defects without altering their original identity. The present study deployed radiation (gamma rays @ 300Gy)-induced mutation breeding for the improvement and revival of three traditional rice landraces, viz., Samundchini, Vishnubhog and Jhilli. Among the various putative mutants identified in the M2 generation, only three, ten and five rice mutants of Samundchini, Vishnubhog and Jhilli, respectively, were advanced to the M4, M5 and M6 generations, along with their parents and three checks for evaluations based on 13 agro-morphological and 16 grain quality traits. Interestingly, all the mutants of the three landraces showed a reduction in days to 50% flowering and plant height as compared to their parents in all the three generations. The reduction in days to 50% flowering ranges from 4.94% (Vishnubhog Mutant V-67) to 21.40% (Jhilli Mutant J-2-13), whereas the reduction in plant height varies from 11.28% (Vishnubhog Mutant V-45-2, Vishnubhog Mutant V-67) to 37.65% (Jhilli Mutant J-15-1). Furthermore, two, six and three mutants of Samundchini, Vishnubhog and Jhilli have increased their yield potential over their corresponding parents, respectively. Interestingly, Samundchini Mutant S-18-1 (22.45%), Vishnubhog Mutant V-74-6 (36.87%) and Jhilli Mutant J-13-5 (25.96%) showed the highest yield advantages over their parents. Further, a pooled analysis of variance based on a randomized complete block design revealed ample variations among the genotypes for the studied traits. In addition, all the traits consistently showed high to moderate PCV and GCV and a slight difference between them in all three generations indicated the negligible effect of the environment. Moreover, in the association analysis, the traits, viz., fertile spikelets/panicle, panicle length, total tillers/plant, spikelet fertility percent and 100-seed weight showed the usual grain yield/plant, whereas the traits hulling (%) and milling (%) with HRR (%) consistently showed high direct effects and significant positive correlations. The SSR marker-based genome similarity in rice mutants and corresponding parents ranged from 95.60% to 71.70% (Vishnubhog); 95.62% to 89.10% (Samundchini) and 95.62% to 80.40% (Jhilli), indicating the trueness of the mutants. Moreover, the UPGMA algorithm and Gower distance-based dendrogram, neighbour joining tree and PCA scatter diagram assured that mutants were grouped with their respective parents and fell into separate clusters showing high similarity between mutants and parents and dissimilarity among the 24 genotypes. Overall, the information and materials generated from the current study will be very useful and informative for students, researchers and plant breeders. Additionally, our results also showed that irradiation could generate a considerable amount of genetic variability and provide new avenues for crop improvement and diversification. Full article
Show Figures

Figure 1

13 pages, 1007 KiB  
Article
On-Farm Multi-Environment Evaluation of Selected Cassava (Manihot esculenta Crantz) Cultivars in South Africa
Plants 2022, 11(23), 3339; https://doi.org/10.3390/plants11233339 - 01 Dec 2022
Cited by 2 | Viewed by 1302
Abstract
Cassava is an important starchy root crop grown globally in tropical and subtropical regions. The ability of cassava to withstand difficult growing conditions and long-term storability underground makes it a resilient crop, contributing to food and nutrient security. This study was conducted to [...] Read more.
Cassava is an important starchy root crop grown globally in tropical and subtropical regions. The ability of cassava to withstand difficult growing conditions and long-term storability underground makes it a resilient crop, contributing to food and nutrient security. This study was conducted to evaluate the performance and adaptability of exotic cassava cultivars across different environments in South Africa and to recommend genotypes for cultivation. A total of 11 cassava cultivars were evaluated at six on-farm sites, using a randomized complete block design with three replications. There were highly significant (p < 0.001) variations between genotypes, environments, and their interaction for all yield and yield-related traits studied. This indicates the need to test the genotypes in multiple environments before effective selection and commercialization can be undertaken. MSAF2 and UKF4 showed the overall best performances for most of the traits, whilst UKF9 (49.5%) and P1/19 (48.5%) had the highest dry matter yield. UKF4 (102.7 t ha−1) had the highest yield and greatest root yield stability across environments. MSAF2 did not perform consistently across environments because it was highly susceptible to cassava mosaic disease (CMD). MSAF2 could be used as a donor parent to generate novel clones with large numbers of marketable roots, and high fresh root yields, if the other parent can provide effective resistance to CMD. Based on genotype and environmental mean, Mabuyeni (KwaZulu-Natal), Mandlakazi (Limpopo), and Shatale (Mpumalanga) were found to be better environments for cassava cultivation and testing. This study is a pioneer in cassava research using multiple environments in South Africa. It provides baseline information on the performance of currently available cassava clones, their adaptation to multiple sites, the identification of suitable test sites, and information on current genetic resources for a future breeding program. Full article
Show Figures

Figure 1

19 pages, 3377 KiB  
Article
Transcriptome Analysis of Early Senescence in the Post-Anthesis Flag Leaf of Wheat (Triticum aestivum L.)
Plants 2022, 11(19), 2593; https://doi.org/10.3390/plants11192593 - 01 Oct 2022
Cited by 3 | Viewed by 1224
Abstract
Flag leaf senescence is an important determinant of wheat yield, as leaf senescence occurs in a coordinated manner during grain filling. However, the biological process of early senescence of flag leaves post-anthesis is not clear. In this study, early senescence in wheat was [...] Read more.
Flag leaf senescence is an important determinant of wheat yield, as leaf senescence occurs in a coordinated manner during grain filling. However, the biological process of early senescence of flag leaves post-anthesis is not clear. In this study, early senescence in wheat was investigated using a high-throughput RNA sequencing technique. A total of 4887 differentially expressed genes (DEGs) were identified, and any showing drastic expression changes were then linked to particular biological processes. A hierarchical cluster analysis implied potential relationships between NAC genes and post-anthesis senescence in the flag leaf. In addition, a large set of genes associated with the synthesis; transport; and signaling of multiple phytohormones (JA, ABA, IAA, ET, SA, BR, and CTK) were expressed differentially, and many DEGs related to ABA and IAA were identified. Our results provide insight into the molecular processes taking place during the early senescence of flag leaves, which may provide useful information in improving wheat yield in the future. Full article
Show Figures

Figure 1

18 pages, 5165 KiB  
Article
Genome-Wide Identification of MDH Family Genes and Their Association with Salt Tolerance in Rice
Plants 2022, 11(11), 1498; https://doi.org/10.3390/plants11111498 - 02 Jun 2022
Cited by 10 | Viewed by 2639
Abstract
Malate dehydrogenase (MDH) is widely present in nature and regulates plant growth and development, as well as playing essential roles, especially in abiotic stress responses. Nevertheless, there is no comprehensive knowledge to date on MDH family members in rice. In this study, a [...] Read more.
Malate dehydrogenase (MDH) is widely present in nature and regulates plant growth and development, as well as playing essential roles, especially in abiotic stress responses. Nevertheless, there is no comprehensive knowledge to date on MDH family members in rice. In this study, a total of 12 MDH members in rice were identified through genome-wide analysis and divided into three groups on the basis of their phylogenetic relationship and protein-conserved motifs. Evolutionary analysis showed that MDH proteins from rice, maize and wheat shared a close phylogenetic relationship, and the MDH family was conserved in the long-term process of domestication. We identified two segmental duplication events involving four genes, which could be the major force driving the expansion of the OsMDH family. The expression profile, cis-regulatory elements and qRT-PCR results of these genes revealed that a few OsMDH showed high tissue specificity, almost all of which had stress response elements in the promoter region, and ten MDH members were significantly induced by salt stress. Through gene-based association analysis, we found a significant correlation between salt tolerance at the seedling stage and the genetic variation of OsMDH8.1 and OsMDH12.1. Additionally, we found that the polymorphism in the promoter region of OsMDH8.1 might be related to the salt tolerance of rice. This study aimed to provide valuable information on the functional study of the rice MDH gene family related to salt stress response and revealed that OsMDH8.1 might be an important gene for the cultivar improvement of salt tolerance in rice. Full article
Show Figures

Figure 1

20 pages, 3337 KiB  
Article
Genome-Wide Association Studies of Maize Seedling Root Traits under Different Nitrogen Levels
Plants 2022, 11(11), 1417; https://doi.org/10.3390/plants11111417 - 26 May 2022
Cited by 3 | Viewed by 1599
Abstract
Nitrogen (N) is one of the important factors affecting maize root morphological construction and growth development. An association panel of 124 maize inbred lines was evaluated for root and shoot growth at seedling stage under normal N (CK) and low N (LN) treatments, [...] Read more.
Nitrogen (N) is one of the important factors affecting maize root morphological construction and growth development. An association panel of 124 maize inbred lines was evaluated for root and shoot growth at seedling stage under normal N (CK) and low N (LN) treatments, using the paper culture method. Twenty traits were measured, including three shoot traits and seventeen root traits, a genome-wide association study (GWAS) was performed using the Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK) methods. The results showed that LN condition promoted the growth of the maize roots, and normal N promoted the growth of the shoots. A total of 185 significant SNPs were identified, including 27 SNPs for shoot traits and 158 SNPs for root traits. Four important candidate genes were identified. Under LN conditions, the candidate gene Zm00001d004123 was significantly correlated with the number of crown roots, Zm00001d025554 was correlated with plant height. Under CK conditions, the candidate gene Zm00001d051083 was correlated with the length and area of seminal roots, Zm00001d050798 was correlated with the total root length. The four candidate genes all responded to the LN treatment. The research results provide genetic resources for the genetic improvement of maize root traits. Full article
Show Figures

Figure 1

Review

Jump to: Research

14 pages, 1117 KiB  
Review
Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens
Plants 2023, 12(9), 1911; https://doi.org/10.3390/plants12091911 - 08 May 2023
Cited by 4 | Viewed by 2417
Abstract
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The “clustered regularly interspaced short palindromic repeats (CRISPR)” and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive [...] Read more.
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The “clustered regularly interspaced short palindromic repeats (CRISPR)” and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant–pathogen interactions have been discussed. Full article
Show Figures

Figure 1

Back to TopTop