Exploration and Application of Useful Agricultural Genes

A topical collection in Plants (ISSN 2223-7747). This collection belongs to the section "Plant Genetics, Genomics and Biotechnology".

Viewed by 26275

Editor


E-Mail Website
Collection Editor
Department of Plant Bioscience, Pusan National University, Miryang 50463, Korea
Interests: development of molecular markers related to pest resistance and search for candidate genes; host resistance (Host-plant resistance) mechanism of resistance-related research and object selection; pest-specific molecular markers development; population genetic analysis; search and use of agricultural useful genes using high-density genetic maps based on NGS technology

Topical Collection Information

Dear Colleagues, 

In the past decades, many studies on the search and use of agricultural useful genes have been actively conducted in various crops. As a result, researchers have found many useful genes involved in the desired agronomic traits through methods such as QTL mapping, genome-wide association study (GWAS), and transcriptome analysis. In addition, various types of molecular markers have been developed for practical use of the identified genes.

This Topical Collection welcomes original research papers as well as review articles related to recent molecular breeding studies involving identification of agronomically useful genes or QTL, development of molecular markers tightly linked to agronomic traits, and application of molecular markers in crop improvement.

Prof. Dr. Tae-Hwan Jun
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Agronomic trait
  • QTL mapping
  • Genome-wide association studies (GWAS)
  • Transcriptome analysis
  • Molecular markers
  • Molecular plant breeding

Published Papers (9 papers)

2022

Jump to: 2021

18 pages, 3288 KiB  
Article
QTL Identification for Stem Fiber, Strength and Rot Resistance in a DH Population from an Alien Introgression of Brassica napus
by Yujiao Shao, Yusen Shen, Feifei He and Zaiyun Li
Plants 2022, 11(3), 373; https://doi.org/10.3390/plants11030373 - 29 Jan 2022
Cited by 9 | Viewed by 2060
Abstract
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force [...] Read more.
Stem fiber, stem strength and stem-rot resistance are important agronomic traits in Brassica napus. To understand the molecular mechanism that controls the stem-related traits, we investigated the stem lignin (ADL), cellulose (Cel), hemicellulose (Hem) content, S/G monolignol ratio (SG), stem breaking force (BF), breaking strength (F) and Sclerotinia sclerotiorum resistance (SSR). Each trait was significantly positively or negatively correlated with more than three of the other six traits. QTL mapping for ADL, Cel, Hem, SG, BF, F and SSR were performed using a doubled haploid population derived from an intertribal B. napus introgression line ‘Y689′ crossed with B. napus cv. ‘Westar’. A total of 67 additive QTL were identified and integrated into 55 consensus QTL by meta-analysis. Among the 55 consensus QTL, 23 (41.8%) QTL were co-located and were integrated into 11 unique QTL. The QTL by environment (Q × E) interactions were analyzed and 22 combined QTL were identified. In addition, candidate genes within the QTL intervals were proposed based on the known function of Arabidopsis orthologs. These results provided valuable information for improving lodging resistance, S. sclerotiorum resistance and mechanized harvesting of B. napus. Full article
Show Figures

Figure 1

2021

Jump to: 2022

21 pages, 5000 KiB  
Article
Genomic-Wide Identification and Characterization of the Uridine Diphosphate Glycosyltransferase Family in Eucommia ulmoides Oliver
by Dan Ouyang, Lan-Chun Wang, Ting Tang and Hong Feng
Plants 2021, 10(9), 1934; https://doi.org/10.3390/plants10091934 - 17 Sep 2021
Cited by 7 | Viewed by 3131
Abstract
Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol [...] Read more.
Eucommia ulmoides Oliver is a woody plant with great economic and medicinal value. Its dried bark has a long history of use as a traditional medicinal material in East Asia, which led to many glycosides, such as aucubin, geniposide, hyperoside, astragalin, and pinoresinol diglucoside, being recognized as pharmacologically active ingredients. Uridine diphosphate glycosyltransferases (UGTs) catalyze a glycosyl-transferring reaction from the donor molecule uridine-5′-diphosphate-glucose (UDPG) to the substrate, which plays an important role in many biological processes, such as plant growth and development, secondary metabolism, and environmental adaptation. In order to explore the biosynthetic pathways of glycosides in E. ulmoides, 91 putative EuUGT genes were identified throughout the complete genome of E. ulmoides through function annotation and an UDPGT domain search. Phylogenetic analysis categorized them into 14 groups. We also performed GO annotations on all the EuUGTs to gain insights into their functions in E. ulmoides. In addition, transcriptomic analysis indicated that most EuUGTs showed different expression patterns across diverse organs and various growing seasons. By protein–protein interaction predication, a biosynthetic routine of flavonoids and their glycosides was also proposed. Undoubtedly, these results will help in future research into the biosynthetic pathways of glycoside compounds in E. ulmoides. Full article
Show Figures

Figure 1

16 pages, 8083 KiB  
Review
Biosynthetic Pathway of Proanthocyanidins in Major Cash Crops
by Insu Lim and Jungmin Ha
Plants 2021, 10(9), 1792; https://doi.org/10.3390/plants10091792 - 28 Aug 2021
Cited by 8 | Viewed by 2977
Abstract
Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These [...] Read more.
Proanthocyanidins (PAs) are a group of oligomers or polymers composed of monomeric flavanols. They offer many benefits for human fitness, such as antioxidant, anticancer, and anti-inflammatory activities. To date, three types of PA have been observed in nature: procyanidins, propelargonidins, and prodelphinidins. These are synthesized as some of the end-products of the flavonoid pathway by different consecutive enzymatic activities, from the same precursor—naringenin. Although the general biosynthetic pathways of PAs have been reported in a few model plant species, little is known about the species-specific pathways in major crops containing different types of PA. In the present study, we identified the species-specific pathways in 10 major crops, based on the presence/absence of flavanol-based intermediates in the metabolic pathway, and found 202 orthologous genes in the reference genomic database of each species, which may encode for key enzymes involved in the biosynthetic pathways of PAs. Parallel enzymatic reactions in the pathway are responsible for the ratio between PAs and anthocyanins, as well as among the three types of PAs. Our study suggests a promising strategy for molecular breeding, to regulate the content of PAs and anthocyanins and improve the nutritional quality of food sources globally. Full article
Show Figures

Figure 1

12 pages, 2863 KiB  
Article
Genome-Wide Association Study Reveals the Genetic Basis of Chilling Tolerance in Rice at the Reproductive Stage
by Byeong Yong Jeong, Yoonjung Lee, Yebin Kwon, Jee Hye Kim, Tae-Ho Ham, Soon-Wook Kwon and Joohyun Lee
Plants 2021, 10(8), 1722; https://doi.org/10.3390/plants10081722 - 20 Aug 2021
Cited by 4 | Viewed by 2211
Abstract
A genome-wide association study (GWAS) was used to investigate the genetic basis of chilling tolerance in a collection of 117 rice accessions, including 26 Korean landraces and 29 weedy rices, at the reproductive stage. To assess chilling tolerance at the early young microspore [...] Read more.
A genome-wide association study (GWAS) was used to investigate the genetic basis of chilling tolerance in a collection of 117 rice accessions, including 26 Korean landraces and 29 weedy rices, at the reproductive stage. To assess chilling tolerance at the early young microspore stage, plants were treated at 12 °C for 5 days, and tolerance was evaluated using seed set fertility. GWAS, together with principal component analysis and kinship matrix analysis, revealed five quantitative trait loci (QTLs) associated with chilling tolerance on chromosomes 3, 6, and 7. The percentage of phenotypic variation explained by the QTLs was 11–19%. The genomic region underlying the QTL on chromosome 3 overlapped with a previously reported QTL associated with spikelet fertility. Subsequent bioinformatic and haplotype analyses suggested three candidate chilling-tolerance genes within the QTL linkage disequilibrium block: Os03g0305700, encoding a protein similar to peptide chain release factor 2; Os06g0495700, encoding a beta tubulin, autoregulation binding-site-domain-containing protein; and Os07g0137800, encoding a protein kinase, core-domain-containing protein. Further analysis of the detected QTLs and the candidate chilling-tolerance genes will facilitate strategies for developing chilling-tolerant rice cultivars in breeding programs. Full article
Show Figures

Figure 1

15 pages, 2767 KiB  
Article
Regulation of Glycosylphosphatidylinositol-Anchored Protein (GPI-AP) Expression by F-Box/LRR-Repeat (FBXL) Protein in Wheat (Triticum aestivum L.)
by Min Jeong Hong, Jin-Baek Kim, Yong Weon Seo and Dae Yeon Kim
Plants 2021, 10(8), 1606; https://doi.org/10.3390/plants10081606 - 05 Aug 2021
Cited by 5 | Viewed by 2536
Abstract
F-box proteins are substrate recognition components of the Skp1-Cullin-F-box (SCF) complex, which performs many important biological functions including the degradation of numerous proteins via the ubiquitin–26S proteasome system. In this study, we isolated the gene encoding the F-box/LRR-repeat (FBXL) protein from wheat ( [...] Read more.
F-box proteins are substrate recognition components of the Skp1-Cullin-F-box (SCF) complex, which performs many important biological functions including the degradation of numerous proteins via the ubiquitin–26S proteasome system. In this study, we isolated the gene encoding the F-box/LRR-repeat (FBXL) protein from wheat (Triticum aestivum L.) seedlings and validated that the TaFBXL protein is a component of the SCF complex. Yeast two-hybrid assays revealed that TaFBXL interacts with the wheat glycosylphosphatidylinositol-anchored protein (TaGPI-AP). The green fluorescent protein (GFP) fusion protein of TaFBXL was detected in the nucleus and plasma membrane, whereas that of TaGPI-AP was observed in the cytosol and probably also plasma membrane. yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that TaFBXL specifically interacts with TaGPI-AP in the nucleus and plasma membrane, and TaGPI-AP is targeted by TaFBXL for degradation via the 26S proteasome system. In addition, TaFBXL and TaGPI-AP showed antagonistic expression patterns upon treatment with indole-3-acetic acid (IAA), and the level of TaGPI-AP was higher in tobacco leaves treated with both MG132 (proteasome inhibitor) and IAA than in leaves treated with either MG132 or IAA. Taken together, our data suggest that TaFBXL regulates the TaGPI-AP protein level in response to exogenous auxin application. Full article
Show Figures

Figure 1

14 pages, 2757 KiB  
Article
The Effect of Water Level in Rice Cropping System on Phosphorus Uptake Activity of Pup1 in a Pup1+Sub1 Breeding Line
by Na-Hyun Shin, O New Lee, Jae-Hyuk Han, Kihwan Song, Hee-Jong Koh, Soo-Cheul Yoo and Joong Hyoun Chin
Plants 2021, 10(8), 1523; https://doi.org/10.3390/plants10081523 - 26 Jul 2021
Cited by 3 | Viewed by 2308
Abstract
Pyramiding useful QTLs into an elite variety is a promising strategy to develop tolerant varieties against multiple abiotic stresses. However, some QTLs may not be functionally compatible when they are introgressed into the same variety. Here, we tested the functional compatibility of Pup1 [...] Read more.
Pyramiding useful QTLs into an elite variety is a promising strategy to develop tolerant varieties against multiple abiotic stresses. However, some QTLs may not be functionally compatible when they are introgressed into the same variety. Here, we tested the functional compatibility of Pup1 and Sub1, major QTLs for tolerance to phosphorus (P)-deficiency and submergence conditions, respectively. Phenotypic analysis revealed that IR64-Pup1+Sub1 (IPS) plants harboring both Pup1 and Sub1 QTLs show significant tolerance to submerged conditions, similarly to IR64-Sub1, while IPS failed to tolerate P deficiency and mild drought conditions; only IR64-Pup1 showed P deficiency tolerance. In submerged conditions, Sub1A and OsPSTOL1, major genes for Sub1 and Pup1 QTLs, respectively, were expressed at the same levels as in IPS and IR64-Sub1 and in IPS and IR64-Pup1, respectively. On the other hand, in P-non-supplied condition, crown root number, root length, and OsPSTOL1 expression level were significantly lower in IPS compared to those of IR64-Pup1. However, there was no significant difference in P content between IPS and IR64-Pup1. These results imply that Pup1 does not compromise Sub1 function in submerged condition, while Sub1 suppresses Pup1 function in P-non-supplied condition, possibly by regulating the transcript level of Pup1. In conclusion, Pup1 and Sub1 are regarded as functionally compatible under submergence condition but not under P-non-supplied condition. Further study is needed to elucidate the functional incompatibility of Pup1 and Sub1 QTLs in IPS under P-non-supplied condition. Full article
Show Figures

Figure 1

13 pages, 2560 KiB  
Article
Identification of Candidate Gene for Internode Length in Rice to Enhance Resistance to Lodging Using QTL Analysis
by Dan-Dan Zhao, Ju-Hyeong Son, Muhammad Farooq and Kyung-Min Kim
Plants 2021, 10(7), 1369; https://doi.org/10.3390/plants10071369 - 05 Jul 2021
Cited by 9 | Viewed by 4474
Abstract
Internode length and stem diameter are the primary traits affecting the lodging resistance of rice. Traits related to the length of the panicle (LP), uppermost internode (LUI), second internode (LSI), third internode (LTI), fourth internode (LFI), lowest internode (LLI) as well as stem [...] Read more.
Internode length and stem diameter are the primary traits affecting the lodging resistance of rice. Traits related to the length of the panicle (LP), uppermost internode (LUI), second internode (LSI), third internode (LTI), fourth internode (LFI), lowest internode (LLI) as well as stem diameter at the uppermost internode (SDUI), second internode (SDSI), third internode (SDTI), fourth internode (SDFI), and lowest internode (SDLI) in 120 Cheongcheong/Nagdong doubled haploid population were investigated using a quantitative trait locus (QTL) analysis. Thirty-four QTL regions affected LP and the length of each internode. Twenty-six QTL regions were associated with the stem diameter of each internode. RM12285-RM212 on chromosome 1 contained 10 QTLs related to the internode length, which have overlapped for over 2 years. Twenty-three candidate genes were screened using mark interval. Among the candidate genes, Os01g0803900, named OsCYPq1, which is in the Cytochrome P450 family, might be involved in gibberellins (GA) synthesis. GA is an essential plant growth regulator that affects plant height. OsCYPq1 catalyzes oxidation steps in the middle part of the GA pathway. OsCYPq1 is expected to provide valuable information to improve the marker assessment for target traits and QTL gene cloning in rice. Full article
Show Figures

Graphical abstract

15 pages, 2788 KiB  
Article
Genome-Wide Association Study for Ultraviolet-B Resistance in Soybean (Glycine max L.)
by Taeklim Lee, Kyung Do Kim, Ji-Min Kim, Ilseob Shin, Jinho Heo, Jiyeong Jung, Juseok Lee, Jung-Kyung Moon and Sungteag Kang
Plants 2021, 10(7), 1335; https://doi.org/10.3390/plants10071335 - 29 Jun 2021
Cited by 8 | Viewed by 2661
Abstract
The depletion of the stratospheric ozone layer is a major environmental issue and has increased the dosage of ultraviolet-B (UV-B) radiation reaching the Earth’s surface. Organisms are negatively affected by enhanced UV-B radiation, and especially in crop plants this may lead to severe [...] Read more.
The depletion of the stratospheric ozone layer is a major environmental issue and has increased the dosage of ultraviolet-B (UV-B) radiation reaching the Earth’s surface. Organisms are negatively affected by enhanced UV-B radiation, and especially in crop plants this may lead to severe yield losses. Soybean (Glycine max L.), a major legume crop, is sensitive to UV-B radiation, and therefore, it is required to breed the UV-B-resistant soybean cultivar. In this study, 688 soybean germplasms were phenotyped for two categories, Damage of Leaf Chlorosis (DLC) and Damage of Leaf Shape (DLS), after supplementary UV-B irradiation for 14 days. About 5% of the germplasms showed strong UV-B resistance, and GCS731 was the most resistant genotype. Their phenotypic distributions showed similar patterns to the normal, suggesting UV-B resistance as a quantitative trait governed by polygenes. A total of 688 soybean germplasms were genotyped using the Axiom® Soya 180K SNP array, and a genome-wide association study (GWAS) was conducted to identify SNPs significantly associated with the two traits, DLC and DLS. Five peaks on chromosomes 2, 6, 10, and 11 were significantly associated with either DLC or DLS, and the five adjacent genes were selected as candidate genes responsible for UV-B resistance. Among those candidate genes, Glyma.02g017500 and Glyma.06g103200 encode cryptochrome (CRY) and cryptochrome 1 (CRY1), respectively, and are known to play a role in DNA repair during photoreactivation. Real-time quantitative RT-PCR (qRT-PCR) results revealed that CRY1 was expressed significantly higher in the UV-B-resistant soybean compared to the susceptible soybean after 6 h of UV-B irradiation. This study is the first GWAS report on UV-B resistance in soybean, and the results will provide valuable information for breeding UV-B-resistant soybeans in preparation for climate change. Full article
Show Figures

Graphical abstract

22 pages, 4320 KiB  
Article
Identification of the Group III WRKY Subfamily and the Functional Analysis of GhWRKY53 in Gossypium hirsutum L.
by Dongjie Yang, Yuanyuan Liu, Hailiang Cheng, Qiaolian Wang, Limin Lv, Youping Zhang, Guoli Song and Dongyun Zuo
Plants 2021, 10(6), 1235; https://doi.org/10.3390/plants10061235 - 17 Jun 2021
Cited by 5 | Viewed by 2526
Abstract
WRKY transcription factors had multiple functions in plant secondary metabolism, leaf senescence, fruit ripening, adaptation to biotic and abiotic stress, and plant growth and development. However, knowledge of the group III WRKY subfamily in fiber development in upland cotton (Gossypium hirsutum L.) [...] Read more.
WRKY transcription factors had multiple functions in plant secondary metabolism, leaf senescence, fruit ripening, adaptation to biotic and abiotic stress, and plant growth and development. However, knowledge of the group III WRKY subfamily in fiber development in upland cotton (Gossypium hirsutum L.) is largely absent. Previous studies have shown that there were 21 putative group III WRKY members in G. hirsutum L. These putative amino acid sequences from the III WRKY group were phylogenetically clustered into three clades. Multiple alignment, conservative motif analysis, and gene structure analysis showed that the members clustered together in the phylogenetic tree had similar motifs and gene structures. Expression pattern analysis revealed that variation in the expression levels of these genes in different tissues and fiber development stages. To better understand the functions of putative group III WRKY genes in G. hirsutum L., we selected the cotton fiber initiation-related gene GhWRKY53 for cloning and functional identification. The subcellular localization experiment of GhWRKY53 in Nicotiana tabacum leaves showed that it was located in the nucleus. The heterologous expression of GhWRKY53 in Arabidopsis thaliana could significantly increase the density of trichomes. Twelve proteins that interacted with GhWRKY53 were screened from the cotton fiber cDNA library by yeast two-hybrid experiment. This study findings lay a foundation for further research on the role of the GhWRKY53 during cotton fiber development and provide a new insight for further studying putative group III WRKY genes in G. hirsutum L. Our research results also provide vital information for the genetic mechanism of high-quality cotton fiber formation and essential genetic resources for cotton fiber quality improvement. Full article
Show Figures

Figure 1

Back to TopTop