Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3897 KiB  
Article
COS-OGA Applications in Organic Vineyard Manage Major Airborne Diseases and Maintain Postharvest Quality of Wine Grapes
by Francesca Calderone, Alessandro Vitale, Salvina Panebianco, Monia Federica Lombardo and Gabriella Cirvilleri
Plants 2022, 11(13), 1763; https://doi.org/10.3390/plants11131763 - 01 Jul 2022
Cited by 10 | Viewed by 1936
Abstract
In most wine-growing countries of the world the interest for organic viticulture and eco-friendly grape production processes increased significantly in the last decade. Organic viticulture is currently dependent on the availability of Cu and S compounds, but their massive use over time has [...] Read more.
In most wine-growing countries of the world the interest for organic viticulture and eco-friendly grape production processes increased significantly in the last decade. Organic viticulture is currently dependent on the availability of Cu and S compounds, but their massive use over time has led to negative effects on environment health. Consequently, the purpose of this study was to evaluate the effectiveness of alternative and sustainable treatments against powdery mildew, gray mold and sour rot under the field conditions on Nero d’Avola and Inzolia Sicilian cultivars. In detail, the efficacy of COS-OGA, composed by a complex of oligochitosans and oligopectates, and its effects in combination with arbuscular mycorrhizal fungi (AMF) were evaluated to reduce airborne disease infections of grape. COS-OGA combined with AMF induced a significant reduction in powdery mildew severity both on Nero d’Avola and Inzolia with a mean percentage decrease of about 15% and 33%, respectively. Moreover, COS-OGA alone and combined with AMF gave a good protection against gray mold and sour rot with results similar to the Cu–S complex (performance in disease reduction ranging from 65 to 100%) on tested cultivars. Similarly, the COS-OGA and AMF integration provided good performances in enhancing average yield and did not negatively impact quality and microbial communities of wine grape. Overall, COS-OGA alone and in combination could be proposed as a valid and safer option for the sustainable management of the main grapevine pathogens in organic agroecosystems. Full article
(This article belongs to the Special Issue Epidemiology and Control of Plant Diseases)
Show Figures

Figure 1

15 pages, 1085 KiB  
Review
Metabolome Profiling: A Breeding Prediction Tool for Legume Performance under Biotic Stress Conditions
by Penny Makhumbila, Molemi Rauwane, Hangwani Muedi and Sandiswa Figlan
Plants 2022, 11(13), 1756; https://doi.org/10.3390/plants11131756 - 01 Jul 2022
Cited by 5 | Viewed by 2617
Abstract
Legume crops such as common bean, pea, alfalfa, cowpea, peanut, soybean and others contribute significantly to the diet of both humans and animals. They are also important in the improvement of cropping systems that employ rotation and fix atmospheric nitrogen. Biotic stresses hinder [...] Read more.
Legume crops such as common bean, pea, alfalfa, cowpea, peanut, soybean and others contribute significantly to the diet of both humans and animals. They are also important in the improvement of cropping systems that employ rotation and fix atmospheric nitrogen. Biotic stresses hinder the production of leguminous crops, significantly limiting their yield potential. There is a need to understand the molecular and biochemical mechanisms involved in the response of these crops to biotic stressors. Simultaneous expressions of a number of genes responsible for specific traits of interest in legumes under biotic stress conditions have been reported, often with the functions of the identified genes unknown. Metabolomics can, therefore, be a complementary tool to understand the pathways involved in biotic stress response in legumes. Reports on legume metabolomic studies in response to biotic stress have paved the way in understanding stress-signalling pathways. This review provides a progress update on metabolomic studies of legumes in response to different biotic stresses. Metabolome annotation and data analysis platforms are discussed together with future prospects. The integration of metabolomics with other “omics” tools in breeding programmes can aid greatly in ensuring food security through the production of stress tolerant cultivars. Full article
(This article belongs to the Special Issue Epidemiology and Control of Plant Diseases)
Show Figures

Figure 1

19 pages, 2218 KiB  
Article
Insights from a Multi-Omics Integration (MOI) Study in Oil Palm (Elaeis guineensis Jacq.) Response to Abiotic Stresses: Part One—Salinity
by Cleiton Barroso Bittencourt, Thalliton Luiz Carvalho da Silva, Jorge Cândido Rodrigues Neto, Letícia Rios Vieira, André Pereira Leão, José Antônio de Aquino Ribeiro, Patrícia Verardi Abdelnur, Carlos Antônio Ferreira de Sousa and Manoel Teixeira Souza, Jr.
Plants 2022, 11(13), 1755; https://doi.org/10.3390/plants11131755 - 30 Jun 2022
Cited by 11 | Viewed by 3054
Abstract
Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due [...] Read more.
Oil palm (Elaeis guineensis Jacq.) is the number one source of consumed vegetable oil nowadays. It is cultivated in areas of tropical rainforest, where it meets its natural condition of high rainfall throughout the year. The palm oil industry faces criticism due to a series of practices that was considered not environmentally sustainable, and it finds itself under pressure to adopt new and innovative procedures to reverse this negative public perception. Cultivating this oilseed crop outside the rainforest zone is only possible using artificial irrigation. Close to 30% of the world’s irrigated agricultural lands also face problems due to salinity stress. Consequently, the research community must consider drought and salinity together when studying to empower breeding programs in order to develop superior genotypes adapted to those potential new areas for oil palm cultivation. Multi-Omics Integration (MOI) offers a new window of opportunity for the non-trivial challenge of unraveling the mechanisms behind multigenic traits, such as drought and salinity tolerance. The current study carried out a comprehensive, large-scale, single-omics analysis (SOA), and MOI study on the leaves of young oil palm plants submitted to very high salinity stress. Taken together, a total of 1239 proteins were positively regulated, and 1660 were negatively regulated in transcriptomics and proteomics analyses. Meanwhile, the metabolomics analysis revealed 37 metabolites that were upregulated and 92 that were downregulated. After performing SOA, 436 differentially expressed (DE) full-length transcripts, 74 DE proteins, and 19 DE metabolites underwent MOI analysis, revealing several pathways affected by this stress, with at least one DE molecule in all three omics platforms used. The Cysteine and methionine metabolism (map00270) and Glycolysis/Gluconeogenesis (map00010) pathways were the most affected ones, each one with 20 DE molecules. Full article
(This article belongs to the Special Issue Plant Responses to Environmental Stresses)
Show Figures

Figure 1

20 pages, 981 KiB  
Review
Utilization of Spectral Indices for High-Throughput Phenotyping
by Rupesh Tayade, Jungbeom Yoon, Liny Lay, Abdul Latif Khan, Youngnam Yoon and Yoonha Kim
Plants 2022, 11(13), 1712; https://doi.org/10.3390/plants11131712 - 28 Jun 2022
Cited by 15 | Viewed by 3745
Abstract
The conventional plant breeding evaluation of large sets of plant phenotypes with precision and speed is very challenging. Thus, consistent, automated, multifaceted, and high-throughput phenotyping (HTP) technologies are becoming increasingly significant as tools to aid conventional breeding programs to develop genetically improved crops. [...] Read more.
The conventional plant breeding evaluation of large sets of plant phenotypes with precision and speed is very challenging. Thus, consistent, automated, multifaceted, and high-throughput phenotyping (HTP) technologies are becoming increasingly significant as tools to aid conventional breeding programs to develop genetically improved crops. With rapid technological advancement, various vegetation indices (VIs) have been developed. These VI-based imaging approaches, linked with artificial intelligence and a variety of remote sensing applications, provide high-throughput evaluations, particularly in the field of precision agriculture. VIs can be used to analyze and predict different quantitative and qualitative aspects of vegetation. Here, we provide an overview of the various VIs used in agricultural research, focusing on those that are often employed for crop or vegetation evaluation, because that has a linear relationship to crop output, which is frequently utilized in crop chlorophyll, health, moisture, and production predictions. In addition, the following aspects are here described: the importance of VIs in crop research and precision agriculture, their utilization in HTP, recent photogrammetry technology, mapping, and geographic information system software integrated with unmanned aerial vehicles and its key features. Finally, we discuss the challenges and future perspectives of HTP technologies and propose approaches for the development of new tools to assess plants’ agronomic traits and data-driven HTP resolutions for precision breeding. Full article
Show Figures

Figure 1

14 pages, 3858 KiB  
Article
Effect of Light Intensity on the Growth and Antioxidant Activity of Sweet Basil and Lettuce
by Rūta Sutulienė, Kristina Laužikė, Tomas Pukas and Giedrė Samuolienė
Plants 2022, 11(13), 1709; https://doi.org/10.3390/plants11131709 - 28 Jun 2022
Cited by 24 | Viewed by 7188
Abstract
Light and nutrients are among the most important factors for sustained plant production in agriculture. As one of the goals of the European Green Deal strategy is to reduce energy consumption, greenhouse growers focus on high-value crop cultivation with less-energy-demanding growing systems. This [...] Read more.
Light and nutrients are among the most important factors for sustained plant production in agriculture. As one of the goals of the European Green Deal strategy is to reduce energy consumption, greenhouse growers focus on high-value crop cultivation with less-energy-demanding growing systems. This study aimed to evaluate the effect of fertilization at different light intensities on the growth of lettuce and basil and the activity of the antioxidant system. Sweet basil (Ocimum basilicum, ‘Opal’) and lettuce (Lactuca sativa, ‘Nikolaj’) were grown in a greenhouse supplementing natural light (~80 µmol m−2 s−1) with lighting at two photon flux densities (150 and 250 µmol m−2 s−1), 16 h photoperiod, and 20/16 °C day/night temperature in May (Lithuania, 55°60′ N, 23°48′ E). In each light regime treatment, half of the plants were grown without additional fertilization; the other half were fertilized twice a week with a complex fertilizer (NPK 3-1-3). The results showed that the antioxidant activity of basil was most affected by 150 µmol m2 s1 PPFD lighting and the absence of fertilization. Altered antioxidant activity in lettuce in the presence of 250 µmol m2 s1 PPFD additional light intensity and fertilization resulted in higher morphological parameters. Full article
(This article belongs to the Special Issue Selected Papers from Conference of CYSENI 2022)
Show Figures

Graphical abstract

16 pages, 4161 KiB  
Article
Effect of Irrigation and Fertilizer Management on Rice Yield and Nitrogen Loss: A Meta-Analysis
by Haonan Qiu, Shihong Yang, Zewei Jiang, Yi Xu and Xiyun Jiao
Plants 2022, 11(13), 1690; https://doi.org/10.3390/plants11131690 - 26 Jun 2022
Cited by 24 | Viewed by 3290
Abstract
Irrigation and nitrogen fertilizer application are two important factors affecting yield and nitrogen loss in rice fields; however, the interaction effects of different irrigation schedules and combined management of nitrogen fertilizer application on yield and nitrogen loss in rice fields remain unknown. Therefore, [...] Read more.
Irrigation and nitrogen fertilizer application are two important factors affecting yield and nitrogen loss in rice fields; however, the interaction effects of different irrigation schedules and combined management of nitrogen fertilizer application on yield and nitrogen loss in rice fields remain unknown. Therefore, we collected 327 sets of data on rice yield and 437 sets of data on nitrogen loss in rice fields from 2000 to 2021 and investigated the effects of different water-saving irrigation schedules, nitrogen application levels, and water–nitrogen couplings on rice yield, nitrogen use efficiency, and nitrogen loss (N2O emissions, nitrogen runoff, nitrogen leaching, and ammonia volatilization) by meta-analysis using conventional flooding irrigation and no nitrogen treatment as controls. The results showed that alternate wet and dry irrigation and controlled irrigation had increasing effects on rice yield. Alternate wet and dry irrigation had a significant yield-increasing effect (average 2.57% increase) and dry cultivation significantly reduced rice yield with an average 21.25% yield reduction. Water-saving irrigation reduces nitrogen runoff and leaching losses from rice fields but increases N2O emissions, and alternate wet and dry irrigation has a significant effect on increasing N2O emissions, with an average increase of 67.77%. Most water-saving irrigation can increase nitrogen use efficiency. Among water-saving irrigation methods, the effect of controlled irrigation on increasing nitrogen use efficiency is 1.06%. Rice yield and nitrogen use efficiency both showed a trend of increasing then decreasing with nitrogen fertilizer application, and nitrogen loss gradually increased with the amount of nitrogen fertilizer input. Water–nitrogen coupling management can significantly reduce nitrogen loss in rice fields while saving water and increasing yield. Based on the analysis of the data in this study, when the irrigation amount was 300~350 mm and the nitrogen application amount was 200~250 kg/ha, the rice yield and nitrogen fertilizer use efficiency were at a high level, which corresponded to the irrigation schedule of controlled irrigation or alternating wet and dry irrigation in the literature. However, different rice-growing areas are affected by rainfall and land capability, etc. Further optimization and correction of the adapted water and fertilizer management system for paddy fields are needed. The optimal water–nitrogen pattern of this study can achieve high rice yield and reduce nitrogen loss. Full article
(This article belongs to the Special Issue Efficient Water Use and Nutrition Cycling in Paddy Ecosystem)
Show Figures

Figure 1

33 pages, 2461 KiB  
Article
The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential
by Liliana Costea, Carmen Lidia Chițescu, Rica Boscencu, Manuela Ghica, Dumitru Lupuliasa, Dragoș Paul Mihai, Teodora Deculescu-Ioniță, Ligia Elena Duțu, Maria Lidia Popescu, Emanuela-Alice Luță, George Mihai Nițulescu, Octavian Tudorel Olaru and Cerasela Elena Gîrd
Plants 2022, 11(13), 1680; https://doi.org/10.3390/plants11131680 - 24 Jun 2022
Cited by 18 | Viewed by 2782
Abstract
Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum—CE, Rosmarini extractum—RE, Taraxaci extractum [...] Read more.
Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum—CE, Rosmarini extractum—RE, Taraxaci extractum—TE, Cichorii extractum—CHE, and Agrimoniae extractum—AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC–HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC–HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE–2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE–1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE–2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE–1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level. Full article
Show Figures

Figure 1

18 pages, 6201 KiB  
Article
Anticancer and Antioxidant Activities of the Root Extract of the Carnivorous Pitcher Plant Sarracenia purpurea
by Yen-Hua Huang, Wei-Yu Chiang, Pin-Jui Chen, En-Shyh Lin and Cheng-Yang Huang
Plants 2022, 11(13), 1668; https://doi.org/10.3390/plants11131668 - 23 Jun 2022
Cited by 8 | Viewed by 3595
Abstract
The carnivorous pitcher plant Sarracenia purpurea exhibits many ethnobotanical uses, including the treatments of type 2 diabetes and tuberculosis-like symptoms. In this study, we prepared different extracts from the leaves (pitchers), stems, and roots of S. purpurea and investigated their antioxidant and anticancer [...] Read more.
The carnivorous pitcher plant Sarracenia purpurea exhibits many ethnobotanical uses, including the treatments of type 2 diabetes and tuberculosis-like symptoms. In this study, we prepared different extracts from the leaves (pitchers), stems, and roots of S. purpurea and investigated their antioxidant and anticancer properties. To evaluate the extraction efficiency, we individually used different solvents, namely methanol, ethanol, acetone, and distilled water, for S. purpurea extract preparations. The root extract of S. purpurea, obtained by 100% acetone (S. purpurea-root-acetone), had the highest anticancer activities, antioxidation capacity (the DPPH activity with IC50 of 89.3 ± 2.2 μg/mL), antibacterial activities, total phenolic content (33.4 ± 0.7 mg GAE/g), and total flavonoid content (107.9 ± 2.2 mg QUE/g). The most abundant compounds in S. purpurea-root-acetone were identified using gas chromatography–mass spectrometry; 7,8-Dihydro-α-ionone was the major compound present in S. purpurea-root-acetone. In addition, the co-cytotoxicity of S. purpurea-root-acetone (combined with the clinical anticancer drug 5-fluorouracil (5-FU) on the survival, apoptosis, proliferation, and migration of the 4T1 mammary carcinoma) was examined. The combination of 5-FU with S. purpurea-root-acetone could be highly efficient for anti-4T1 cells. We also found that S. purpurea-root-acetone could inhibit the enzymatic activity of human dihydroorotase (huDHOase), an attractive target for potential anticancer chemotherapy. The sic most abundant compounds in S. purpurea-root-acetone were tested using an in silico analysis via MOE-Dock software for their binding affinities. The top-ranked docking conformations were observed for 7,8-dihydro-α-ionone and stigmast-5-en-3-ol, suggesting the inhibition potential against huDHOase. Overall, the collective data in this study may indicate the pharmacological potentials of S. purpurea-root-acetone for possible medical applications. Full article
(This article belongs to the Special Issue Plant Extracts and Their Cytotoxic Activities)
Show Figures

Figure 1

12 pages, 1247 KiB  
Article
High-Throughput Sequencing Discloses the Cucumber Mosaic Virus (CMV) Diversity in Slovakia and Reveals New Hosts of CMV from the Papaveraceae Family
by Michaela Mrkvová, Richard Hančinský, Lukáš Predajňa, Peter Alaxin, Adam Achs, Jana Tomašechová, Katarína Šoltys, Daniel Mihálik, Antonio Olmos, Ana Belén Ruiz-García and Miroslav Glasa
Plants 2022, 11(13), 1665; https://doi.org/10.3390/plants11131665 - 23 Jun 2022
Cited by 6 | Viewed by 2310
Abstract
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants [...] Read more.
Cucumber mosaic virus (CMV; Cucumovirus, Bromoviridae) is an omnipresent virus characterized by a large host range and high genetic variability. Using high-throughput sequencing, we have characterized near complete genomes of 14 Slovak CMV variants from different plant hosts. Of these, three variants originated from the Papaveraceae species (oilseed poppy, common poppy and great celandine), previously poorly described as CMV natural hosts. Based on a BLAST search and phylogenetic analysis, the Slovak CMV isolates can be divided into two genetically different Groups, Ia and II, respectively. The SL50V variant, characterized by a divergent RNA2 sequence, potentially represents a reassortant variant. In four samples (T101, SL50V, CP2, MVU2-21), the presence of satellite CMV RNA was identified along with CMV. Although mechanically transmitted to experimental cucumber plants, the role of satellite RNA in the symptomatology observed could not be established due to a complex infection of original hosts with different viruses. Full article
(This article belongs to the Special Issue Advances in Plant Viral Diseases)
Show Figures

Figure 1

30 pages, 14868 KiB  
Article
Potential Impacts of Climate Change on the Habitat Suitability of the Dominant Tree Species in Greece
by Nikolaos M. Fyllas, Theano Koufaki, Christodoulos I. Sazeides, Gavriil Spyroglou and Konstantinos Theodorou
Plants 2022, 11(12), 1616; https://doi.org/10.3390/plants11121616 - 20 Jun 2022
Cited by 19 | Viewed by 3717
Abstract
Climate change is affecting species distribution and ecosystem form and function. Forests provide a range of ecosystem services, and understanding their vulnerability to climate change is important for designing effective adaptation strategies. Species Distribution Modelling (SDM) has been extensively used to derive habitat [...] Read more.
Climate change is affecting species distribution and ecosystem form and function. Forests provide a range of ecosystem services, and understanding their vulnerability to climate change is important for designing effective adaptation strategies. Species Distribution Modelling (SDM) has been extensively used to derive habitat suitability maps under current conditions and project species distribution shifts under climate change. In this study, we model the current and future habitat suitability of the dominant tree species in Greece (Abies cephalonica, Abies borisii-regis, Pinus brutia, Pinus halepensis, Pinus nigra, Quercus ilex, Quercus pubescens, Quercus frainetto and Fagus sylvatica), based on species-specific presence data from the EU-Forest database, enhanced with data from Greece that is currently under-represented in terms of tree species occurrence points. By including these additional presence data, areas with relatively drier conditions for some of the study species were included in the SDM development, yielding a potentially lower vulnerability under climate change conditions. SDMs were developed for each taxon using climate and soil data at a resolution of ~1 km2. Model performance was assessed under current conditions and was found to adequately simulate potential distributions. Subsequently, the models were used to project the potential distribution of each species under the SSP1-2.6 and SSP5-8.5 scenarios for the 2041–2070 and 2071–2100 time periods. Under climate change scenarios, a reduction in habitat-suitable areas was predicted for most study species, with higher elevation taxa experiencing more pronounced potential habitat shrinkages. An exception was the endemic A. cephalonica and its sister species A. borisii-regis, which, although currently found at mid and high elevations, seem able to maintain their potential distribution under most climate change scenarios. Our findings suggest that climate change could significantly affect the distribution and dynamics of forest ecosystems in Greece, with important ecological, economic and social implications, and thus adequate mitigation measures should be implemented. Full article
(This article belongs to the Collection Feature Papers in Plant Ecology)
Show Figures

Figure 1

19 pages, 401 KiB  
Review
Advances in Genetic Analysis and Breeding of Cassava (Manihot esculenta Crantz): A Review
by Assefa B. Amelework and Michael W. Bairu
Plants 2022, 11(12), 1617; https://doi.org/10.3390/plants11121617 - 20 Jun 2022
Cited by 7 | Viewed by 3465
Abstract
Cassava (Manihot esculenta Crantz) is the sixth most important food crop and consumed by 800 million people worldwide. In Africa, cassava is the second most important food crop after maize and Africa is the worlds’ largest producer. Though cassava is not one [...] Read more.
Cassava (Manihot esculenta Crantz) is the sixth most important food crop and consumed by 800 million people worldwide. In Africa, cassava is the second most important food crop after maize and Africa is the worlds’ largest producer. Though cassava is not one of the main commodity crops in South Africa, it is becoming a popular crop among farming communities in frost-free areas, due to its climate-resilient nature. This necessitated the establishment of a multi-disciplinary research program at the Agricultural Research Council of South Africa. The objective of this review is to highlight progress made in cassava breeding and genetic analysis. This review highlights the progress of cassava research worldwide and discusses research findings on yield, quality, and adaptability traits in cassava. It also discusses the limitations and the prospects of the cassava R&D program towards development of the cassava industry in South Africa. Full article
(This article belongs to the Special Issue Vegetables Breeding in South Africa)
18 pages, 1572 KiB  
Review
Metabolism and Regulation of Ascorbic Acid in Fruits
by Xianzhe Zheng, Min Gong, Qiongdan Zhang, Huaqiang Tan, Liping Li, Youwan Tang, Zhengguo Li, Mingchao Peng and Wei Deng
Plants 2022, 11(12), 1602; https://doi.org/10.3390/plants11121602 - 18 Jun 2022
Cited by 32 | Viewed by 4403
Abstract
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays [...] Read more.
Ascorbic acid, also known as vitamin C, is a vital antioxidant widely found in plants. Plant fruits are rich in ascorbic acid and are the primary source of human intake of ascorbic acid. Ascorbic acid affects fruit ripening and stress resistance and plays an essential regulatory role in fruit development and postharvest storage. The ascorbic acid metabolic pathway in plants has been extensively studied. Ascorbic acid accumulation in fruits can be effectively regulated by genetic engineering technology. The accumulation of ascorbic acid in fruits is regulated by transcription factors, protein interactions, phytohormones, and environmental factors, but the research on the regulatory mechanism is still relatively weak. This paper systematically reviews the regulation mechanism of ascorbic acid metabolism in fruits in recent decades. It provides a rich theoretical basis for an in-depth study of the critical role of ascorbic acid in fruits and the cultivation of fruits rich in ascorbic acid. Full article
(This article belongs to the Special Issue Advance in Fruit Development)
Show Figures

Figure 1

23 pages, 2845 KiB  
Review
Breeding of Vegetable Cowpea for Nutrition and Climate Resilience in Sub-Saharan Africa: Progress, Opportunities, and Challenges
by Tesfaye Walle Mekonnen, Abe Shegro Gerrano, Ntombokulunga Wedy Mbuma and Maryke Tine Labuschagne
Plants 2022, 11(12), 1583; https://doi.org/10.3390/plants11121583 - 15 Jun 2022
Cited by 26 | Viewed by 5346
Abstract
Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the [...] Read more.
Currently, the world population is increasing, and humanity is facing food and nutritional scarcity. Climate change and variability are a major threat to global food and nutritional security, reducing crop productivity in the tropical and subtropical regions of the globe. Cowpea has the potential to make a significant contribution to global food and nutritional security. In addition, it can be part of a sustainable food system, being a genetic resource for future crop improvement, contributing to resilience and improving agricultural sustainability under climate change conditions. In malnutrition prone regions of sub-Saharan Africa (SSA) countries, cowpea has become a strategic dryland legume crop for addressing food insecurity and malnutrition. Therefore, this review aims to assess the contribution of cowpea to SSA countries as a climate-resilient crop and the existing production challenges and perspectives. Cowpea leaves and immature pods are rich in diverse nutrients, with high levels of protein, vitamins, macro and micronutrients, minerals, fiber, and carbohydrates compared to its grain. In addition, cowpea is truly a multifunctional crop for maintaining good health and for reducing non-communicable human diseases. However, as a leafy vegetable, cowpea has not been researched and promoted sufficiently because it has not been promoted as a food security crop due to its low yield potential, susceptibility to biotic and abiotic stresses, quality assurance issues, policy regulation, and cultural beliefs (it is considered a livestock feed). The development of superior cowpea as a leafy vegetable can be approached in different ways, such as conventional breeding and gene stacking, speed breeding, mutation breeding, space breeding, demand-led breeding, a pan-omics approach, and local government policies. The successful breeding of cowpea genotypes that are high-yielding with a good nutritional value as well as having resistance to biotics and tolerant to abiotic stress could also be used to address food security and malnutrition-related challenges in sub-Saharan Africa. Full article
(This article belongs to the Special Issue Vegetables Breeding in South Africa)
Show Figures

Figure 1

24 pages, 3219 KiB  
Review
Fruit Development in Sweet Cherry
by Edoardo Vignati, Marzena Lipska, Jim M. Dunwell, Mario Caccamo and Andrew J. Simkin
Plants 2022, 11(12), 1531; https://doi.org/10.3390/plants11121531 - 07 Jun 2022
Cited by 15 | Viewed by 5836
Abstract
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as [...] Read more.
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build-up of LDL-cholesterol in blood plasma and generally reduce the risks of disease and age-related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

16 pages, 2739 KiB  
Article
Genome Size Variation in Dianthus sylvestris Wulfen sensu lato (Caryophyllaceae)
by Ana Terlević, Sandro Bogdanović, Božo Frajman and Ivana Rešetnik
Plants 2022, 11(11), 1481; https://doi.org/10.3390/plants11111481 - 31 May 2022
Cited by 10 | Viewed by 2267
Abstract
Genome size (GS) is an important characteristic that may be helpful in delimitation of taxa, and multiple studies have shown correlations between intraspecific GS variation and morphological or environmental factors, as well as its geographical segregation. We estimated a relative GS (RGS) of [...] Read more.
Genome size (GS) is an important characteristic that may be helpful in delimitation of taxa, and multiple studies have shown correlations between intraspecific GS variation and morphological or environmental factors, as well as its geographical segregation. We estimated a relative GS (RGS) of 707 individuals from 162 populations of Dianthus sylvestris with a geographic focus on the Balkan Peninsula, but also including several populations from the European Alps. Dianthus sylvestris is morphologically variable species thriving in various habitats and six subspecies have been recognized from the Balkan Peninsula. Our RGS data backed-up with chromosome counts revealed that the majority of populations were diploid (2n = 30), but ten tetraploid populations have been recorded in D. sylvestris subsp. sylvestris from Istria (Croatia, Italy). Their monoploid RGS is significantly lower than that of the diploids, indicating genome downsizing. In addition, the tetraploids significantly differ from their diploid counterparts in an array of morphological and environmental characteristics. Within the diploid populations, the RGS is geographically and only partly taxonomically correlated, with the highest RGS inferred in the southern Balkan Peninsula and the Alps. We demonstrate greater RGS variation among the Balkan populations compared to the Alps, which is likely a result of more pronounced evolutionary differentiation within the Balkan Peninsula. In addition, a deep RGS divergence within the Alps likely points to persistence of the alpine populations in different Pleistocene refugia. Full article
(This article belongs to the Special Issue Advances in Genome Size Evolution of Plants)
Show Figures

Figure 1

12 pages, 1814 KiB  
Article
Preliminary Findings on Cadmium Bioaccumulation and Photosynthesis in Rice (Oryza sativa L.) and Maize (Zea mays L.) Using Biochar Made from C3- and C4-Originated Straw
by Mohammad Ghorbani, Petr Konvalina, Reinhard W. Neugschwandtner, Marek Kopecký, Elnaz Amirahmadi, Jan Moudrý, Jr. and Ladislav Menšík
Plants 2022, 11(11), 1424; https://doi.org/10.3390/plants11111424 - 27 May 2022
Cited by 18 | Viewed by 1943
Abstract
Understanding the structural differences between feedstocks is critical for biochar effectiveness in plant growth. To examine the efficiency of biochars with unique physiological structures in a cadmium (Cd)-polluted soil, rice and maize as C3 and C4 plants, as well as biochar generated from [...] Read more.
Understanding the structural differences between feedstocks is critical for biochar effectiveness in plant growth. To examine the efficiency of biochars with unique physiological structures in a cadmium (Cd)-polluted soil, rice and maize as C3 and C4 plants, as well as biochar generated from their residues, defined as BC3 and BC4, were utilized. The experiment involved a control and a Cd-polluted soil (20 mg kg−1) without biochar application, and applications of each type of biochar (20 t ha−1) on Cd-polluted or unpolluted soil. In rice and maize fields, BC3 application led to the highest value of cation exchange capacity (CEC), with increases of 162% and 115%, respectively, over the control, while CEC increased by 110% and 71% with BC4 in the rice and maize field, respectively. As compared to the control, BC3 and BC4 dramatically enhanced the photosynthetic rate (Pn) of rice by 116% and 80%, respectively, and maize by 67% and 31%. BC3 and BC4 significantly decreased the Cd transfer coefficient in rice by 54% and 30% and in maize by 45% and 21%. Overall, BC3 is preferred over BC4 for establishing rice and maize in Cd-polluted soil, as it has a lower C/N ratio, a considerably higher surface area, and more notable alkaline features such as a higher CEC and nutrient storage. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

12 pages, 2899 KiB  
Article
Phylogeny and Expression Atlas of the NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY in Agave
by Shibei Tan, Yanqiong Liang, Yanlei Huang, Jingen Xi, Xing Huang, Xiaohan Yang and Kexian Yi
Plants 2022, 11(11), 1434; https://doi.org/10.3390/plants11111434 - 27 May 2022
Cited by 5 | Viewed by 1721
Abstract
Agave species are widely cultivated crassulacean acid metabolism (CAM) plants for alcoholic beverages, food and fiber production. Among these, the Agave hybrid H11648 ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for sisal fiber in the [...] Read more.
Agave species are widely cultivated crassulacean acid metabolism (CAM) plants for alcoholic beverages, food and fiber production. Among these, the Agave hybrid H11648 ((A. amaniensis × A. angustifolia) × A. amaniensis) is the main cultivar for sisal fiber in the tropical areas of Brazil, China, and African countries. The plants of Agave hybrid H11648 have a long life cycle and large leaves, which require a huge amount of nitrogen nutrient. However, the molecular basis of nitrogen transport and allocation has not been well understood in agave. In this study, we identified 19 NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY(NPF) genes (called AhNPFs) with full-length coding sequences in Agave hybrid H11648. Our analysis of gene expression in various types of tissues revealed the tissue-specific expression pattern of AhNPFs. We further examined their expression patterns at different leaf developmental stages, under abiotic/biotic stresses and nutrient deficiency. The results reveal several candidate regulators in the agave NPF family, including AhNPF4.3/5.2/7.1. We first characterized the NPF genes in agave based on published leaf transcriptome datasets and emphasized their potential functions. The study will benefit future studies related to nitrogen nutrient in agave. Full article
(This article belongs to the Special Issue Germplasm Resources and Breeding of Agave)
Show Figures

Figure 1

19 pages, 2841 KiB  
Article
Effects of Extracellular Self- and Nonself-DNA on the Freshwater Microalga Chlamydomonas reinhardtii and on the Marine Microalga Nannochloropsis gaditana
by Emanuela Palomba, Pasquale Chiaiese, Pasquale Termolino, Rosa Paparo, Edgardo Filippone, Stefano Mazzoleni and Maria Luisa Chiusano
Plants 2022, 11(11), 1436; https://doi.org/10.3390/plants11111436 - 27 May 2022
Cited by 12 | Viewed by 2983
Abstract
The role of extracellular DNA (exDNA) in soil and aquatic environments was mainly discussed in terms of source of mineral nutrients and of genetic material for horizontal gene transfer. Recently, the self-exDNA (conspecific) has been shown to have an inhibitory effect on the [...] Read more.
The role of extracellular DNA (exDNA) in soil and aquatic environments was mainly discussed in terms of source of mineral nutrients and of genetic material for horizontal gene transfer. Recently, the self-exDNA (conspecific) has been shown to have an inhibitory effect on the growth of that organism, while the same was not evident for nonself-exDNA (non conspecific). The inhibitory effect of self-exDNA was proposed as a universal phenomenon, although evidence is mainly reported for terrestrial species. The current study showed the inhibitory effect of self-exDNA also on photosynthetic aquatic microorganisms. We showed that self-exDNA inhibits the growth of the microalgae Chlamydomonas reinhardtii and Nannochloropsis gaditana, a freshwater and a marine species, respectively. In addition, the study also revealed the phenotypic effects post self-exDNA treatments. Indeed, Chlamydomonas showed the formation of peculiar heteromorphic aggregates of palmelloid cells embedded in an extracellular matrix, favored by the presence of DNA in the environment, that is not revealed after exposure to nonself-exDNA. The differential effect of self and nonself-exDNA on both microalgae, accompanied by the inhibitory growth effect of self-exDNA are the first pieces of evidence provided for species from aquatic environments. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

12 pages, 1204 KiB  
Article
Streptomyces albidoflavus Strain CARA17 as a Biocontrol Agent against Fungal Soil-Borne Pathogens of Fennel Plants
by Antonia Carlucci, Maria Luisa Raimondo, Donato Colucci and Francesco Lops
Plants 2022, 11(11), 1420; https://doi.org/10.3390/plants11111420 - 26 May 2022
Cited by 17 | Viewed by 2234
Abstract
Fennel crop is a horticultural plant susceptible to several soil-borne fungal pathogens responsible for yield losses. The control of fungal diseases occurring on fennel crops is very difficult with conventional and/or integrated means; although several chemical fungicides are able to contain specific fungal [...] Read more.
Fennel crop is a horticultural plant susceptible to several soil-borne fungal pathogens responsible for yield losses. The control of fungal diseases occurring on fennel crops is very difficult with conventional and/or integrated means; although several chemical fungicides are able to contain specific fungal diseases, they are not registered for fennel crops. The intensive use of some fungicides causes public concern over the environment and human health. The main aims of this study were to assess the ability of a strain of Streptomyces albidoflavus CARA17 to inhibit the growth of fungal soil-borne pathogens, and to protect fennel plants against severe fungal soil-borne pathogens such as Athelia rolfsii, Fusarium oxysporum, Plectosphaerella ramiseptata, Sclerotinia sclerotiorum and Verticillium dahliae. This study confirmed that the CARA17 strain has been able to inhibit the mycelium growth of pathogens in vitro conditions with significant inhibition degrees, where S. sclerotiorum resulted in being the most controlled. The strain CARA17 was also able to significantly protect the fennel seedlings against fungal soil-borne pathogens used in vivo conditions, where the treatment with an antagonist strain by dipping resulted in being more effective at limiting the disease severity of each fungal soil-borne pathogen. Moreover, any treatment with the CARA17 strain, carried out by dipping or after transplanting, produced benefits for the biomass of fennel seedlings, showing significant effects as a promoter of plant growth. Finally, the results obtained showed that CARA17 is a valid strain as a biocontrol agent (BCA) against relevant fungal soil-borne pathogens, although further studies are recommended to confirm these preliminary results. Finally, this study allowed for first time worldwide the association of Plectosphaerella ramiseptata with fennel plants as a severe pathogen. Full article
Show Figures

Figure 1

19 pages, 3272 KiB  
Article
Magnetic Water Treatment: An Eco-Friendly Irrigation Alternative to Alleviate Salt Stress of Brackish Water in Seed Germination and Early Seedling Growth of Cotton (Gossypium hirsutum L.)
by Jihong Zhang, Quanjiu Wang, Kai Wei, Yi Guo, Weiyi Mu and Yan Sun
Plants 2022, 11(11), 1397; https://doi.org/10.3390/plants11111397 - 25 May 2022
Cited by 8 | Viewed by 3326
Abstract
Magnetized water has been a promising approach to improve crop productivity but the conditions for its effectiveness remain contradictory and inconclusive. The objective of this research was to understand the influences of different magnetized water with varying quality on seed absorption, germination, and [...] Read more.
Magnetized water has been a promising approach to improve crop productivity but the conditions for its effectiveness remain contradictory and inconclusive. The objective of this research was to understand the influences of different magnetized water with varying quality on seed absorption, germination, and early growth of cotton. To this end, a series of experiments involving the seed soaking process, germination test, and pot experiment were carried out to study the effects of different qualities (fresh and brackish water) of magnetized water on seed water absorption, germination, seedling growth, photosynthetic characteristics, and biomass of cotton in 2018. The results showed that the maximum relative water absorption of magnetized fresh and magnetized brackish water relatively increased by 16.76% and 19.75%, respectively, and the magnetic effect time of brackish water was longer than fresh water. The relative promotion effect of magnetized brackish water on cotton seed germination and growth potential was greater than magnetized fresh water. The cotton seeds germination rate under magnetized fresh and magnetized brackish water irrigation relatively increased by 13.14% and 41.86%, respectively, and the relative promoting effect of magnetized brackish water on the vitality indexes and the morphological indexes of cotton seedlings was greater than magnetized fresh water. Unlike non-magnetized water, the net photosynthetic rate (Pn), transpiration rate (Tr), and instantaneous water use efficiency (iWUE) of cotton irrigated with magnetized water increased significantly, while the stomatal limit value (Ls) decreased. The influences of photosynthesis and water use efficiency of cotton under magnetized brackish water were greater than magnetized fresh water. Magnetized fresh water had no significant effect on biomass proportional distribution of cotton but magnetized brackish water irrigation markedly improved the root-to-stem ratio of cotton within a 35.72% range. Therefore, the magnetization of brackish water does improve the growth characteristics of cotton seedlings, and the biological effect of magnetized brackish water is more significant than that of fresh water. It is suggested that magnetized brackish water can be used to irrigate cotton seedlings when freshwater resources are insufficient. Full article
Show Figures

Figure 1

15 pages, 762 KiB  
Review
Oil Palm Breeding in the Modern Era: Challenges and Opportunities
by Jerome Jeyakumar John Martin, Rajesh Yarra, Lu Wei and Hongxing Cao
Plants 2022, 11(11), 1395; https://doi.org/10.3390/plants11111395 - 24 May 2022
Cited by 9 | Viewed by 6124
Abstract
Oil palm, a cross-pollinated crop with long generation time, poses a lot of challenges in achieving sustainable oil palm with high yield and quality. The African oil palm (Elaeis guineensis Jacq.) is the most productive and versatile oil-yielding crop in the world, [...] Read more.
Oil palm, a cross-pollinated crop with long generation time, poses a lot of challenges in achieving sustainable oil palm with high yield and quality. The African oil palm (Elaeis guineensis Jacq.) is the most productive and versatile oil-yielding crop in the world, producing more than any other oil-yielding crop. Despite recent challenges, such as stress tolerance, superior oil quality, disease tolerance, and the need for new market niches, there is a growing need to explore and develop new varieties with high yield potential and the genetic diversity required to maintain oil palm yield stability. Breeding is an indispensable part of producing high-quality planting materials to increase oil palm yield. Biotechnological technologies have transformed conventional plant breeding approaches by introducing novel genotypes for breeding. Innovative pre-breeding and breeding approaches, such as identifying candidate genes in wild or land races using genomics tools, can pave the way for genetic improvement in oil palm. In this review, we highlighted the modern breeding tools, including genomics, marker-assisted breeding, genetic engineering, and genome editing techniques in oil palm crops, and we explored certain concerns connected to the techniques and their applications in practical breeding. Full article
Show Figures

Figure 1

16 pages, 4419 KiB  
Article
ZmLBD5 Increases Drought Sensitivity by Suppressing ROS Accumulation in Arabidopsis
by Jing Xiong, Weixiao Zhang, Dan Zheng, Hao Xiong, Xuanjun Feng, Xuemei Zhang, Qingjun Wang, Fengkai Wu, Jie Xu and Yanli Lu
Plants 2022, 11(10), 1382; https://doi.org/10.3390/plants11101382 - 23 May 2022
Cited by 13 | Viewed by 2546
Abstract
Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors—particularly class-I members—play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. [...] Read more.
Drought stress is known to significantly limit crop growth and productivity. Lateral organ boundary domain (LBD) transcription factors—particularly class-I members—play essential roles in plant development and biotic stress. However, little information is available on class-II LBD genes related to abiotic stress in maize. Here, we cloned a maize class-II LBD transcription factor, ZmLBD5, and identified its function in drought stress. Transient expression, transactivation, and dimerization assays demonstrated that ZmLBD5 was localized in the nucleus, without transactivation, and could form a homodimer or heterodimer. Promoter analysis demonstrated that multiple drought-stress-related and ABA response cis-acting elements are present in the promoter region of ZmLBD5. Overexpression of ZmLBD5 in Arabidopsis promotes plant growth under normal conditions, and suppresses drought tolerance under drought conditions. Furthermore, the overexpression of ZmLBD5 increased the water loss rate, stomatal number, and stomatal apertures. DAB and NBT staining demonstrated that the reactive oxygen species (ROS) decreased in ZmLBD5-overexpressed Arabidopsis. A physiological index assay also revealed that SOD and POD activities in ZmLBD5-overexpressed Arabidopsis were higher than those in wild-type Arabidopsis. These results revealed the role of ZmLBD5 in drought stress by regulating ROS levels. Full article
(This article belongs to the Special Issue Abiotic Stress Signaling and Responses in Plants)
Show Figures

Figure 1

24 pages, 2629 KiB  
Review
Cold Stress, Freezing Adaptation, Varietal Susceptibility of Olea europaea L.: A Review
by Raffaella Petruccelli, Giorgio Bartolini, Tommaso Ganino, Samanta Zelasco, Luca Lombardo, Enzo Perri, Mauro Durante and Rodolfo Bernardi
Plants 2022, 11(10), 1367; https://doi.org/10.3390/plants11101367 - 20 May 2022
Cited by 18 | Viewed by 4169
Abstract
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive [...] Read more.
Olive (Olea europaea L.) is an evergreen xerophytic tree characterizing vegetative landscape and historical-cultural identity of the Mediterranean Basin. More than 2600 cultivars constitute the rich genetic patrimony of the species cultivated in approximately 60 countries. As a subtropical species, the olive tree is quite sensitive to low temperatures, and air temperature is the most critical environmental factor limiting olive tree growth and production. In this present review, we explored the detrimental effects caused of low temperatures on olive cultivars, and analyzed the most frequently experimental procedures used to evaluate cold stress. Then, current findings freezing stress physiology and gene are summarized in olive tree, with an emphasis on adaptive mechanisms for cold tolerance. This review might clear the way for new research on adaptive mechanisms for cold acclimation and for improvement of olive growing management. Full article
Show Figures

Figure 1

13 pages, 957 KiB  
Article
Virulence Structure and Genetic Diversity of Blumeria graminis f. sp. avenae from Different Regions of Europe
by Magdalena Cieplak, Aleksandra Nucia, Tomasz Ociepa and Sylwia Okoń
Plants 2022, 11(10), 1358; https://doi.org/10.3390/plants11101358 - 20 May 2022
Cited by 7 | Viewed by 2042
Abstract
The structure and dynamics of changes in pathogen populations can be analysed by assessing the level of virulence and genetic diversity. The aim of the present study was to determine the diversity of Blumeria graminis f. sp. avenae populations. Diversity and virulence of [...] Read more.
The structure and dynamics of changes in pathogen populations can be analysed by assessing the level of virulence and genetic diversity. The aim of the present study was to determine the diversity of Blumeria graminis f. sp. avenae populations. Diversity and virulence of B. graminis f. sp. avenae was assessed based on 80 single-spore isolates collected in different European countries such as Poland (40 isolates), Germany (10), Finland (10), Czech Republic (10) and Ireland (10) using ISSR (Inter-Simple Sequence Repeats) and SCoT (Start Codon Targeted) markers. This work demonstrated differences in virulence of B. graminis f. sp. avenae isolates sampled from different countries. Molecular analysis showed that both systems were useful for assessing genetic diversity, but ISSR markers were superior and generated more polymorphic products, as well as higher PIC and RP values. UPMGA and PCoA divided the isolates into groups corresponding with their geographical origin. In conclusion, the low level of genetic differentiation of the analysed isolates has suggested that the evolution of B. graminis f. sp. Avenae population is slow, and thus the evolutionary potential of the pathogen is low. This work paves the way for future studies on B. graminis f. sp. Avenae population structure and dynamics based on genetic variability. Full article
(This article belongs to the Special Issue Cereal Fungal Diseases: Etiology, Breeding, and Integrated Management)
Show Figures

Figure 1

14 pages, 1125 KiB  
Article
The Medicinal Halophyte Frankenia laevis L. (Sea Heath) Has In Vitro Antioxidant Activity, α-Glucosidase Inhibition, and Cytotoxicity towards Hepatocarcinoma Cells
by Maria João Rodrigues, József Jekő, Zoltán Cziáky, Catarina G. Pereira and Luísa Custódio
Plants 2022, 11(10), 1353; https://doi.org/10.3390/plants11101353 - 19 May 2022
Cited by 8 | Viewed by 2136
Abstract
This work explored the medicinal halophyte Frankenia laevis L. (sea heath) as a potential source of bioactive natural products. In this sense, methanol and dichloromethane extracts were prepared from aerial organs containing flowers, leaves and stems, and were profiled for their chemical composition [...] Read more.
This work explored the medicinal halophyte Frankenia laevis L. (sea heath) as a potential source of bioactive natural products. In this sense, methanol and dichloromethane extracts were prepared from aerial organs containing flowers, leaves and stems, and were profiled for their chemical composition using high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (HPLC-ESI-MS/MS). The extracts were evaluated for their in vitro antioxidant capacity using five complementary methods: enzyme inhibitory effects on enzymes related with neurodegeneration (acetyl (AChE) and butyrylcholinesterase (BuChE)), Type 2 diabetes (α-glucosidase and α-amylase), hyperpigmentation/food oxidation (tyrosinase), and cytotoxicity towards human hepatocarcinoma (HepG2) cells. Fifty-one molecules were identified in the extracts, including several derivatives of phenolic acids, lignans and flavonoids, monoterpenes, and hydroxylated derivatives of linoleic acid. The methanol extract was effective in DPPH and ABTS radical scavenging (EC50 = 0.25 and 0.65 mg/mL, respectively), copper chelation (EC50 = 0.78 mg/mL), and iron reduction (EC50 = 0.51 mg/mL) activities, whereas the dichloromethane extract had high iron chelating ability (EC50 = 0.76 mg/mL). Both extracts showed the capacity to inhibit α-glucosidase, especially the dichloromethane (EC50 = 0.52 mg/mL). This extract also exerted a significant selective cytotoxicity towards HepG2 cells (EC50 = 52.1 μg/mL, SI > 1.9). In conclusion, extracts from the aerial parts of sea heath were shown to be a promising source of natural products for pharmaceutical and/or food additive applications due to their high antioxidant, anti-diabetic, and cytotoxic properties. Full article
(This article belongs to the Special Issue Bioprospecting of Natural Products from Medicinal Plants)
Show Figures

Figure 1

32 pages, 551 KiB  
Review
Genetic Improvement of Wheat for Drought Tolerance: Progress, Challenges and Opportunities
by Theresa Bapela, Hussein Shimelis, Toi John Tsilo and Isack Mathew
Plants 2022, 11(10), 1331; https://doi.org/10.3390/plants11101331 - 18 May 2022
Cited by 32 | Viewed by 9412
Abstract
Wheat production and productivity are challenged by recurrent droughts associated with climate change globally. Drought and heat stress resilient cultivars can alleviate yield loss in marginal production agro-ecologies. The ability of some crop genotypes to thrive and yield in drought conditions is attributable [...] Read more.
Wheat production and productivity are challenged by recurrent droughts associated with climate change globally. Drought and heat stress resilient cultivars can alleviate yield loss in marginal production agro-ecologies. The ability of some crop genotypes to thrive and yield in drought conditions is attributable to the inherent genetic variation and environmental adaptation, presenting opportunities to develop drought-tolerant varieties. Understanding the underlying genetic, physiological, biochemical, and environmental mechanisms and their interactions is key critical opportunity for drought tolerance improvement. Therefore, the objective of this review is to document the progress, challenges, and opportunities in breeding for drought tolerance in wheat. The paper outlines the following key aspects: (1) challenges associated with breeding for adaptation to drought-prone environments, (2) opportunities such as genetic variation in wheat for drought tolerance, selection methods, the interplay between above-ground phenotypic traits and root attributes in drought adaptation and drought-responsive attributes and (3) approaches, technologies and innovations in drought tolerance breeding. In the end, the paper summarises genetic gains and perspectives in drought tolerance breeding in wheat. The review will serve as baseline information for wheat breeders and agronomists to guide the development and deployment of drought-adapted and high-performing new-generation wheat varieties. Full article
(This article belongs to the Special Issue Wheat Breeding, Genomic Selection, and Phenomics)
10 pages, 3599 KiB  
Article
The First Report on Transgenic Hairy Root Induction from the Stem of Tung Tree (Vernicia fordii)
by Hongyu Jia, Junjie Chen, Lin Zhang and Lingling Zhang
Plants 2022, 11(10), 1315; https://doi.org/10.3390/plants11101315 - 16 May 2022
Cited by 5 | Viewed by 2459
Abstract
Tung tree (Vernicia fordii) is an industrially important oil-bearing woody plant of the Euphorbiaceae family. Functional studies of tung tree at the molecular level are limited by the lack of an efficient transgenic system. The Agrobacterium rhizogenes-mediated hairy root generation [...] Read more.
Tung tree (Vernicia fordii) is an industrially important oil-bearing woody plant of the Euphorbiaceae family. Functional studies of tung tree at the molecular level are limited by the lack of an efficient transgenic system. The Agrobacterium rhizogenes-mediated hairy root generation system is an alternative to typical plant transformation systems. However, its application in many plants has been blocked due to the inability of existing methods to induce hairy roots. Thus, it is critical to build a method suitable for the hairy induction of the specific plant of interest. In this study, a modified method for tung tree was developed, and it is the first report that hairy roots could be effectively induced in the stem of tung tree. With the method, an average of 10.7 hairy roots per seedling were generated in tung tree, approximately 67% of seedlings produced transgenic hairy roots and approximately 13.96% of the hairy roots of these seedlings were transgenic. This modified method is also suitable for the hairy root induction of two other oil-bearing plants of the Euphorbiaceae family, Ricinus communis and Vernicia montana. This modified method will accelerate functional studies of tung tree at the molecular level and also shed light on plants lacking a transgenic system. Full article
(This article belongs to the Topic Plant Domestication and Crop Evolution)
Show Figures

Figure 1

34 pages, 2464 KiB  
Article
Diversity of Useful Plants in Cabo Verde Islands: A Biogeographic and Conservation Perspective
by Maria Cristina Duarte, Isildo Gomes, Silvia Catarino, Miguel Brilhante, Samuel Gomes, Aline Rendall, Ângela Moreno, Arlindo Rodrigues Fortes, Vladmir Silves Ferreira, Isaurinda Baptista, Herculano Dinis and Maria Manuel Romeiras
Plants 2022, 11(10), 1313; https://doi.org/10.3390/plants11101313 - 15 May 2022
Cited by 5 | Viewed by 4177
Abstract
Cabo Verde’s biodiversity is threatened by activities that meet human needs. To counteract this, an integration of scientific and indigenous knowledge is required, but no comprehensive list of the useful local plants is available. Thus, in this work, we assess (1) their diversity [...] Read more.
Cabo Verde’s biodiversity is threatened by activities that meet human needs. To counteract this, an integration of scientific and indigenous knowledge is required, but no comprehensive list of the useful local plants is available. Thus, in this work, we assess (1) their diversity and phytogeography; (2) the role of geophysical, historical, and socio-economic factors on species distribution and uses; and (3) potentially relevant species for sustainable development. Data were obtained from flora, scientific publications, historical documents, herbarium specimens and field work. Many species were introduced since the 15th century to support settlement and commercial interests. We identified 518 useful taxa, of which 145 are native, 38 endemic and 44 endangered. The number of useful taxa is correlated with altitude and agricultural area, as well as with rural population indicators, but not with total population or socio-economic indicators such as gross domestic product. Native taxa are mostly used for fuelwood, forage and utilitarian purposes. Agrobiodiversity and traditional practices seem crucial to cope with recurrent droughts and ensure food security. Most of the introduced species do not present conservation problems, contrasting with the overuse of some native taxa. The safeguarding of native populations will ensure the sustainable exploitation of these resources and benefit the local economy. Full article
(This article belongs to the Special Issue Systematics and the Conservation of Plant Diversity)
Show Figures

Figure 1

18 pages, 3215 KiB  
Article
Angiopteris cochinchinensis de Vriese Ameliorates LPS-Induced Acute Lung Injury via Src Inhibition
by Won Young Jang, Hwa Pyoung Lee, Seung A Kim, Lei Huang, Ji Hye Yoon, Chae Yun Shin, Ankita Mitra, Han Gyung Kim and Jae Youl Cho
Plants 2022, 11(10), 1306; https://doi.org/10.3390/plants11101306 - 13 May 2022
Cited by 9 | Viewed by 3086
Abstract
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract [...] Read more.
Growing demand for treatment options against acute lung injury (ALI) emphasizes studies on plant extracts harboring anti-inflammatory effects. According to GC-MS analysis, Angiopteris cochinchinensis de Vriese consists of various flavonoids with anti-inflammatory activities. Thus, in this study, the anti-inflammatory effects of an extract of Angiopteris cochinchinensis de Vriese (Ac-EE) were assessed using RAW264.6 murine macrophages and a lipopolysaccharide (LPS)-induced ALI model. Ac-EE reduced the nitric oxide production in murine macrophages increased by LPS induction. Moreover, protective effects of Ac-EE on lung tissue were demonstrated by shrinkage of edema and lung injury. Reduced neutrophil infiltration and formation of hyaline membranes were also detected in lung tissues after H&E staining. Semiquantitative RT-PCR, quantitative real-time PCR, and ELISA showed that Ac-EE inhibits the production of proinflammatory mediators, including iNOS and COX-2, and cytokines, such as TNF-α, IL-1β, and IL-6. An Ac-EE-mediated anti-inflammatory response was derived from inhibiting the NF-κB signaling pathway, which was evaluated by luciferase reporter assay and Western blotting analysis. A cellular thermal shift assay revealed that the prime target of Ac-EE in alleviating inflammation was Src. With its direct binding with Src, Angiopteris cochinchinensis de Vriese significantly mitigates lung injury, showing possibilities of its potential as an effective botanical drug. Full article
(This article belongs to the Special Issue Anti-Inflammatory Bioactivities in Plant Extracts)
Show Figures

Figure 1

22 pages, 3060 KiB  
Article
Artificial Neural Networks Elucidated the Essential Role of Mineral Nutrients versus Vitamins and Plant Growth Regulators in Achieving Healthy Micropropagated Plants
by Tomás A. Arteta, Radhia Hameg, Mariana Landin, Pedro P. Gallego and M. Esther Barreal
Plants 2022, 11(10), 1284; https://doi.org/10.3390/plants11101284 - 11 May 2022
Cited by 7 | Viewed by 2160
Abstract
The design of an adequate culture medium is an essential step in the micropropagation process of plant species. Adjustment and balance of medium components involve the interaction of several factors, such as mineral nutrients, vitamins, and plant growth regulators (PGRs). This work aimed [...] Read more.
The design of an adequate culture medium is an essential step in the micropropagation process of plant species. Adjustment and balance of medium components involve the interaction of several factors, such as mineral nutrients, vitamins, and plant growth regulators (PGRs). This work aimed to shed light on the role of these three components on the plant growth and quality of micropropagated woody plants, using Actinidia arguta as a plant model. Two experiments using a five-dimensional experimental design space were defined using the Design of Experiments (DoE) method, to study the effect of five mineral factors (NH4NO3, KNO3, Mesos, Micros, and Iron) and five vitamins (Myo-inositol, thiamine, nicotinic acid, pyridoxine, and vitamin E). A third experiment, using 20 combinations of two PGRs: BAP (6-benzylaminopurine) and GA3 (gibberellic acid) was performed. Artificial Neural Networks (ANNs) algorithms were used to build models with the whole database to determine the effect of those components on several growth and quality parameters. Neurofuzzy logic allowed us to decipher and generate new knowledge on the hierarchy of some minerals as essential components of the culture media over vitamins and PRGs, suggesting rules about how MS basal media formulation could be modified to assess the quality of micropropagated woody plants. Full article
(This article belongs to the Special Issue Application of Biotechnology to Woody Propagation)
Show Figures

Figure 1

20 pages, 1449 KiB  
Review
Echinacea purpurea (L.) Moench: Biological and Pharmacological Properties. A Review
by Cristina Burlou-Nagy, Florin Bănică, Tünde Jurca, Laura Grațiela Vicaș, Eleonora Marian, Mariana Eugenia Muresan, Ildikó Bácskay, Rita Kiss, Pálma Fehér and Annamaria Pallag
Plants 2022, 11(9), 1244; https://doi.org/10.3390/plants11091244 - 05 May 2022
Cited by 35 | Viewed by 9454
Abstract
Echinacea purpurea (L.) Moench (EP)is a perennial herbaceous flowering plant, commonly known as purple coneflower and it belongs to the Asteraceae family. The Echinacea genus is originally from North America, in the United States, and its species are widely distributed throughout. There are [...] Read more.
Echinacea purpurea (L.) Moench (EP)is a perennial herbaceous flowering plant, commonly known as purple coneflower and it belongs to the Asteraceae family. The Echinacea genus is originally from North America, in the United States, and its species are widely distributed throughout. There are nine different species of Echinacea, but only three of them are used as medicinal plants with wide therapeutic uses: Echinacea purpurea (L.) Moench, Echinacea pallida (Nutt.) Nutt. and Echinacea angustifolia DC. Several significant groups of bioactive compounds with pharmacological activities have been isolated from Echinacea species. Numerous beneficial effects have been demonstrated about these compounds. The immunomodulatory effect was initially demonstrated, but over time other effects have also been highlighted. The present review gives a comprehensive summary of the chemical constituents, bioactive compounds, biological effects and therapeutical uses of purple coneflower. Research shows that such a well-known and recognized species needs to be further studied to obtain efficient products with a guarantee of the safety. Full article
(This article belongs to the Collection Feature Review Papers in Phytochemistry)
Show Figures

Figure 1

18 pages, 5258 KiB  
Article
Loop-Mediated Isothermal Amplification (LAMP) and SYBR Green qPCR for Fast and Reliable Detection of Geosmithia morbida (Kolařik) in Infected Walnut
by Domenico Rizzo, Chiara Aglietti, Alessandra Benigno, Matteo Bracalini, Daniele Da Lio, Linda Bartolini, Giovanni Cappellini, Antonio Aronadio, Cristina Francia, Nicola Luchi, Alberto Santini, Santa Olga Cacciola, Tiziana Panzavolta and Salvatore Moricca
Plants 2022, 11(9), 1239; https://doi.org/10.3390/plants11091239 - 03 May 2022
Cited by 4 | Viewed by 2647
Abstract
Walnut species (Juglans spp.) are multipurpose trees, widely employed in plantation forestry for high-quality timber and nut production, as well as in urban greening as ornamental plants. These species are currently threatened by the thousand cankers disease (TCD) complex, an insect–fungus association [...] Read more.
Walnut species (Juglans spp.) are multipurpose trees, widely employed in plantation forestry for high-quality timber and nut production, as well as in urban greening as ornamental plants. These species are currently threatened by the thousand cankers disease (TCD) complex, an insect–fungus association which involves the ascomycete Geosmithia morbida (GM) and its vector, the bark beetle Pityophthorus juglandis. While TCD has been studied extensively where it originated in North America, little research has been carried out in Europe, where it was more recently introduced. A key step in research to cope with this new phytosanitary emergency is the development of effective molecular detection tools. In this work, we report two accurate molecular methods for the diagnosis of GM, based on LAMP (real-time and visual) and SYBR Green qPCR, which are complimentary to and integrated with similar recently developed assays. Our protocols detected GM DNA from pure mycelium and from infected woody tissue with high accuracy, sensitivity, and specificity, without cross-reactivity to a large panel of taxonomically related species. The precision and robustness of our tests guarantee high diagnostic standards and could be used to support field diagnostic end-users in TCD monitoring and surveillance campaigns. Full article
Show Figures

Figure 1

16 pages, 3912 KiB  
Article
Genome-Wide Analyses of MADS-Box Genes in Humulus lupulus L. Reveal Potential Participation in Plant Development, Floral Architecture, and Lupulin Gland Metabolism
by Robert Márquez Gutiérrez, Thales Henrique Cherubino Ribeiro, Raphael Ricon de Oliveira, Vagner Augusto Benedito and Antonio Chalfun-Junior
Plants 2022, 11(9), 1237; https://doi.org/10.3390/plants11091237 - 03 May 2022
Cited by 6 | Viewed by 2967
Abstract
MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical [...] Read more.
MADS-box transcription factors (TFs) are involved in multiple plant development processes and are most known during the reproductive transition and floral organ development. Very few genes have been characterized in the genome of Humulus lupulus L. (Cannabaceae), an important crop for the pharmaceutical and beverage industries. The MADS-box family has not been studied in this species yet. We identified 65 MADS-box genes in the hop genome, of which 29 encode type-II TFs (27 of subgroup MIKCC and 2 MIKC*) and 36 type-I proteins (26 α, 9 β, and 1 γ). Type-II MADS-box genes evolved more complex architectures than type-I genes. Interestingly, we did not find FLOWERING LOCUS C (FLC) homologs, a transcription factor that acts as a floral repressor and is negatively regulated by cold. This result provides a molecular explanation for a previous work showing that vernalization is not a requirement for hop flowering, which has implications for its cultivation in the tropics. Analysis of gene ontology and expression profiling revealed genes potentially involved in the development of male and female floral structures based on the differential expression of ABC homeotic genes in each whorl of the flower. We identified a gene exclusively expressed in lupulin glands, suggesting a role in specialized metabolism in these structures. In toto, this work contributes to understanding the evolutionary history of MADS-box genes in hop, and provides perspectives on functional genetic studies, biotechnology, and crop breeding. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

16 pages, 4662 KiB  
Article
Essential Oil Yield, Composition, and Bioactivity of Sagebrush Species in the Bighorn Mountains
by Valtcho D. Zheljazkov, Charles L. Cantrell, Ekaterina A. Jeliazkova, Tess Astatkie and Vicki Schlegel
Plants 2022, 11(9), 1228; https://doi.org/10.3390/plants11091228 - 01 May 2022
Cited by 7 | Viewed by 1879
Abstract
Sagebrush (Artemisia spp.) are dominant wild plants in large areas of the U.S., Canada and Mexico, and they include several species and subspecies. The aim was to determine if there are significant differences in essential oil (EO) yield, composition, and biological activity [...] Read more.
Sagebrush (Artemisia spp.) are dominant wild plants in large areas of the U.S., Canada and Mexico, and they include several species and subspecies. The aim was to determine if there are significant differences in essential oil (EO) yield, composition, and biological activity of sagebrush within the Bighorn Mountains, U.S. The EO yield in fresh herbage varied from 0.15 to 1.69% for all species, including 0.25–1.69% in A. tridentata var. vaseyana, 0.64–1.44% in A. tridentata var. tridentata, 1% in A. tridentata var. wyomingensis, 0.8–1.2% in A. longifolia, 0.8–1% in A. cana, and 0.16% in A. ludoviciana. There was significant variability in the EO profile between species, and subspecies. Some EO constituents, such as α-pinene (0–35.5%), camphene (0–21.5%), eucalyptol (0–30.8%), and camphor (0–45.5%), were found in most species and varied with species and subspecies. The antioxidant capacity of the EOs varied between the species and subspecies. None of the sagebrush EOs had significant antimicrobial, antimalarial, antileishmanial activity, or contained podophyllotoxin. Some accessions yielded EO with significant concentrations of compounds including camphor, eucalyptol, cis-thujone, α-pinene, α-necrodol-acetate, fragranol, grandisol, para-cymene, and arthole. Therefore, chemotypes can be selected and possibly introduced into culture and be grown for commercial production of these compounds to meet specific industry needs. Full article
Show Figures

Figure 1

12 pages, 1219 KiB  
Article
Effects of Partial Substitution of Conventional Protein Sources with Duckweed (Lemna minor) Meal in the Feeding of Rainbow Trout (Oncorhynchus mykiss) on Growth Performances and the Quality Product
by Elisa Fiordelmondo, Simona Ceschin, Gian Enrico Magi, Francesca Mariotti, Nicolaia Iaffaldano, Livio Galosi and Alessandra Roncarati
Plants 2022, 11(9), 1220; https://doi.org/10.3390/plants11091220 - 30 Apr 2022
Cited by 11 | Viewed by 2745
Abstract
Duckweed (Lemna minor) meal was included in the formulation of three experimental feeds (L1, L2, L3) for rainbow trout at 10%, 20%, 28% of the protein source, respectively. Increasing the duckweed inclusion, the other protein sources were adjusted to get isonitrogenous [...] Read more.
Duckweed (Lemna minor) meal was included in the formulation of three experimental feeds (L1, L2, L3) for rainbow trout at 10%, 20%, 28% of the protein source, respectively. Increasing the duckweed inclusion, the other protein sources were adjusted to get isonitrogenous (41%) and isolipidic (20%) diets, as the control diet (LC). 540 fish (mean body weight 124.5 ± 0.7 g) were randomly allocated in 12 tanks divided equally among the four different diets. After 90 days, fish were weighed and the most important productive performances, fillet quality and fatty acid profile were determined. The final body weight in L1 (340.53 g) and L2 (339.42 g) was not different from LC (348.80 g); L3 trout significantly (p < 0.05) exhibited the lowest one (302.16 g). Similar trends were found in final mean length, weight gain, specific growth rate, food conversion rate. Somatic indices were affected by duckweed inclusion. Diets had not significant effects on the proximate composition and fatty acids of the fillet in L1, L2, L3 respect to LC. Based on this study, duckweed meal derived from Lemna minor can be included in the feed for the rainbow trout without negative effects on the growth performances at 20% of the protein substitution. Full article
(This article belongs to the Special Issue Duckweed: Research Meets Applications)
Show Figures

Figure 1

22 pages, 1371 KiB  
Review
The Multiple Role of Silicon Nutrition in Alleviating Environmental Stresses in Sustainable Crop Production
by Szilvia Kovács, Erika Kutasy and József Csajbók
Plants 2022, 11(9), 1223; https://doi.org/10.3390/plants11091223 - 30 Apr 2022
Cited by 25 | Viewed by 5509
Abstract
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon [...] Read more.
In addition to the application of macronutrients (N, P, K), there has been an increasing interest in studying the effects of different micronutrients on growth and development in plant populations under abiotic and biotic stresses. Experimental results have demonstrated the role of silicon in mitigating environmental stresses on plants (especially in silicon accumulating plant species). Furthermore, as the silicon content of soils available to plants can vary greatly depending on soil type, the many positive results have led to increased interest in silicon as a nutrient in sustainable agriculture over the last decade. The grouping of plant species according to silicon accumulation is constantly changing as a result of new findings. There are also many new research results on the formation of phytoliths and their role in the plants. The use of silicon as a nutrient is becoming more widespread in crop production practices based on research results reporting beneficial effects. Controversial results have also been obtained on the use of different Si-containing materials as fertilizers. Many questions remain to be clarified about the uptake, transport, and role of silicon in plant life processes, such as stress management. Future research is needed to address these issues. This review discusses the role and beneficial effects of silicon in plants as a valuable tool for regulating biological and abiotic stresses. Our aim was to provide an overview of recent research on the role and importance of silicon in sustainable crop production and to highlight possible directions for further research. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

17 pages, 4521 KiB  
Article
Root Transcriptional and Metabolic Dynamics Induced by the Plant Growth Promoting Rhizobacterium (PGPR) Bacillus subtilis Mbi600 on Cucumber Plants
by Anastasios Samaras, Nathalie Kamou, Georgios Tzelepis, Katerina Karamanoli, Urania Menkissoglu-Spiroudi and George S. Karaoglanidis
Plants 2022, 11(9), 1218; https://doi.org/10.3390/plants11091218 - 30 Apr 2022
Cited by 18 | Viewed by 3314
Abstract
Bacillus subtilis MBI600 is a commercialized plant growth-promoting bacterial species used as a biocontrol agent in many crops, controlling various plant pathogens via direct or indirect mechanisms. In the present study, a detailed transcriptomic analysis of cucumber roots upon response to the Bs [...] Read more.
Bacillus subtilis MBI600 is a commercialized plant growth-promoting bacterial species used as a biocontrol agent in many crops, controlling various plant pathogens via direct or indirect mechanisms. In the present study, a detailed transcriptomic analysis of cucumber roots upon response to the Bs MBI600 strain is provided. Differentially expressed genes (DEGs) analysis showed altered gene expression in more than 1000 genes at 24 and 48 h post-application of Bs MBI600. Bs MBI600 induces genes involved in ISR and SAR signaling. In addition, genes involved in phytohormone production and nutrient availability showed an upregulation pattern, justifying the plant growth promotion. Biocontrol ability of Bs MBI600 seems also to be related to the activation of defense-related genes, such as peroxidase, endo-1,3(4)-beta-glucanase, PR-4, and thaumatin-like. Moreover, KEGG enriched results showed that differentially expressed genes were classified into biocontrol-related pathways. To further investigate the plant’s response to the presence of PGPR, a profile of polar metabolites of cucumber treated with Bs MBI600 was performed and compared to that of untreated plants. The results of the current study gave insights into the mechanisms deployed by this biocontrol agent to promote plant resistance, helping to understand the molecular interactions in this system. Full article
Show Figures

Figure 1

13 pages, 1582 KiB  
Article
Biological Activities of Some Isoquinoline Alkaloids from Fumaria schleicheri Soy. Will.
by Ramona Păltinean, Irina Ielciu, Daniela Hanganu, Mihaela Niculae, Emoke Pall, Luc Angenot, Monique Tits, Andrei Mocan, Mihai Babotă, Oleg Frumuzachi, Mircea Tămaş, Gianina Crişan and Michel Frederich
Plants 2022, 11(9), 1202; https://doi.org/10.3390/plants11091202 - 29 Apr 2022
Cited by 12 | Viewed by 2131
Abstract
Fumaria schleicheri Soy. Will. is a species belonging to the Papaveraceae family, being widespread in East-Central and Southern Europe. As with numerous other species of the genus, it is used in traditional medicine for the treatment of hepatobiliary and digestive disorders. The aim [...] Read more.
Fumaria schleicheri Soy. Will. is a species belonging to the Papaveraceae family, being widespread in East-Central and Southern Europe. As with numerous other species of the genus, it is used in traditional medicine for the treatment of hepatobiliary and digestive disorders. The aim of the present study consisted of the evaluation of its alkaloid content and the assessment of its in vitro antioxidant, anti-cholinesterase and cytotoxic potential. Total alkaloid content in the composition of the species was quantified by a spectrophotometrical method and they were individually identified and quantified by HPLC-DAD. The antioxidant capacity was investigated by the DPPH and FRAP methods, while the anti-cholinesterase activity was assessed by an adapted Ellman’s method. The in vitro cytotoxic activity was evaluated on BJ human fibroblasts and DLD-1 human colon adenocarcinoma cell lines. Results showed the presence of bicuculline, protopine, chelidonine, stylopine and sanguinarine, among which bicuculline, protopine, stylopine and sanguinarine were quantified, while the antioxidant and anti-cholinesterase assays showed valuable potentials. No cytotoxic effect was observed on BJ cell lines and selective cytotoxicity was expressed towards tumoral cells. In this context, F. schleicheri appears as an important medicinal species with significant potential of substitution with the officinal species. Full article
(This article belongs to the Special Issue 10th Anniversary of Plants—Recent Advances and Perspectives)
Show Figures

Figure 1

73 pages, 11334 KiB  
Article
The Plant Communities of the Class Isoëto-Nanojuncetea in Sicily
by Salvatore Brullo, Cristian Brullo, Saverio Sciandrello, Gianmarco Tavilla, Salvatore Cambria, Valeria Tomaselli, Vincenzo Ilardi, Gianpietro Giusso del Galdo and Pietro Minissale
Plants 2022, 11(9), 1214; https://doi.org/10.3390/plants11091214 - 29 Apr 2022
Cited by 11 | Viewed by 2638
Abstract
A syntaxonomical revision of the Isoëto-Nanojuncetea class for the Sicilian territory is provided. This syntaxon gathers the ephemeral herbaceous hygrophilous plant communities linked to periodically submerged soils, widely distributed in the European, circum-Mediterranean and Macaronesian territories. Within this class, two orders are recognized, [...] Read more.
A syntaxonomical revision of the Isoëto-Nanojuncetea class for the Sicilian territory is provided. This syntaxon gathers the ephemeral herbaceous hygrophilous plant communities linked to periodically submerged soils, widely distributed in the European, circum-Mediterranean and Macaronesian territories. Within this class, two orders are recognized, lsoëtetalia, with a prevalently Mediterranean distribution, and Nanocyperetalia chiefly occurring in the central-European and Atlantic territories, with scattered and marginal occurrence in the Mediterranean area. The order Isoëtetalia in Sicily is represented by four alliances, i.e., Isoëtion, Preslion cervinae, Cicendio-Solenopsion laurentiae and Agrostion salmanticae, while within Nanocyperetalia three alliances can be recognized, namely Nanocyperion, Verbenion supinae and Lythrion tribracteati. Overall, 32 plant communities are recognized, 11 of which are described for the first time. Each higher rank syntaxa and related associations are examined from a nomenclatural, floristic, ecological and chorological point of view. In particular, the associations were processed using cluster analysis in order to highlight the correlations between them. Regarding the floristic aspects, a checklist of the species occurring in the phytosociological relevés is provided, as well as a new combination concerning Solenopsis gasparrinii, a critical species of the Sicilian flora, is proposed. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

15 pages, 5007 KiB  
Article
Characteristics of Sunburn Browning Fruit and Rootstock-Dependent Damage-Free Yield of Ambrosia™ Apple after Sustained Summer Heat Events
by Hao Xu, Yoichiro Watanabe, Danielle Ediger, Xiaotang Yang and Davis Iritani
Plants 2022, 11(9), 1201; https://doi.org/10.3390/plants11091201 - 29 Apr 2022
Cited by 6 | Viewed by 2639
Abstract
The 2021 summer heat waves experienced in the Pacific Northwest led to considerable fruit damage in many apple production zones. Sunburn browning (SB) was a particularly evident symptom. To understand the mechanism underlying the damage and to facilitate the early assessment of compromised [...] Read more.
The 2021 summer heat waves experienced in the Pacific Northwest led to considerable fruit damage in many apple production zones. Sunburn browning (SB) was a particularly evident symptom. To understand the mechanism underlying the damage and to facilitate the early assessment of compromised fruit quality, we conducted a study on external characteristics and internal quality attributes of SB ‘Ambrosia’ apple (Malus domestica var. Ambrosia) and evaluated the fruit loss on five rootstocks. The cell integrity of the epidermal and hypodermal layers of fruit skins in the SB patch was compromised. Specifically, the number of chloroplasts and anthocyanin decreased in damaged cells, while autofluorescent stress-related compounds accumulated in dead cells. Consequently, the affected sun-exposed skin demonstrated a significant increase in differential absorbance between 670 nm and 720 nm, measured using a handheld apple DA meter, highlighting the potential of using this method as a non-destructive early indicator for sunburn damage. Sunburn browning eventually led to lower fruit weight, an increase in average dry matter content, soluble solids content, acidity, deteriorated weight retention, quicker loss of firmness, and accelerated ethylene emission during ripening. Significant inconsistency was found between the sun-exposed and shaded sides in SB apples regarding dry matter content, firmness, and tissue water potential, which implied preharvest water deficit in damaged tissues and the risk of quicker decline of postharvest quality. Geneva 935 (G.935), a large-dwarfing rootstock with more vigor and higher water transport capacity, led to a lower ratio of heat-damaged fruits and a higher yield of disorder-free fruits, suggesting rootstock selection as a long-term horticultural measure to mitigate summer heat stress. Full article
(This article belongs to the Special Issue Responses of Plants to Environmental Stresses Volume II)
Show Figures

Figure 1

18 pages, 761 KiB  
Review
Environmental Behaviors of Bacillus thuringiensis (Bt) Insecticidal Proteins and Their Effects on Microbial Ecology
by Yujie Li, Cui Wang, Lei Ge, Cong Hu, Guogan Wu, Yu Sun, Lili Song, Xiao Wu, Aihu Pan, Qinqing Xu, Jialiang Shi, Jingang Liang and Peng Li
Plants 2022, 11(9), 1212; https://doi.org/10.3390/plants11091212 - 29 Apr 2022
Cited by 16 | Viewed by 6701
Abstract
Bt proteins are crystal proteins produced by Bacillus thuringiensis (Bt) in the early stage of spore formation that exhibit highly specific insecticidal activities. The application of Bt proteins primarily includes Bt transgenic plants and Bt biopesticides. Transgenic crops with insect resistance [...] Read more.
Bt proteins are crystal proteins produced by Bacillus thuringiensis (Bt) in the early stage of spore formation that exhibit highly specific insecticidal activities. The application of Bt proteins primarily includes Bt transgenic plants and Bt biopesticides. Transgenic crops with insect resistance (via Bt)/herbicide tolerance comprise the largest global area of agricultural planting. After artificial modification, Bt insecticidal proteins expressed from Bt can be released into soils through root exudates, pollen, and plant residues. In addition, the construction of Bt recombinant engineered strains through genetic engineering has become a major focus of Bt biopesticides, and the expressed Bt proteins will also remain in soil environments. Bt proteins expressed and released by Bt transgenic plants and Bt recombinant strains are structurally and functionally quite different from Bt prototoxins naturally expressed by B. thuringiensis in soils. The former can thus be regarded as an environmentally exogenous substance with insecticidal toxicity that may have potential ecological risks. Consequently, biosafety evaluations must be conducted before field tests and production of Bt plants or recombinant strains. This review summarizes the adsorption, retention, and degradation behavior of Bt insecticidal proteins in soils, in addition to their impacts on soil physical and chemical properties along with soil microbial diversity. The review provides a scientific framework for evaluating the environmental biosafety of Bt transgenic plants, Bt transgenic microorganisms, and their expression products. In addition, prospective research targets, research methods, and evaluation methods are highlighted based on current research of Bt proteins. Full article
Show Figures

Figure 1

19 pages, 2406 KiB  
Review
History of Herbicide-Resistant Traits in Cotton in the U.S. and the Importance of Integrated Weed Management for Technology Stewardship
by Rohith Vulchi, Muthukumar Bagavathiannan and Scott A. Nolte
Plants 2022, 11(9), 1189; https://doi.org/10.3390/plants11091189 - 28 Apr 2022
Cited by 8 | Viewed by 3354
Abstract
This paper reviews the history of herbicide-resistant (HR) traits in U.S. cotton since the beginning, highlighting the shortcomings of each trait over time that has led to the development of their successor and emphasizing the importance of integrated weed management (IWM) going forward [...] Read more.
This paper reviews the history of herbicide-resistant (HR) traits in U.S. cotton since the beginning, highlighting the shortcomings of each trait over time that has led to the development of their successor and emphasizing the importance of integrated weed management (IWM) going forward to ensure their long-term sustainability. Introduction of glyphosate-resistant cropping systems has allowed for expansion of no-till systems more reliant on herbicides, favored less diverse crop rotations, and heavily relied on a single herbicide mode of action (MOA). With repeated applications of glyphosate over the years, biotypes of glyphosate-resistant (GR) A. palmeri and other weeds became economically damaging pests in cotton production systems throughout the U.S. Moreover, the reported cases of weeds resistant to different MOA across various parts of the United States has increased. The dicamba- (XtendFlex®) and 2,4-D-resistant (Enlist®) cotton traits (with stacks of glyphosate and glufosinate resistance) were introduced and have been highly adopted in the U.S. to manage HR weeds. Given the current rate of novel herbicide MOA discovery and increase in new HR weed cases, the future of sustainable weed management relies on an integrated approach that includes non-herbicidal methods with herbicides to ensure long-term success. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

18 pages, 5862 KiB  
Article
Use of Biochar to Improve the Sustainable Crop Production of Cauliflower (Brassica oleracea L.)
by Daniela Losacco, Marina Tumolo, Pietro Cotugno, Natalia Leone, Carmine Massarelli, Stefano Convertini, Angelo Tursi, Vito Felice Uricchio and Valeria Ancona
Plants 2022, 11(9), 1182; https://doi.org/10.3390/plants11091182 - 27 Apr 2022
Cited by 10 | Viewed by 2873
Abstract
In agriculture, biochar (B) application has been suggested as a green technology to reduce nitrate pollution from agricultural origins and improve crop yield. The agronomic impact of B use on soil has been extensively studied, while knowledge of its possible effects on horticultural [...] Read more.
In agriculture, biochar (B) application has been suggested as a green technology to reduce nitrate pollution from agricultural origins and improve crop yield. The agronomic impact of B use on soil has been extensively studied, while knowledge of its possible effects on horticultural cultivation is still scarce. A greenhouse experiment was conducted to evaluate the effect of using biochar in soils treated with two different rates of nitrogen fertilizers on soil properties and nitrogen (N) leachate. This study also investigated the vegetative parameters during the crop growing season of Brassica oleracea L. var. botrytis. Soil mesocosms were set up to test the following treatments: untreated/control (C); normal dose of N fertilizer (130 kg N ha−1) (ND); ND+B; high dose of N fertilizer (260 kg N ha−1) (HD); and HD+B. Principal component analysis and cluster analysis were exploited to assess biochar’s ability to reduce nitrate leaching and enhance soil–vegetative properties. Biochar addition affected the soil chemical properties of the fertilized microcosms (ND and HD). Biochar increased the NH4+ content in HD soil and the NO3 content in ND soil by 26 mg/L and 48.76 mg/L, respectively. The results showed that biochar application increased the marketable cauliflower yield. In ND+B and HD+B, the curd weight was 880.68 kg and 1097.60 kg, respectively. In addition, a small number of nitrogenous compounds in the leachate were quantified in experimental lines with the biochar. Therefore, biochar use improves the marketable yield of horticulture, mitigating the negative impacts associated with the mass use of N fertilizers in agriculture. Full article
(This article belongs to the Special Issue Plant Nutrition Volume II)
Show Figures

Figure 1

15 pages, 1828 KiB  
Article
Stand-Alone or Combinatorial Effects of Grafting and Microbial and Non-Microbial Derived Compounds on Vigour, Yield and Nutritive and Functional Quality of Greenhouse Eggplant
by Leo Sabatino, Beppe Benedetto Consentino, Georgia Ntatsi, Salvatore La Bella, Sara Baldassano and Youssef Rouphael
Plants 2022, 11(9), 1175; https://doi.org/10.3390/plants11091175 - 27 Apr 2022
Cited by 13 | Viewed by 2052
Abstract
The current research investigated the effects of endophytic fungi such as Trichoderma atroviride (Ta) or Ascophyllum nodosum seaweed extract (An) and their combination on growth, yield, nutritive and functional features, and mineral profile of ‘Birgah’ F1 eggplant either ungrafted, self-grafted or grafted [...] Read more.
The current research investigated the effects of endophytic fungi such as Trichoderma atroviride (Ta) or Ascophyllum nodosum seaweed extract (An) and their combination on growth, yield, nutritive and functional features, and mineral profile of ‘Birgah’ F1 eggplant either ungrafted, self-grafted or grafted onto the Solanum torvum rootstock. Eggplant exposed to An or An+Ta had a significant increase in root collar diameter 50 days after transplanting (RCD50), total yield (TY), marketable yield (MY), ascorbic acid (AA) content, Mg, Cu, and Zn concentration, and a reduction in glycoalkaloids (GLY) compared with the control. Furthermore, grafted plants had a higher TY, MY, number of marketable fruits (NMF), RCD50, AA, Cu, and Zn and a lower SSC, GLY, and Mg than the ungrafted plants. The combination of grafting and An+Ta significantly improved mean weight of marketable fruits (MF), plant height 50 days after transplanting (PH50), number of leaves 50 days after transplanting (NL50), fruit dry matter (FDM), chlorogenic acid (ClA), proteins, and K and Fe concentration. This combination also produced fruits of high premium quality as evidenced by the higher AA and ClA concentration, the lower GLY concentration, and an overall improved mineral profile. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

32 pages, 1796 KiB  
Review
Molecular Biology, Composition and Physiological Functions of Cuticle Lipids in Fleshy Fruits
by Heriberto García-Coronado, Julio César Tafolla-Arellano, Miguel Ángel Hernández-Oñate, Alexel Jesús Burgara-Estrella, Jesús Martín Robles-Parra and Martín Ernesto Tiznado-Hernández
Plants 2022, 11(9), 1133; https://doi.org/10.3390/plants11091133 - 22 Apr 2022
Cited by 10 | Viewed by 2914
Abstract
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been [...] Read more.
Fleshy fruits represent a valuable resource of economic and nutritional relevance for humanity. The plant cuticle is the external lipid layer covering the nonwoody aerial organs of land plants, and it is the first contact between fruits and the environment. It has been hypothesized that the cuticle plays a role in the development, ripening, quality, resistance to pathogen attack and postharvest shelf life of fleshy fruits. The cuticle’s structure and composition change in response to the fruit’s developmental stage, fruit physiology and different postharvest treatments. This review summarizes current information on the physiology and molecular mechanism of cuticle biosynthesis and composition changes during the development, ripening and postharvest stages of fleshy fruits. A discussion and analysis of studies regarding the relationship between cuticle composition, water loss reduction and maintaining fleshy fruits’ postharvest quality are presented. An overview of the molecular mechanism of cuticle biosynthesis and efforts to elucidate it in fleshy fruits is included. Enhancing our knowledge about cuticle biosynthesis mechanisms and identifying specific transcripts, proteins and lipids related to quality traits in fleshy fruits could contribute to the design of biotechnological strategies to improve the quality and postharvest shelf life of these important fruit crops. Full article
(This article belongs to the Special Issue Lipid Genes and Biotechnology in Plants)
Show Figures

Figure 1

20 pages, 4004 KiB  
Article
Priming Treatments with Biostimulants to Cope the Short-Term Heat Stress Response: A Transcriptomic Profile Evaluation
by Giacomo Cocetta, Michela Landoni, Roberto Pilu, Carlos Repiso, José Nolasco, Marcos Alajarin, Lydia Ugena, Camila C. B. Levy, Giacomo Scatolino, Daniele Villa and Antonio Ferrante
Plants 2022, 11(9), 1130; https://doi.org/10.3390/plants11091130 - 21 Apr 2022
Cited by 9 | Viewed by 3509
Abstract
Plant stress induced by high temperature is a problem in wide areas of different regions in the world. The trend of global warming is going to enhance the effects of heat stress on crops in many cultivation areas. Heat stress impairs the stability [...] Read more.
Plant stress induced by high temperature is a problem in wide areas of different regions in the world. The trend of global warming is going to enhance the effects of heat stress on crops in many cultivation areas. Heat stress impairs the stability of cell membranes and many biological processes involving both primary and secondary metabolism. Biostimulants are innovative agronomical tools that can be used as a strategy to counteract the detrimental effect of abiotic stresses, including heat stress. In this work, two biostimulants based on Ascophyllum nodosum extracts (named Phylgreen) and based on animal L-α amino acids (named Delfan Plus) were applied as priming treatments to Arabidopsis thaliana plants subjected to heat stress exposure. Plants at the vegetative stage were treated with biostimulants 12 h before high temperature exposure, which consisted of maintaining the plants at 37 ± 1 °C for 4 h. Transcriptional profiles, physiological, and biochemical analyses were performed to understand the mode of action of the biostimulants in protecting the plants exposed to short-term heat stress. At a physiological level, chlorophyll, chlorophyll a fluorescence, phenolic index, total anthocyanins, reactive oxygen species (ROS) were measured, and significant variations were observed immediately after stress. Both biostimulants were able to reduce the oxidative damage in leaves and cell membrane. Transcriptomic data revealed that upregulated genes were 626 in Phylgreen and 365 in Delfan Plus, while downregulated genes were 295 in Phylgreen and 312 in Delfan Plus. Bioinformatic analysis showed that the biostimulants protected the plants from heat stress by activating specific heat shock proteins (HPS), antioxidant systems, and ROS scavengers. The results revealed that the biostimulants effectively induced the activation of heat stress-associated genes belonging to different transcription factors and HSP families. Among the heat shock proteins, the most important was the AtHSP17 family and in particular, those influenced by treatments were AtHPS17.4 and AtHPS17.6A, B, showing the most relevant changes. Full article
(This article belongs to the Special Issue Plant Biostimulants)
Show Figures

Figure 1

28 pages, 1374 KiB  
Review
Breeding Diploid F1 Hybrid Potatoes for Propagation from Botanical Seed (TPS): Comparisons with Theory and Other Crops
by John E. Bradshaw
Plants 2022, 11(9), 1121; https://doi.org/10.3390/plants11091121 - 21 Apr 2022
Cited by 10 | Viewed by 3417
Abstract
This paper reviews the progress and the way ahead in diploid F1 hybrid potato breeding by comparisons with expectations from the theory of inbreeding and crossbreeding, and experiences from other diploid outbreeding crops. Diploid potatoes can be converted from an outbreeding species, [...] Read more.
This paper reviews the progress and the way ahead in diploid F1 hybrid potato breeding by comparisons with expectations from the theory of inbreeding and crossbreeding, and experiences from other diploid outbreeding crops. Diploid potatoes can be converted from an outbreeding species, in which self-pollination is prevented by a gametophytic self-incompatibility system, into one where self-pollination is possible, either through a dominant self-incompatibility inhibitor gene (Sli) or knockout mutations in the incompatibility locus. As a result, diploid F1 hybrid breeding can be used to produce genetically uniform potato cultivars for propagation from true potato seeds by crossing two near-homozygous inbred lines, derived from a number of generations of self-pollination despite inbreeding depression. Molecular markers can be used to detect and remove deleterious recessive mutations of large effect, including those in tight repulsion linkage. Improvements to the inbred lines can be made by introducing and stacking genes and chromosome segments of large desirable effect from wild relatives by backcrossing. Improvements in quantitative traits require a number of cycles of inbreeding and crossbreeding. Seed production can be achieved by hand pollinations. F1 hybrid planting material can be delivered to farmers as true seeds or young plants, and mini-tubers derived from true seeds. Full article
(This article belongs to the Special Issue Diploid F1 Hybrid Breeding in Potato)
Show Figures

Figure 1

17 pages, 1671 KiB  
Article
Diazotrophic Bacteria Is an Alternative Strategy for Increasing Grain Biofortification, Yield and Zinc Use Efficiency of Maize
by Arshad Jalal, Carlos Eduardo da Silva Oliveira, Henrique Benetasse Fernandes, Fernando Shintate Galindo, Edson Cabral da Silva, Guilherme Carlos Fernandes, Thiago Assis Rodrigues Nogueira, Pedro Henrique Gomes De Carvalho, Vinícius Rodrigues Balbino, Bruno Horschut de Lima and Marcelo Carvalho Minhoto Teixeira Filho
Plants 2022, 11(9), 1125; https://doi.org/10.3390/plants11091125 - 21 Apr 2022
Cited by 11 | Viewed by 2333
Abstract
Biofortification of cereal crops with zinc and diazotrophic bacteria is a sustainable solution to nutrient deficiency and hidden hunger. The inoculation of staple grain crops such as maize is increased with reducing productivity losses while improving nutrition and use efficiency under climatic extremes [...] Read more.
Biofortification of cereal crops with zinc and diazotrophic bacteria is a sustainable solution to nutrient deficiency and hidden hunger. The inoculation of staple grain crops such as maize is increased with reducing productivity losses while improving nutrition and use efficiency under climatic extremes and weathered soils of tropical savannah. Therefore, objectives of our study were to evaluate the influence of seed inoculation with diazotrophic bacteria (No inoculation–Control, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens) together with residual effect of soil Zn (absence and presence) on growth, yield, Zn nutrition, Zn use efficiencies, and intake of maize in 2019 and 2020 cropping seasons. The inoculation of B. subtilis increased hundred grain mass and yield (14.5 and 17%), while P. fluorescens under residual Zn fertilization has improved shoot and grain Zn concentration in shoot (29.5 and 30.5%). and grain (25.5 and 26.2%), while improving Zn accumulation in shoot (33.8 and 35%) and grain (37.2 and 42%) of maize. The estimated Zn intake in maize was also increased with A. brasilense inoculation and residual Zn application. The Zn use efficiencies including Zn use efficiency, agro-physiological, and utilization efficiency was increased with B. subtilis, while applied Zn recovery was increased with A. brasilense inoculations under residual Zn fertilization. Zinc use efficiency was increased by 93.3 and 397% with inoculation of B. subtilis regardless of Zn application. Therefore, inoculation with B. subtilis and P. fluorescens along residual Zn fertilization is considered the most effective and sustainable strategy for agronomic biofortification of maize under harsh tropical conditions of Brazil. Full article
(This article belongs to the Collection Plant Nutrition Biofortification)
Show Figures

Graphical abstract

19 pages, 2922 KiB  
Article
Physiological and Growth Responses of Potato (Solanum Tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits
by Peng Zhang, Xin Yang, Kiril Manevski, Shenglan Li, Zhenhua Wei, Mathias Neumann Andersen and Fulai Liu
Plants 2022, 11(9), 1126; https://doi.org/10.3390/plants11091126 - 21 Apr 2022
Cited by 9 | Viewed by 2711
Abstract
Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to [...] Read more.
Drought stress often occurs concurrently with heat stress, yet the interacting effect of high vapor pressure deficit (VPD) and soil drying on the physiology of potato plants remains poorly understood. This study aimed to investigate the physiological and growth responses of potatoes to progressive soil drying under varied VPDs. Potato plants were grown either in four separate climate-controlled greenhouse cells with different VPD levels (viz., 0.70, 1.06, 1.40, and 2.12 kPa, respectively) or under a rainout shelter in the field. The VPD of each greenhouse cell was caused by two air temperature levels (23 and 30 °C) combined with two relative humidity levels (50 and 70%), and the VPD of the field was natural conditions. Irrigation treatments were commenced three or four weeks after planting in greenhouse cells or fields, respectively. The results indicated that soil water deficits limited leaf gas exchange and shoot dry matter (DMshoot) of plants while increasing the concentration of abscisic acid (ABA) in the leaf and xylem, as well as water use efficiency (WUE) across all VPD levels. High VPD decreased stomatal conductance (gs) but increased transpiration rate (Tr). High VPD increased the threshold of soil water for Tr began to decrease, while the soil water threshold for gs depended on temperature due to the varied ABA response to temperature. High VPD decreased leaf water potential, leaf area, and DMshoot, which exacerbated the inhibition of soil drying to plant growth. Across the well-watered plants in both experiments, negative linear relationships of gs and WUE to VPD and positive linear relations between Tr and VPD were found. The results provide some novel information for developing mechanistic models simulating crop WUE and improving irrigation scheduling in future arid climates. Full article
(This article belongs to the Special Issue Implications of Abscisic Acid in the Drought Stress Tolerance)
Show Figures

Figure 1

12 pages, 1795 KiB  
Review
Cyperus (Cyperus esculentus L.): A Review of Its Compositions, Medical Efficacy, Antibacterial Activity and Allelopathic Potentials
by Shengai Zhang, Peizhi Li, Zunmiao Wei, Yan Cheng, Jiayao Liu, Yanmin Yang, Yuyan Wang and Zhongsheng Mu
Plants 2022, 11(9), 1127; https://doi.org/10.3390/plants11091127 - 21 Apr 2022
Cited by 23 | Viewed by 4511
Abstract
Cyperus (Cyperus esculentus L.) is an edible perennial grass-like plant, which propagates exclusively with underground tubers. Its tubers are rich in starch (20–30%), fat (25–35%), sugar (10–20%), protein (10–15%) and dietary fiber (8–9%). In addition, the tubers also contain alkaloids, organic acids, [...] Read more.
Cyperus (Cyperus esculentus L.) is an edible perennial grass-like plant, which propagates exclusively with underground tubers. Its tubers are rich in starch (20–30%), fat (25–35%), sugar (10–20%), protein (10–15%) and dietary fiber (8–9%). In addition, the tubers also contain alkaloids, organic acids, vitamins (C and E), steroids, terpenoids and other active components. The contents of oleic acid and linoleic acid in Cyperus oil are very high, which have important medicinal value and health-promoting properties. Most of the extracts from the tubers, stems and leaves of Cyperus have allelopathic potential and antibacterial, antioxidant and insecticidal activities. In recent years, the planting area of Cyperus has increased significantly all over the world, especially in China and some other countries. This paper presents the current status of Cyperus and the recent trend in research in this area. Published reports on its nutritional contents, active ingredients, medicinal efficacy, antibacterial activity and allelopathic potential were also reviewed. Full article
Show Figures

Figure 1

Back to TopTop