Topical Collection "Pharmaceutical Sciences in Canada"

Editors

Department of Urologic Sciences, Faculty of Medicine, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
Interests: pharmaceutics; drug delivery; formulation; drug development; translational pharmacotherapy; lipid and lipoprotein metabolism; pharmacokinetics
Special Issues, Collections and Topics in MDPI journals
College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Health Sciences Building, Room 3D01.5, Box 3D01-13, Saskatoon, SK S7N 5E5, Canada
Interests: nucleic acid delivery; nanodiamonds; cationic gemini lipids; self-assembling nanoparticles; small angle X-ray scattering; flow cytometry; radiopharmaceuticals
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues, 

Canada continues to have a rich history and significant impact on the Pharmaceutical Sciences, particularly during the current COVID-19 pandemic. This topical collection will highlight the pharmaceutical sciences research currently ongoing in Canada, both within academic and industrial institutions, in areas including but not limited to drug discovery and development, drug delivery, drug repurposing, pharmacokinetics, drug metabolism and drug transport, pharmacogenomics and personalized medicine, pharmacy practice research, pharmacoepidemiology, and pharmaceutical natural products.  

Prof. Dr. Kishor M. Wasan
Prof. Dr. Ildiko Badea
Collection Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug discovery and development
  • drug delivery
  • drug repurposing
  • pharmacokinetics
  • drug metabolism and drug transport
  • pharmacogenomics and personalized medicine
  • pharmacy practice research
  • pharmacoepidemiology and pharmaceutical natural products

Related Special Issues

Published Papers (41 papers)

2021

Jump to: 2019, 2018, 2017

Perspective
Inhibition of Scavenger Receptor Class B Type 1 (SR-B1) Expression and Activity as a Potential Novel Target to Disrupt Cholesterol Availability in Castration-Resistant Prostate Cancer
Pharmaceutics 2021, 13(9), 1509; https://doi.org/10.3390/pharmaceutics13091509 - 18 Sep 2021
Cited by 2 | Viewed by 2614
Abstract
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. [...] Read more.
There have been several studies that have linked elevated scavenger receptor class b type 1 (SR-B1) expression and activity to the development and progression of castration-resistant prostate cancer (CRPC). SR-B1 facilitates the influx of cholesterol to the cell from lipoproteins in systemic circulation. This influx of cholesterol may be important for many cellular functions, including the synthesis of androgens. Castration-resistant prostate cancer tumors can synthesize androgens de novo to supplement the loss of exogenous sources often induced by androgen deprivation therapy. Silencing of SR-B1 may impact the ability of prostate cancer cells, particularly those of the castration-resistant state, to maintain the intracellular supply of androgens by removing a supply of cholesterol. SR-B1 expression is elevated in CRPC models and has been linked to poor survival of patients. The overarching belief has been that cholesterol modulation, through either synthesis or uptake inhibition, will impact essential signaling processes, impeding the proliferation of prostate cancer. The reduction in cellular cholesterol availability can impede prostate cancer proliferation through both decreased steroid synthesis and steroid-independent mechanisms, providing a potential therapeutic target for the treatment of prostate cancer. In this article, we discuss and highlight the work on SR-B1 as a potential novel drug target for CRPC management. Full article
Show Figures

Figure 1

Review
Analytical Strategies to Analyze the Oxidation Products of Phytosterols, and Formulation-Based Approaches to Reduce Their Generation
Pharmaceutics 2021, 13(2), 268; https://doi.org/10.3390/pharmaceutics13020268 - 16 Feb 2021
Cited by 12 | Viewed by 2978
Abstract
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products [...] Read more.
Phytosterols are a class of lipid molecules present in plants that are structurally similar to cholesterol and have been widely utilized as cholesterol-lowering agents. However, the susceptibility of phytosterols to oxidation has led to concerns regarding their safety and tolerability. Phytosterol oxidation products (POPs) present in a variety of enriched and non-enriched foods can show pro-atherogenic and pro-inflammatory properties. Therefore, it is crucial to screen and analyze various phytosterol-containing products for the presence of POPs and ultimately design or modify phytosterols in such a way that prevents the generation of POPs and yet maintains their pharmacological activity. The main approaches for the analysis of POPs include the use of mass spectrometry (MS) linked to a suitable separation technique, notably gas chromatography (GC). However, liquid chromatography (LC)-MS has the potential to simplify the analysis due to the elimination of any derivatization step, usually required for GC-MS. To reduce the transformation of phytosterols to their oxidized counterparts, formulation strategies can theoretically be adopted, including the use of microemulsions, microcapsules, micelles, nanoparticles, and liposomes. In addition, co-formulation with antioxidants, such as tocopherols, may prove useful in substantially preventing POP generation. The main objectives of this review article are to evaluate the various analytical strategies that have been adopted for analyzing them. In addition, formulation approaches that can prevent the generation of these oxidation products are proposed. Full article
Show Figures

Figure 1

2019

Jump to: 2021, 2018, 2017

Article
Development of a UV-Stabilized Topical Formulation of Nifedipine for the Treatment of Raynaud Phenomenon and Chilblains
Pharmaceutics 2019, 11(11), 594; https://doi.org/10.3390/pharmaceutics11110594 - 09 Nov 2019
Cited by 8 | Viewed by 4507
Abstract
Raynaud’s Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment [...] Read more.
Raynaud’s Phenomenon is a vascular affliction resulting in pain and blanching of the skin caused by excessive and prolonged constriction of arterioles, usually due to cold exposure. Nifedipine is a vasodilatory calcium channel antagonist, which is used orally as the first-line pharmacological treatment to reduce the incidence and severity of attacks when other interventions fail to alleviate the condition and there is danger of tissue injury. Oral administration of nifedipine, however, is associated with systemic adverse effects, and thus topical administration with nifedipine locally to the extremities would be advantageous. However, nifedipine is subject to rapid photodegradation, which is problematic for exposed skin such as the hands. The goal of this project was to analyze the photostability of a novel topical nifedipine cream to UVA light. The effect of incorporating the photoprotectants rutin, quercetin, and/or avobenzone (BMDBM) into the nifedipine cream on the stability of nifedipine to UVA light exposure and the appearance of degradation products of nifedipine was determined. Rutin and quercetin are flavonoids with antioxidant activity. Both have the potential to improve the photostability of nifedipine by a number of mechanisms that either quench the intermolecular electron transfer of the singlet excited dihydropyridine to the nitrobenzene group or by preventing photoexcitation of nifedipine. Rutin at either 0.1% or 0.5% (w/w) did not improve the stability of nifedipine 2% (w/w) in the cream after UVA exposure up to 3 h. Incorporation of quercetin at 0.5% (w/w) did improve nifedipine stability from 40% (no quercetin) to 77% (with quercetin) of original drug concentration after 3 h UVA exposure. A combination of BMDBM and quercetin was the most effective photoprotectant for maintaining nifedipine concentration following up to 8 h UVA exposure. Full article
Show Figures

Figure 1

Editorial
Drug Delivery Technology Development in Canada
Pharmaceutics 2019, 11(10), 541; https://doi.org/10.3390/pharmaceutics11100541 - 17 Oct 2019
Viewed by 2403
Abstract
Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely [...] Read more.
Canada has a long and rich history of ground-breaking research in drug delivery within academic institutions, pharmaceutical industry and the biotechnology community. Drug delivery refers to approaches, formulations, technologies, and systems for transporting a pharmaceutical compound in the body as needed to safely achieve its desired therapeutic effect. It may involve rational site-targeting, or facilitating systemic pharmacokinetics; in any case, it is typically concerned with both quantity and duration of the presence of the drug in the body. Drug delivery is often approached through a drug’s chemical formulation, medical devices or drug-device combination products. Drug delivery is a concept heavily integrated with dosage form development and selection of route of administration; the latter sometimes even being considered part of the definition. Drug delivery technologies modify drug release profile, absorption, distribution and elimination for the benefit of improving product efficacy and safety, as well as patient convenience and adherence. Over the past 30 years, numerous Canadian-based biotechnology companies have been formed stemming from the inventions conceived and developed within academic institutions. Many have led to the development of important drug delivery products that have enhanced the landscape of drug therapy in the treatment of cancer to infectious diseases. This Special Issue serves to highlight the progress of drug delivery within Canada. We invited articles on all aspects of drug delivery sciences from pre-clinical formulation development to human clinical trials that bring to light the world-class research currently undertaken in Canada for this Special Issue. Full article
Article
Validation of Cadherin HAV6 Peptide in the Transient Modulation of the Blood-Brain Barrier for the Treatment of Brain Tumors
Pharmaceutics 2019, 11(9), 481; https://doi.org/10.3390/pharmaceutics11090481 - 17 Sep 2019
Cited by 9 | Viewed by 4208
Abstract
The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of [...] Read more.
The blood-brain barrier (BBB) poses a major obstacle by preventing potential therapeutic agents from reaching their intended brain targets at sufficient concentrations. While transient disruption of the BBB has been used to enhance chemotherapeutic efficacy in treating brain tumors, limitations in terms of magnitude and duration of BBB disruption exist. In the present study, the preliminary safety and efficacy profile of HAV6, a peptide that binds to the external domains of cadherin, to transiently open the BBB and improve the delivery of a therapeutic agent, was evaluated in a murine brain tumor model. Transient opening of the BBB in response to HAV6 peptide administration was quantitatively characterized using both a gadolinium magnetic resonance imaging (MRI) contrast agent and adenanthin (Ade), the intended therapeutic agent. The effects of HAV6 peptide on BBB integrity and the efficacy of concurrent administration of HAV6 peptide and the small molecule inhibitor, Ade, in the growth and progression of an orthotopic medulloblastoma mouse model using human D425 tumor cells was examined. Systemic administration of HAV6 peptide caused transient, reversible disruption of BBB in mice. Increases in BBB permeability produced by HAV6 were rapid in onset and observed in all regions of the brain examined. Concurrent administration of HAV6 peptide with Ade, a BBB impermeable inhibitor of Peroxiredoxin-1, caused reduced tumor growth and increased survival in mice bearing medulloblastoma. The rapid onset and transient nature of the BBB modulation produced with the HAV6 peptide along with its uniform disruption and biocompatibility is well-suited for CNS drug delivery applications, especially in the treatment of brain tumors. Full article
Show Figures

Graphical abstract

Review
Development and Characterization of the Solvent-Assisted Active Loading Technology (SALT) for Liposomal Loading of Poorly Water-Soluble Compounds
Pharmaceutics 2019, 11(9), 465; https://doi.org/10.3390/pharmaceutics11090465 - 09 Sep 2019
Cited by 58 | Viewed by 6440
Abstract
A large proportion of pharmaceutical compounds exhibit poor water solubility, impacting their delivery. These compounds can be passively encapsulated in the lipid bilayer of liposomes to improve their water solubility, but the loading capacity and stability are poor, leading to burst drug leakage. [...] Read more.
A large proportion of pharmaceutical compounds exhibit poor water solubility, impacting their delivery. These compounds can be passively encapsulated in the lipid bilayer of liposomes to improve their water solubility, but the loading capacity and stability are poor, leading to burst drug leakage. The solvent-assisted active loading technology (SALT) was developed to promote active loading of poorly soluble drugs in the liposomal core to improve the encapsulation efficiency and formulation stability. By adding a small volume (~5 vol%) of a water miscible solvent to the liposomal loading mixture, we achieved complete, rapid loading of a range of poorly soluble compounds and attained a high drug-to-lipid ratio with stable drug retention. This led to improvements in the circulation half-life, tolerability, and efficacy profiles. In this mini-review, we summarize our results from three studies demonstrating that SALT is a robust and versatile platform to improve active loading of poorly water-soluble compounds. We have validated SALT as a tool for improving drug solubility, liposomal loading efficiency and retention, stability, palatability, and pharmacokinetics (PK), while retaining the ability of the compounds to exert pharmacological effects. Full article
Show Figures

Figure 1

Article
Inclusion Complexes of Melphalan with Gemini-Conjugated β-Cyclodextrin: Physicochemical Properties and Chemotherapeutic Efficacy in In-Vitro Tumor Models
Pharmaceutics 2019, 11(9), 427; https://doi.org/10.3390/pharmaceutics11090427 - 22 Aug 2019
Cited by 5 | Viewed by 3127
Abstract
β-cyclodextrin (βCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host–guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, βCD was chemically conjugated to an 18-carbon chain cationic [...] Read more.
β-cyclodextrin (βCD) has been widely explored as an excipient for pharmaceuticals and nutraceuticals as it forms stable host–guest inclusion complexes and enhances the solubility of poorly soluble active agents. To enhance intracellular drug delivery, βCD was chemically conjugated to an 18-carbon chain cationic gemini surfactant which undergoes self-assembly to form nanoscale complexes. The novel gemini surfactant-modified βCD carrier host (hereafter referred to as 18:1βCDg) was designed to combine the solubilization and encapsulation capacity of the βCD macrocycle and the cell-penetrating ability of the gemini surfactant conjugate. Melphalan (Mel), a chemotherapeutic agent for melanoma, was selected as a model for a poorly soluble drug. Characterization of the 18:1βCDg-Mel host–guest complex was carried out using 1D/2D 1H NMR spectroscopy and dynamic light scattering (DLS). The 1D/2D NMR spectral results indicated the formation of stable and well-defined 18:1βCDg-Mel inclusion complexes at the 2:1 host–guest mole ratio; whereas, host–drug interaction was attenuated at greater 18:1βCDg mole ratio due to hydrophobic aggregation that accounts for the reduced Mel solubility. The in vitro evaluations were performed using monolayer, 3D spheroid, and Mel-resistant melanoma cell lines. The 18:1βCDg-Mel complex showed significant enhancement in the chemotherapeutic efficacy of Mel with 2–3-fold decrease in Mel half maximal inhibitory concentration (IC50) values. The findings demonstrate the potential applicability of the 18:1βCDg delivery system as a safe and efficient carrier for a poorly soluble chemotherapeutic in melanoma therapy. Full article
Show Figures

Graphical abstract

Review
Controlled Drug Delivery Systems for Oral Cancer Treatment—Current Status and Future Perspectives
Pharmaceutics 2019, 11(7), 302; https://doi.org/10.3390/pharmaceutics11070302 - 30 Jun 2019
Cited by 78 | Viewed by 11103
Abstract
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked [...] Read more.
Oral squamous cell carcinoma (OSCC), which encompasses the oral cavity-derived malignancies, is a devastating disease causing substantial morbidity and mortality in both men and women. It is the most common subtype of the head and neck squamous cell carcinoma (HNSCC), which is ranked the sixth most common malignancy worldwide. Despite promising advancements in the conventional therapeutic approaches currently available for patients with oral cancer, many drawbacks are still to be addressed; surgical resection leads to permanent disfigurement, altered sense of self and debilitating physiological consequences, while chemo- and radio-therapies result in significant toxicities, all affecting patient wellbeing and quality of life. Thus, the development of novel therapeutic approaches or modifications of current strategies is paramount to improve individual health outcomes and survival, while early tumour detection remains a priority and significant challenge. In recent years, drug delivery systems and chronotherapy have been developed as alternative methods aiming to enhance the benefits of the current anticancer therapies, while minimizing their undesirable toxic effects on the healthy non-cancerous cells. Targeted drug delivery systems have the potential to increase drug bioavailability and bio-distribution at the site of the primary tumour. This review confers current knowledge on the diverse drug delivery methods, potential carriers (e.g., polymeric, inorganic, and combinational nanoparticles; nanolipids; hydrogels; exosomes) and anticancer targeted approaches for oral squamous cell carcinoma treatment, with an emphasis on their clinical relevance in the era of precision medicine, circadian chronobiology and patient-centred health care. Full article
Show Figures

Graphical abstract

Review
A Snapshot of Transdermal and Topical Drug Delivery Research in Canada
Pharmaceutics 2019, 11(6), 256; https://doi.org/10.3390/pharmaceutics11060256 - 01 Jun 2019
Cited by 18 | Viewed by 4207
Abstract
The minimally- or non-invasive delivery of therapeutic agents through the skin has several advantages compared to other delivery routes and plays an important role in medical care routines. The development and refinement of new technologies is leading to a drastic expansion of the [...] Read more.
The minimally- or non-invasive delivery of therapeutic agents through the skin has several advantages compared to other delivery routes and plays an important role in medical care routines. The development and refinement of new technologies is leading to a drastic expansion of the arsenal of drugs that can benefit from this delivery strategy and is further intensifying its impact in medicine. Within Canada, as well, a few research groups have worked on the development of state-of-the-art transdermal delivery technologies. Within this short review, we aim to provide a critical overview of the development of these technologies in the Canadian environment. Full article
Show Figures

Figure 1

Article
Drug Delivery Technology to the CNS in the Treatment of Brain Tumors: The Sherbrooke Experience
Pharmaceutics 2019, 11(5), 248; https://doi.org/10.3390/pharmaceutics11050248 - 27 May 2019
Cited by 8 | Viewed by 3746
Abstract
Drug delivery to the central nervous system (CNS) remains a challenge in neuro-oncology. Despite decades of research in this field, no consensus has emerged as to the best approach to tackle this physiological limitation. Moreover, the relevance of doing so is still sometimes [...] Read more.
Drug delivery to the central nervous system (CNS) remains a challenge in neuro-oncology. Despite decades of research in this field, no consensus has emerged as to the best approach to tackle this physiological limitation. Moreover, the relevance of doing so is still sometimes questioned in the community. In this paper, we present our experience with CNS delivery strategies that have been developed in the laboratory and have made their way to the clinic in a continuum of translational research. Using the intra-arterial (IA) route as an avenue to deliver chemotherapeutics in the treatment of brain tumors, complemented by an osmotic breach of the blood-brain barrier (BBB) in specific situations, we have developed over the years a comprehensive research effort on this specialized topic. Looking at pre-clinical work supporting the rationale for this approach, and presenting results discussing the safety of the strategy, as well as results obtained in the treatment of malignant gliomas and primary CNS lymphomas, this paper intends to comprehensively summarize our work in this field. Full article
Show Figures

Figure 1

Review
Plant/Bacterial Virus-Based Drug Discovery, Drug Delivery, and Therapeutics
Pharmaceutics 2019, 11(5), 211; https://doi.org/10.3390/pharmaceutics11050211 - 03 May 2019
Cited by 31 | Viewed by 6538
Abstract
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant [...] Read more.
Viruses have recently emerged as promising nanomaterials for biotechnological applications. One of the most important applications of viruses is phage display, which has already been employed to identify a broad range of potential therapeutic peptides and antibodies, as well as other biotechnologically relevant polypeptides (including protease inhibitors, minimizing proteins, and cell/organ targeting peptides). Additionally, their high stability, easily modifiable surface, and enormous diversity in shape and size, distinguish viruses from synthetic nanocarriers used for drug delivery. Indeed, several plant and bacterial viruses (e.g., phages) have been investigated and applied as drug carriers. The ability to remove the genetic material within the capsids of some plant viruses and phages produces empty viral-like particles that are replication-deficient and can be loaded with therapeutic agents. This review summarizes the current applications of plant viruses and phages in drug discovery and as drug delivery systems and includes a discussion of the present status of virus-based materials in clinical research, alongside the observed challenges and opportunities. Full article
Show Figures

Figure 1

Article
Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives
Pharmaceutics 2019, 11(4), 185; https://doi.org/10.3390/pharmaceutics11040185 - 16 Apr 2019
Cited by 25 | Viewed by 3580
Abstract
Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol [...] Read more.
Phytosterols are plant sterols recommended as adjuvant therapy for hypercholesterolemia and tocopherols are well-established anti-oxidants. However, thermo-sensitivity, lipophilicity and formulation-dependent efficacy bring challenges in the development of functional foods, enriched with phytosterols and tocopherols. To address this, we developed liposomes containing brassicasterol, campesterol and β-sitosterol obtained from canola oil deodorizer distillate, along with alpha, gamma and delta tocopherol. Three approaches; thin film hydration-homogenization, thin film hydration-ultrasonication and Mozafari method were used for formulation. Validated liquid chromatographic tandem mass spectrometry (LC-MS/MS) was utilized to determine the entrapment efficiency of bioactives. Stability studies of liposomal formulations were conducted before and after pasteurization using high temperature short time (HTST) technique for a month. Vesicle size after homogenization and ultrasonication (<200 nm) was significantly lower than by Mozafari method (>200 nm). However, zeta potential (−9 to −14 mV) was comparable which was adequate for colloidal stability. Entrapment efficiencies were greater than 89% for all the phytosterols and tocopherols formulated by all three methods. Liposomes with optimum particle size and zeta potential were incorporated in model orange juice, showing adequate stability after pasteurization (72 °C for 15 s) for a month. Liposomes containing phytosterols obtained from canola waste along with tocopherols were developed and successfully applied as a food additive using model orange juice. Full article
Show Figures

Figure 1

Article
Investigating the Phospholipid Effect on the Bioaccessibility of Rosmarinic Acid-Phospholipid Complex through a Dynamic Gastrointestinal in Vitro Model
Pharmaceutics 2019, 11(4), 156; https://doi.org/10.3390/pharmaceutics11040156 - 02 Apr 2019
Cited by 25 | Viewed by 3084
Abstract
Phyto-phospholipid complexes have been developed as a common way of improving the oral bioavailability of poorly absorbable phyto-pharmaceuticals; however, the complexation with phospholipids can induce positive or negative effects on the bioaccessibility of such plant-derived active ingredients in different parts of the gastrointestinal [...] Read more.
Phyto-phospholipid complexes have been developed as a common way of improving the oral bioavailability of poorly absorbable phyto-pharmaceuticals; however, the complexation with phospholipids can induce positive or negative effects on the bioaccessibility of such plant-derived active ingredients in different parts of the gastrointestinal tract (GIT). The purpose of this study was to investigate the effects of phospholipid complexation on the bioaccessibility of a rosmarinic acid-phospholipid complex (RA-PLC) using the TNO dynamic intestinal model-1 (TIM-1). Preparation of RA-PLC was confirmed using X-ray diffraction, Fourier-transform infrared spectroscopy, partition coefficient measurement, and Caco-2 monolayer permeation test. Bioaccessibility parameters in different GIT compartments were investigated. Complexation by phospholipids reduced the bioaccessibility of RA in jejunum compartment, while maintaining the ileum bioaccessibility. The overall bioaccessibility of RA-PLC was lower than the unformulated drug, suggesting that the improved oral absorption from a previous animal study could be considered as a net result of decreased bioaccessibility overwhelmed by enhanced intestinal permeability. This study provides insights into the effects of phospholipid on the bioaccessibility of hydrophilic compounds, and analyzes them based on the relationship between bioaccessibility, membrane permeability, and bioavailability. Additionally, TIM-1 shows promise in the evaluation of dosage forms containing materials with complicated effects on bioaccessibility. Full article
Show Figures

Graphical abstract

Review
Challenges and Recent Progress in Oral Drug Delivery Systems for Biopharmaceuticals
Pharmaceutics 2019, 11(3), 129; https://doi.org/10.3390/pharmaceutics11030129 - 19 Mar 2019
Cited by 429 | Viewed by 19641
Abstract
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, [...] Read more.
Routes of drug administration and the corresponding physicochemical characteristics of a given route play significant roles in therapeutic efficacy and short term/long term biological effects. Each delivery method has favorable aspects and limitations, each requiring a specific delivery vehicles design. Among various routes, oral delivery has been recognized as the most attractive method, mainly due to its potential for solid formulations with long shelf life, sustained delivery, ease of administration and intensified immune response. At the same time, a few challenges exist in oral delivery, which have been the main research focus in the field in the past few years. The present work concisely reviews different administration routes as well as the advantages and disadvantages of each method, highlighting why oral delivery is currently the most promising approach. Subsequently, the present work discusses the main obstacles for oral systems and explains the most recent solutions proposed to deal with each issue. Full article
Show Figures

Figure 1

Review
Spatially Specific Liposomal Cancer Therapy Triggered by Clinical External Sources of Energy
Pharmaceutics 2019, 11(3), 125; https://doi.org/10.3390/pharmaceutics11030125 - 16 Mar 2019
Cited by 16 | Viewed by 4225
Abstract
This review explores the use of energy sources, including ultrasound, magnetic fields, and external beam radiation, to trigger the delivery of drugs from liposomes in a tumor in a spatially-specific manner. Each section explores the mechanism(s) of drug release that can be achieved [...] Read more.
This review explores the use of energy sources, including ultrasound, magnetic fields, and external beam radiation, to trigger the delivery of drugs from liposomes in a tumor in a spatially-specific manner. Each section explores the mechanism(s) of drug release that can be achieved using liposomes in conjunction with the external trigger. Subsequently, the treatment’s formulation factors are discussed, highlighting the parameters of both the therapy and the medical device. Additionally, the pre-clinical and clinical trials of each triggered release method are explored. Lastly, the advantages and disadvantages, as well as the feasibility and future outlook of each triggered release method, are discussed. Full article
Show Figures

Figure 1

Review
What Drives Innovation: The Canadian Touch on Liposomal Therapeutics
Pharmaceutics 2019, 11(3), 124; https://doi.org/10.3390/pharmaceutics11030124 - 16 Mar 2019
Cited by 16 | Viewed by 5219
Abstract
Liposomes are considered one of the most successful drug delivery systems (DDS) given their established utility and success in the clinic. In the past 40–50 years, Canadian scientists have made ground-breaking discoveries, many of which were successfully translated to the clinic, leading to [...] Read more.
Liposomes are considered one of the most successful drug delivery systems (DDS) given their established utility and success in the clinic. In the past 40–50 years, Canadian scientists have made ground-breaking discoveries, many of which were successfully translated to the clinic, leading to the formation of biotech companies, the creation of research tools, such as the Lipex Extruder and the NanoAssemblr™, as well as contributing significantly to the development of pharmaceutical products, such as Abelcet®, MyoCet®, Marqibo®, Vyxeos®, and Onpattro™, which are making positive impacts on patients’ health. This review highlights the Canadian contribution to the development of these and other important liposomal technologies that have touched patients. In this review, we try to address the question of what drives innovation: Is it the individual, the teams, the funding, and/or an entrepreneurial spirit that leads to success? From this perspective, it is possible to define how innovation will translate to meaningful commercial ventures and products with impact in the future. We begin with a brief history followed by descriptions of drug delivery technologies influenced by Canadian researchers. We will discuss recent advances in liposomal technologies, including the Metaplex technology from the author’s lab. The latter exemplifies how a nanotechnology platform can be designed based on multidisciplinary groups with expertise in coordination chemistry, nanomedicines, disease, and business to create new therapeutics that can effect better outcomes in patient populations. We conclude that the team is central to the effort; arguing if the team is entrepreneurial and well positioned, the funds needed will be found, but likely not solely in Canada. Full article
Show Figures

Figure 1

Perspective
The Development of Oral Amphotericin B to Treat Systemic Fungal and Parasitic Infections: Has the Myth Been Finally Realized?
Pharmaceutics 2019, 11(3), 99; https://doi.org/10.3390/pharmaceutics11030099 - 26 Feb 2019
Cited by 40 | Viewed by 3478
Abstract
Parenteral amphotericin B has been considered as first-line therapy in the treatment of systemic fungal and parasitic infections, however its use has been associated with a number of limitations including affordability, accessibility, and an array of systemic toxicities. Until very recently, it has [...] Read more.
Parenteral amphotericin B has been considered as first-line therapy in the treatment of systemic fungal and parasitic infections, however its use has been associated with a number of limitations including affordability, accessibility, and an array of systemic toxicities. Until very recently, it has been very challenging to develop a bioavailable formulation of amphotericin B due to its physical chemical properties, limited water and lipid solubility, and poor absorption. This perspective reviews several novel oral Amphotericin B formulations under development that are attempting to overcome these limitations. Full article
Show Figures

Figure 1

2018

Jump to: 2021, 2019, 2017

Communication
Biodistribution of a Radiolabeled Antibody in Mice as an Approach to Evaluating Antibody Pharmacokinetics
Pharmaceutics 2018, 10(4), 262; https://doi.org/10.3390/pharmaceutics10040262 - 05 Dec 2018
Cited by 15 | Viewed by 4942
Abstract
(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. [...] Read more.
(1) Background: Monoclonal antibodies are used in the treatment of multiple conditions including cancer, autoimmune disorders, and infectious diseases. One of the initial steps in the selection of an antibody candidate for further pre-clinical development is determining its pharmacokinetics in small animal models. The use of mass spectrometry and other techniques to determine the fate of these antibodies is laborious and expensive. Here we describe a straightforward and highly reproducible methodology for utilizing radiolabeled antibodies for pharmacokinetics studies. (2) Methods: Commercially available bifunctional linker CHXA” and 111Indium radionuclide were used. A melanin-specific chimeric antibody A1 and an isotype matching irrelevant control A2 were conjugated with the CHXA”, and then radiolabeled with 111In. The biodistribution was performed at 4 and 24 h time points in melanoma tumor-bearing and healthy C57BL/6 female mice. (3) The biodistribution of the melanin-binding antibody showed the significant uptake in the tumor, which increased with time, and very low uptake in healthy melanin-containing tissues such as the retina of the eye and melanized skin. This biodistribution pattern in healthy tissues was very close to that of the isotype matching control antibody. (4) Conclusions: The biodistribution experiment allows us to assess the pharmacokinetics of both antibodies side by side and to make a conclusion regarding the suitability of specific antibodies for further development. Full article
Show Figures

Graphical abstract

Article
Modulation of Hypoxia-Induced Chemoresistance to Polymeric Micellar Cisplatin: The Effect of Ligand Modification of Micellar Carrier Versus Inhibition of the Mediators of Drug Resistance
Pharmaceutics 2018, 10(4), 196; https://doi.org/10.3390/pharmaceutics10040196 - 21 Oct 2018
Cited by 14 | Viewed by 3411
Abstract
Hypoxia can induce chemoresistance, which is a significant clinical obstacle in cancer therapy. Here, we assessed development of hypoxia-induced chemoresistance (HICR) against free versus polymeric cisplatin micelles in a triple negative breast cancer cell line, MDA-MB-231. We then explored two strategies for the [...] Read more.
Hypoxia can induce chemoresistance, which is a significant clinical obstacle in cancer therapy. Here, we assessed development of hypoxia-induced chemoresistance (HICR) against free versus polymeric cisplatin micelles in a triple negative breast cancer cell line, MDA-MB-231. We then explored two strategies for the modulation of HICR against cisplatin micelles: a) the development of actively targeted micelles; and b) combination therapy with modulators of HICR in MDA-MB-231 cells. Actively targeted cisplatin micelles were prepared through surface modification of acetal-poly(ethylene oxide)-poly(α-carboxyl-ε-caprolactone) (acetal-PEO-PCCL) micelles with epidermal growth factor receptor (EGFR)-targeting peptide, GE11 (YHWYGYTPQNVI). Our results showed that hypoxia induced resistance against free and cisplatin micelles in MDA-MB-231 cells. A significant increase in micellar cisplatin uptake was observed in MDA-MB-231 cells that overexpress EGFR, following surface modification of micelles with GE11. This did not lead to increased cytotoxicity of micellar cisplatin, however. On the other hand, the addition of pharmacological inhibitors of key molecules involved in HICR in MDA-MB-231 cells, i.e., inhibitors of hypoxia inducing factor-1 (HIF-1) and signal transducer and activator of transcription 3 (STAT3), substantially enhanced the cytotoxicity of free and cisplatin micelles. The results indicated the potential benefit of combination therapy with HIF-1 and STAT3 inhibitors in overcoming HICR to free or micellar cisplatin. Full article
Show Figures

Graphical abstract

Article
DOX-Vit D, a Novel Doxorubicin Delivery Approach, Inhibits Human Osteosarcoma Cell Proliferation by Inducing Apoptosis While Inhibiting Akt and mTOR Signaling Pathways
Pharmaceutics 2018, 10(3), 144; https://doi.org/10.3390/pharmaceutics10030144 - 04 Sep 2018
Cited by 13 | Viewed by 4057
Abstract
Doxorubicin (DOX) is a very potent and effective anticancer agent. However, the effectiveness of DOX in osteosarcoma is usually limited by the acquired drug resistance. Recently, Vitamin D (Vit-D) was shown to suppress the growth of many human cancer cells. Taken together, we [...] Read more.
Doxorubicin (DOX) is a very potent and effective anticancer agent. However, the effectiveness of DOX in osteosarcoma is usually limited by the acquired drug resistance. Recently, Vitamin D (Vit-D) was shown to suppress the growth of many human cancer cells. Taken together, we synthesized DOX-Vit D by conjugating Vit-D to DOX in order to increase the delivery of DOX into cancer cells and mitigate the chemoresistance associated with DOX. For this purpose, MG63 cells were treated with 10 µM DOX or DOX-Vit D for 24 h. Thereafter, MTT, real-time PCR and western blot analysis were used to determine cell proliferation, genes and proteins expression, respectively. Our results showed that DOX-Vit D, but not DOX, significantly elicited an apoptotic signal in MG63 cells as evidenced by induction of death receptor, Caspase-3 and BCLxs genes. Mechanistically, the DOX-Vit D-induced apoptogens were credited to the activation of p-JNK and p-p38 signaling pathway and the inhibition of proliferative proteins, p-Akt and p-mTOR. Our findings propose that DOX-Vit D suppressed the growth of MG63 cells by inducing apoptosis while inhibiting cell survival and proliferative signaling pathways. DOX-Vit D may serve as a novel drug delivery approach to potentiate the delivery of DOX into cancer cells. Full article
Show Figures

Graphical abstract

Article
Absolute Oral Bioavailability of Creatine Monohydrate in Rats: Debunking a Myth
Pharmaceutics 2018, 10(1), 31; https://doi.org/10.3390/pharmaceutics10010031 - 08 Mar 2018
Cited by 12 | Viewed by 6868
Abstract
Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM [...] Read more.
Creatine is an ergogenic compound used by athletes to enhance performance. Supplementation with creatine monohydrate (CM) has been suggested for musculoskeletal and neurological disorders. Until now, little is known about its pharmacokinetic profile. Our objective was to determine the oral bioavailability of CM and the influence of dose on oral absorption. Rats were dosed orally with low dose (10 mg/kg) or high dose (70 mg/kg) 13C-labeled CM. Blood samples were removed at various time points. Muscle and brain tissue were collected at the conclusion of the study. Plasma and tissue levels of 13C-labeled creatine were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Physiologically based pharmacokinetic (PBPK) models of CM were built using GastroPlus™. These models were used to predict the plasma concentration–time profiles of creatine hydrochloride (CHCL), which has improved aqueous solubility compared to CM. Absolute oral bioavailability for low dose CM was 53% while high dose CM was only 16%. The simulated Cmax of 70 mg/kg CHCL was around 35 μg/mL compared to 14 μg/mL for CM with a predicted oral bioavailability of 66% with CHCL compared to 17% with CM. Our results suggest that the oral bioavailability of CM is less than complete and subject to dose and that further examination of improved dosage formulations of creatine is warranted. Full article
Show Figures

Graphical abstract

Article
Epinephrine in Anaphylaxis: Preclinical Study of Pharmacokinetics after Sublingual Administration of Taste-Masked Tablets for Potential Pediatric Use
Pharmaceutics 2018, 10(1), 24; https://doi.org/10.3390/pharmaceutics10010024 - 11 Feb 2018
Cited by 17 | Viewed by 9641
Abstract
Epinephrine is a life-saving treatment in anaphylaxis. In community settings, a first-aid dose of epinephrine is injected from an auto-injector (EAI). Needle phobia highly contributes to EAI underuse, leading to fatalities—especially in children. A novel rapidly-disintegrating sublingual tablet (RDST) of epinephrine was developed [...] Read more.
Epinephrine is a life-saving treatment in anaphylaxis. In community settings, a first-aid dose of epinephrine is injected from an auto-injector (EAI). Needle phobia highly contributes to EAI underuse, leading to fatalities—especially in children. A novel rapidly-disintegrating sublingual tablet (RDST) of epinephrine was developed in our laboratory as a potential alternative dosage form. The aim of this study was to evaluate the sublingual bioavailability of epinephrine 30 mg as a potential pediatric dose incorporated in our novel taste-masked RDST in comparison with intramuscular (IM) epinephrine 0.15 mg from EAI, the recommended and only available dosage form for children in community settings. We studied the rate and extent of epinephrine absorption in our validated rabbit model (n = 5) using a cross-over design. The positive control was IM epinephrine 0.15 mg from an EpiPen Jr®. The negative control was a placebo RDST. Tablets were placed under the tongue for 2 min. Blood samples were collected at frequent intervals and epinephrine concentrations were measured using HPLC with electrochemical detection. The mean ± SEM maximum plasma concentration (Cmax) of 16.7 ± 1.9 ng/mL at peak time (Tmax) of 21 min after sublingual epinephrine 30 mg did not differ significantly (p > 0.05) from the Cmax of 18.8 ± 1.9 ng/mL at a Tmax of 36 min after IM epinephrine 0.15 mg. The Cmax of both doses was significantly higher than the Cmax of 7.5 ± 1.7 ng/mL of endogenous epinephrine after placebo. These taste-masked RDSTs containing a 30 mg dose of epinephrine have the potential to be used as an easy-to-carry, palatable, non-invasive treatment for anaphylactic episodes for children in community settings. Full article
Show Figures

Graphical abstract

Editorial
Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape—A Summary of This Indispensable Special Issue
Pharmaceutics 2018, 10(1), 13; https://doi.org/10.3390/pharmaceutics10010013 - 16 Jan 2018
Viewed by 3847
Abstract
Canadian Pharmaceutical Scientists have a rich history of groundbreaking research in pharmacokinetics and drug metabolism undertaken primarily throughout its Pharmacy Faculties and within the Pharmaceutical and Biotechnology industry.[...] Full article
Article
Regulation of Hepatic UGT2B15 by Methylation in Adults of Asian Descent
Pharmaceutics 2018, 10(1), 6; https://doi.org/10.3390/pharmaceutics10010006 - 07 Jan 2018
Cited by 5 | Viewed by 4387
Abstract
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex. [...] Read more.
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex. The methylation status of UGT isoforms was determined with Illumina Methylation 450 BeadChip arrays, with genotyping confirmed by sequencing and gene expression confirmed with quantitative reverse transcriptase polymerase chain reaction (q-RT-PCR). The UGT1A3 mRNA was 2-fold higher in females than males (p < 0.05), while UGT1A1 and UGT2B7 mRNA were significantly higher in Pacific Islanders than Caucasians (both p < 0.05). Differential mRNA or methylation did not occur with obesity. The methylation of the UGT2B15 locus cg09189601 in Caucasians was significantly lower than the highly methylated locus in Asians (p < 0.001). Three intergenic loci between UGT2B15 and 2B17 (cg07973162, cg10632656, and cg07952421) showed higher rates of methylation in Caucasians than in Asians (p < 0.001). Levels of UGT2B15 and UGT2B17 mRNA were significantly lower in Asians than Caucasians (p = 0.01 and p < 0.001, respectively). Genotyping and sequencing indicated that only UGT2B15 is regulated by methylation, and low UGT2B17 mRNA is due to a deletion genotype common to Asians. Epigenetic regulation of UGT2B15 may predispose Asians to altered drug and hormone metabolism and begin to explain the increased risks for adverse drug reactions and some cancers in this population. Full article
Show Figures

Graphical abstract

2017

Jump to: 2021, 2019, 2018

Review
An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery
Pharmaceutics 2017, 9(4), 53; https://doi.org/10.3390/pharmaceutics9040053 - 20 Nov 2017
Cited by 786 | Viewed by 26478
Abstract
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded [...] Read more.
The focus of this review is to provide an overview of the chitosan based nanoparticles for various non-parenteral applications and also to put a spotlight on current research including sustained release and mucoadhesive chitosan dosage forms. Chitosan is a biodegradable, biocompatible polymer regarded as safe for human dietary use and approved for wound dressing applications. Chitosan has been used as a carrier in polymeric nanoparticles for drug delivery through various routes of administration. Chitosan has chemical functional groups that can be modified to achieve specific goals, making it a polymer with a tremendous range of potential applications. Nanoparticles (NP) prepared with chitosan and chitosan derivatives typically possess a positive surface charge and mucoadhesive properties such that can adhere to mucus membranes and release the drug payload in a sustained release manner. Chitosan-based NP have various applications in non-parenteral drug delivery for the treatment of cancer, gastrointestinal diseases, pulmonary diseases, drug delivery to the brain and ocular infections which will be exemplified in this review. Chitosan shows low toxicity both in vitro and some in vivo models. This review explores recent research on chitosan based NP for non-parenteral drug delivery, chitosan properties, modification, toxicity, pharmacokinetics and preclinical studies. Full article
Show Figures

Graphical abstract

Article
A High-Performance Liquid Chromatography Assay Method for the Determination of Lidocaine in Human Serum
Pharmaceutics 2017, 9(4), 52; https://doi.org/10.3390/pharmaceutics9040052 - 18 Nov 2017
Cited by 18 | Viewed by 4875
Abstract
Here we report on the development of a selective and sensitive high-performance liquid chromatographic method for the determination of lidocaine in human serum. The extraction of lidocaine and procainamide (internal standard) from serum (0.25 mL) was achieved using diethyl ether under alkaline conditions. [...] Read more.
Here we report on the development of a selective and sensitive high-performance liquid chromatographic method for the determination of lidocaine in human serum. The extraction of lidocaine and procainamide (internal standard) from serum (0.25 mL) was achieved using diethyl ether under alkaline conditions. After liquid–liquid extraction, the separation of analytes was accomplished using reverse phase extraction. The mobile phase, a combination of acetonitrile and monobasic potassium phosphate, was pumped isocratically through a C18 analytical column. The ultraviolet (UV) wavelength was at 277 nm for the internal standard, and subsequently changed to 210 for lidocaine. The assay exhibited excellent linearity (r2 > 0.999) in peak response over the concentration ranges of 50–5000 ng/mL lidocaine HCl in human serum. The mean absolute recoveries for 50 and 1000 ng/mL lidocaine HCl in serum using the present extraction procedure were 93.9 and 80.42%, respectively. The intra- and inter-day coefficients of variation in the serum were <15% at the lowest, and <12% at other concentrations, and the percent error values were less than 9%. The method displayed a high caliber of sensitivity and selectivity for monitoring therapeutic concentrations of lidocaine in human serum. Full article
Show Figures

Graphical abstract

Article
In Vitro Phase I Metabolism of CRV431, a Novel Oral Drug Candidate for Chronic Hepatitis B
Pharmaceutics 2017, 9(4), 51; https://doi.org/10.3390/pharmaceutics9040051 - 09 Nov 2017
Cited by 7 | Viewed by 4440
Abstract
The cytochrome P450-mediated Phase I in vitro metabolism of CRV431 was studied using selective chemical inhibition and recombinant human enzymes. Additionally, the metabolic profile of CRV431 in human, rat, and monkey liver microsomes was investigated. Liver microsomes were incubated for 0–80 min with [...] Read more.
The cytochrome P450-mediated Phase I in vitro metabolism of CRV431 was studied using selective chemical inhibition and recombinant human enzymes. Additionally, the metabolic profile of CRV431 in human, rat, and monkey liver microsomes was investigated. Liver microsomes were incubated for 0–80 min with CRV431, and the metabolite profile was assessed by electrospray ionization liquid chromatography mass spectrometry (ESI-LCMS). CRV431 was extensively metabolized through oxidation to produce various hydroxylated and demethylated species. Species identified included monohydroxylated CRV431 (two distinct products), dihydroxylated CRV431, demethylated CRV431 (two distinct products), demethylated and hydroxylated CRV431 (two distinct products), didemethylated and hydroxylated CRV431, and didemethylated and dihydroxylated CRV431. The magnitude of metabolism was greatest in monkey, followed by human, followed by rat. Importantly, all of the species identified in human microsomes were correspondingly identified in monkey and/or rat microsomes. Human liver microsome studies using selective chemical inhibition, as well as studies using recombinant human cytochrome P450 enzymes, revealed that the major enzymes involved are cytochromes P450 3A4 and 3A5. Enzymes 1A2, 2B6, 2C8, 2C9, 2C19, and 2D6 are not involved in the in vitro metabolism of CRV431. This information will be useful for the further development of CRV431 both preclinically and clinically. Full article
Show Figures

Figure 1

Article
The Role of PXR Genotype and Transporter Expression in the Placental Transport of Lopinavir in Mice
Pharmaceutics 2017, 9(4), 49; https://doi.org/10.3390/pharmaceutics9040049 - 24 Oct 2017
Cited by 5 | Viewed by 4370
Abstract
Lopinavir (LPV), an antiretroviral protease inhibitor frequently prescribed in HIV-positive pregnancies, is a substrate of Abcb1 and Abcc2. As differences in placental expression of these transporters were seen in Pregnane X Receptor (PXR) −/− mice, we examined the impact of placental transporter expression [...] Read more.
Lopinavir (LPV), an antiretroviral protease inhibitor frequently prescribed in HIV-positive pregnancies, is a substrate of Abcb1 and Abcc2. As differences in placental expression of these transporters were seen in Pregnane X Receptor (PXR) −/− mice, we examined the impact of placental transporter expression and fetal PXR genotype on the fetal accumulation of LPV. PXR +/− dams bearing PXR +/+, PXR +/−, and PXR −/− fetuses were generated by mating PXR +/− female mice with PXR +/− males. On gestational day 17, dams were administered 10 mg/kg LPV (i.v.) and sacrificed 30 min post injection. Concentrations of LPV in maternal plasma and fetal tissue were measured by LC-MS/MS, and transporter expression was determined by quantitative RT-PCR. As compared to the PXR +/+ fetal units, placental expression of Abcb1a, Abcc2, and Abcg2 mRNA were two- to three-fold higher in PXR −/− fetuses (p < 0.05). Two-fold higher fetal:maternal LPV concentration ratios were also seen in the PXR +/+ as compared to the PXR −/− fetuses (p < 0.05), and this significantly correlated to the placental expression of Abcb1a (r = 0.495; p < 0.005). Individual differences in the expression of placental transporters due to genetic or environmental factors can impact fetal exposure to their substrates. Full article
Show Figures

Graphical abstract

Article
Modeling of Body Weight Metrics for Effective and Cost-Efficient Conventional Factor VIII Dosing in Hemophilia A Prophylaxis
Pharmaceutics 2017, 9(4), 47; https://doi.org/10.3390/pharmaceutics9040047 - 17 Oct 2017
Cited by 17 | Viewed by 4890
Abstract
The total body weight-based dosing strategy currently used in the prophylactic treatment of hemophilia A may not be appropriate for all populations. The assumptions that guide weight-based dosing are not valid in overweight and obese populations, resulting in overdosing and ineffective resource utilization. [...] Read more.
The total body weight-based dosing strategy currently used in the prophylactic treatment of hemophilia A may not be appropriate for all populations. The assumptions that guide weight-based dosing are not valid in overweight and obese populations, resulting in overdosing and ineffective resource utilization. We explored different weight metrics including lean body weight, ideal body weight, and adjusted body weight to determine an alternative dosing strategy that is both safe and resource-efficient in normal and overweight/obese adult patients. Using a validated population pharmacokinetic model, we simulated a variety of dosing regimens using different doses, weight metrics, and frequencies; we also investigated the implications of assuming various levels of endogenous factor production. Ideal body weight performed the best across all of the regimens explored, maintaining safety while moderating resource consumption for overweight and obese patients. Full article
Show Figures

Figure 1

Article
Disposition, Metabolism and Histone Deacetylase and Acetyltransferase Inhibition Activity of Tetrahydrocurcumin and Other Curcuminoids
Pharmaceutics 2017, 9(4), 45; https://doi.org/10.3390/pharmaceutics9040045 - 12 Oct 2017
Cited by 23 | Viewed by 5539
Abstract
Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, [...] Read more.
Tetrahydrocurcumin (THC), curcumin and calebin-A are curcuminoids found in turmeric (Curcuma longa). Curcuminoids have been established to have a variety of pharmacological activities and are used as natural health supplements. The purpose of this study was to identify the metabolism, excretion, antioxidant, anti-inflammatory and anticancer properties of these curcuminoids and to determine disposition of THC in rats after oral administration. We developed a UHPLC–MS/MS assay for THC in rat serum and urine. THC shows multiple redistribution phases with corresponding increases in urinary excretion rate. In-vitro antioxidant activity, histone deacetylase (HDAC) activity, histone acetyltransferase (HAT) activity and anti-inflammatory inhibitory activity were examined using commercial assay kits. Anticancer activity was determined in Sup-T1 lymphoma cells. Our results indicate THC was poorly absorbed after oral administration and primarily excreted via non-renal routes. All curcuminoids exhibited multiple pharmacological effects in vitro, including potent antioxidant activity as well as inhibition of CYP2C9, CYP3A4 and lipoxygenase activity without affecting the release of TNF-α. Unlike curcumin and calebin-A, THC did not inhibit HDAC1 and PCAF and displayed a weaker growth inhibition activity against Sup-T1 cells. We show evidence for the first time that curcumin and calebin-A inhibit HAT and PCAF, possibly through a Michael-addition mechanism. Full article
Show Figures

Graphical abstract

Article
Altered Protein Expression of Cardiac CYP2J and Hepatic CYP2C, CYP4A, and CYP4F in a Mouse Model of Type II Diabetes—A Link in the Onset and Development of Cardiovascular Disease?
Pharmaceutics 2017, 9(4), 44; https://doi.org/10.3390/pharmaceutics9040044 - 12 Oct 2017
Cited by 14 | Viewed by 4690
Abstract
Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective) and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic). Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse [...] Read more.
Arachidonic acid can be metabolized by cytochrome P450 (CYP450) enzymes in a tissue- and cell-specific manner to generate vasoactive products such as epoxyeicosatrienoic acids (EETs-cardioprotective) and hydroxyeicosatetraenoic acids (HETEs-cardiotoxic). Type II diabetes is a well-recognized risk factor for developing cardiovascular disease. A mouse model of Type II diabetes (C57BLKS/J-db/db) was used. After sacrifice, livers and hearts were collected, washed, and snap frozen. Total proteins were extracted. Western blots were performed to assess cardiac CYP2J and hepatic CYP2C, CYP4A, and CYP4F protein expression, respectively. Significant decreases in relative protein expression of cardiac CYP2J and hepatic CYP2C were observed in Type II diabetes animals compared to controls (CYP2J: 0.80 ± 0.03 vs. 1.05 ± 0.06, n = 20, p < 0.001); (CYP2C: 1.56 ± 0.17 vs. 2.21 ± 0.19, n = 19, p < 0.01). In contrast, significant increases in relative protein expression of both hepatic CYP4A and CYP4F were noted in Type II diabetes mice compared to controls (CYP4A: 1.06 ± 0.09 vs. 0.18 ± 0.01, n = 19, p < 0.001); (CYP4F: 2.53 ± 0.22 vs. 1.10 ± 0.07, n = 19, p < 0.001). These alterations induced by Type II diabetes in the endogenous pathway (CYP450) of arachidonic acid metabolism may increase the risk for cardiovascular disease by disrupting the fine equilibrium between cardioprotective (CYP2J/CYP2C-generated) and cardiotoxic (CYP4A/CYP4F-generated) metabolites of arachidonic acid. Full article
Show Figures

Graphical abstract

Review
Revolutionizing Therapeutic Drug Monitoring with the Use of Interstitial Fluid and Microneedles Technology
Pharmaceutics 2017, 9(4), 43; https://doi.org/10.3390/pharmaceutics9040043 - 11 Oct 2017
Cited by 53 | Viewed by 7253
Abstract
While therapeutic drug monitoring (TDM) that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic) and those with fragile veins. In the context of finding [...] Read more.
While therapeutic drug monitoring (TDM) that uses blood as the biological matrix is the traditional gold standard, this practice may be impossible, impractical, or unethical for some patient populations (e.g., elderly, pediatric, anemic) and those with fragile veins. In the context of finding an alternative biological matrix for TDM, this manuscript will provide a qualitative review on: (1) the principles of TDM; (2) alternative matrices for TDM; (3) current evidence supporting the use of interstitial fluid (ISF) for TDM in clinical models; (4) the use of microneedle technologies, which is potentially minimally invasive and pain-free, for the collection of ISF; and (5) future directions. The current state of knowledge on the use of ISF for TDM in humans is still limited. A thorough literature review indicates that only a few drug classes have been investigated (i.e., anti-infectives, anticonvulsants, and miscellaneous other agents). Studies have successfully demonstrated techniques for ISF extraction from the skin but have failed to demonstrate commercial feasibility of ISF extraction followed by analysis of its content outside the ISF-collecting microneedle device. In contrast, microneedle-integrated biosensors built to extract ISF and perform the biomolecule analysis on-device, with a key feature of not needing to transfer ISF to a separate instrument, have yielded promising results that need to be validated in pre-clinical and clinical studies. The most promising applications for microneedle-integrated biosensors is continuous monitoring of biomolecules from the skin’s ISF. Conducting TDM using ISF is at the stage where its clinical utility should be investigated. Based on the advancements described in the current review, the immediate future direction for this area of research is to establish the suitability of using ISF for TDM in human models for drugs that have been found suitable in pre-clinical experiments. Full article
Show Figures

Graphical abstract

Article
Study of Statin- and Loratadine-Induced Muscle Pain Mechanisms Using Human Skeletal Muscle Cells
Pharmaceutics 2017, 9(4), 42; https://doi.org/10.3390/pharmaceutics9040042 - 10 Oct 2017
Cited by 4 | Viewed by 5440
Abstract
Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the [...] Read more.
Many drugs can cause unexpected muscle disorders, often necessitating the cessation of an effective medication. Inhibition of monocarboxylate transporters (MCTs) may potentially lead to perturbation of l-lactic acid homeostasis and muscular toxicity. Previous studies have shown that statins and loratadine have the potential to inhibit l-lactic acid efflux by MCTs (MCT1 and 4). The main objective of this study was to confirm the inhibitory potentials of atorvastatin, simvastatin (acid and lactone forms), rosuvastatin, and loratadine on l-lactic acid transport using primary human skeletal muscle cells (SkMC). Loratadine (IC50 31 and 15 µM) and atorvastatin (IC50 ~130 and 210 µM) demonstrated the greatest potency for inhibition of l-lactic acid efflux at pH 7.0 and 7.4, respectively (~2.5-fold l-lactic acid intracellular accumulation). Simvastatin acid exhibited weak inhibitory potency on l-lactic acid efflux with an intracellular lactic acid increase of 25–35%. No l-lactic acid efflux inhibition was observed for simvastatin lactone or rosuvastatin. Pretreatment studies showed no change in inhibitory potential and did not affect lactic acid transport for all tested drugs. In conclusion, we have demonstrated that loratadine and atorvastatin can inhibit the efflux transport of l-lactic acid in SkMC. Inhibition of l-lactic acid efflux may cause an accumulation of intracellular l-lactic acid leading to the reported drug-induced myotoxicity. Full article
Show Figures

Figure 1

Review
Predicting Oral Drug Absorption: Mini Review on Physiologically-Based Pharmacokinetic Models
Pharmaceutics 2017, 9(4), 41; https://doi.org/10.3390/pharmaceutics9040041 - 26 Sep 2017
Cited by 99 | Viewed by 13333
Abstract
Most marketed drugs are administered orally, despite the complex process of oral absorption that is difficult to predict. Oral bioavailability is dependent on the interplay between many processes that are dependent on both compound and physiological properties. Because of this complexity, computational oral [...] Read more.
Most marketed drugs are administered orally, despite the complex process of oral absorption that is difficult to predict. Oral bioavailability is dependent on the interplay between many processes that are dependent on both compound and physiological properties. Because of this complexity, computational oral physiologically-based pharmacokinetic (PBPK) models have emerged as a tool to integrate these factors in an attempt to mechanistically capture the process of oral absorption. These models use inputs from in vitro assays to predict the pharmacokinetic behavior of drugs in the human body. The most common oral PBPK models are compartmental approaches, in which the gastrointestinal tract is characterized as a series of compartments through which the drug transits. The focus of this review is on the development of oral absorption PBPK models, followed by a brief discussion of the major applications of oral PBPK models in the pharmaceutical industry. Full article
Show Figures

Figure 1

Article
Tissue Specific Modulation of cyp2c and cyp3a mRNA Levels and Activities by Diet-Induced Obesity in Mice: The Impact of Type 2 Diabetes on Drug Metabolizing Enzymes in Liver and Extra-Hepatic Tissues
Pharmaceutics 2017, 9(4), 40; https://doi.org/10.3390/pharmaceutics9040040 - 26 Sep 2017
Cited by 21 | Viewed by 6011
Abstract
Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The [...] Read more.
Various diseases such as type 2 diabetes (T2D) may alter drug clearance. The objective of this study was to evaluate the effects of T2D on CYP450 expressions and activities using high-fat diet (HFD) as a model of obesity-dependent diabetes in C57BL6 mice. The cyp450 mRNA expression levels for 15 different isoforms were determined in the liver and extra-hepatic tissues (kidneys, lungs and heart) of HFD-treated animals (n = 45). Modulation of cyp450 metabolic activities by HFD was assessed using eight known substrates for specific human ortholog CYP450 isoforms: in vitro incubations were conducted with liver and extra-hepatic microsomes. Expression levels of cyp3a11 and cyp3a25 mRNA were decreased in the liver (>2–14-fold) and kidneys (>2-fold) of HFD groups which correlated with a significant reduction in midazolam metabolism (by 21- and 5-fold in hepatic and kidney microsomes, respectively, p < 0.001). HFD was associated with decreased activities of cyp2b and cyp2c subfamilies in all organs tested except in the kidneys (for tolbutamide). Other cyp450 hepatic activities were minimally or not affected by HFD. Taken together, our data suggest that substrate-dependent and tissue-dependent modulation of cyp450 metabolic capacities by early phases of T2D are observed, which could modulate drug disposition and pharmacological effects in various tissues. Full article
Show Figures

Figure 1

Review
Augmented Renal Clearance in Critical Illness: An Important Consideration in Drug Dosing
Pharmaceutics 2017, 9(3), 36; https://doi.org/10.3390/pharmaceutics9030036 - 16 Sep 2017
Cited by 91 | Viewed by 8948
Abstract
Augmented renal clearance (ARC) is a manifestation of enhanced renal function seen in critically ill patients. The use of regular unadjusted doses of renally eliminated drugs in patients with ARC might lead to therapy failure. The purpose of this scoping review was to [...] Read more.
Augmented renal clearance (ARC) is a manifestation of enhanced renal function seen in critically ill patients. The use of regular unadjusted doses of renally eliminated drugs in patients with ARC might lead to therapy failure. The purpose of this scoping review was to provide and up-to-date summary of the available evidence pertaining to the phenomenon of ARC. A literature search of databases of available evidence in humans, with no language restriction, was conducted. Databases searched were MEDLINE (1946 to April 2017), EMBASE (1974 to April 2017) and the Cochrane Library (1999 to April 2017). A total of 57 records were included in the present review: 39 observational studies (25 prospective, 14 retrospective), 6 case reports/series and 12 conference abstracts. ARC has been reported to range from 14–80%. ARC is currently defined as an increased creatinine clearance of greater than 130 mL/min/1.73 m2 best measured by 8–24 h urine collection. Patients exhibiting ARC tend to be younger (<50 years old), of male gender, had a recent history of trauma, and had lower critical illness severity scores. Numerous studies have reported antimicrobials treatment failures when using standard dosing regimens in patients with ARC. In conclusion, ARC is an important phenomenon that might have significant impact on outcome in critically ill patients. Identifying patients at risk, using higher doses of renally eliminated drugs or use of non-renally eliminated alternatives might need to be considered in ICU patients with ARC. More research is needed to solidify dosing recommendations of various drugs in patients with ARC. Full article
Show Figures

Figure 1

Article
Pharmacokinetic and Toxicodynamic Characterization of a Novel Doxorubicin Derivative
Pharmaceutics 2017, 9(3), 35; https://doi.org/10.3390/pharmaceutics9030035 - 13 Sep 2017
Cited by 25 | Viewed by 5912
Abstract
Doxorubicin (Dox) is an effective anti-cancer medication with poor oral bioavailability and systemic toxicities. DoxQ was developed by conjugating Dox to the lymphatically absorbed antioxidant quercetin to improve Dox’s bioavailability and tolerability. The purpose of this study was to characterize the pharmacokinetics and [...] Read more.
Doxorubicin (Dox) is an effective anti-cancer medication with poor oral bioavailability and systemic toxicities. DoxQ was developed by conjugating Dox to the lymphatically absorbed antioxidant quercetin to improve Dox’s bioavailability and tolerability. The purpose of this study was to characterize the pharmacokinetics and safety of Dox after intravenous (IV) and oral (PO) administration of DoxQ or Dox (10 mg/kg) and investigate the intestinal lymphatic delivery of Dox after PO DoxQ administration in male Sprague–Dawley rats. Drug concentrations in serum, urine, and lymph were quantified by HPLC with fluorescence detection. DoxQ intact IV showed a 5-fold increase in the area under the curve (AUC)—18.6 ± 1.98 compared to 3.97 ± 0.71 μg * h/mL after Dox—and a significant reduction in the volume of distribution (Vss): 0.138 ± 0.015 versus 6.35 ± 1.06 L/kg. The fraction excreted unchanged in urine (fe) of IV DoxQ and Dox was ~5% and ~11%, respectively. Cumulative amounts of Dox in the mesenteric lymph fluid after oral DoxQ were twice as high as Dox in a mesenteric lymph duct cannulation rat model. Oral DoxQ increased AUC of Dox by ~1.5-fold compared to after oral Dox. Concentrations of β-N-Acetylglucosaminidase (NAG) but not cardiac troponin (cTnI) were lower after IV DoxQ than Dox. DoxQ altered the pharmacokinetic disposition of Dox, improved its renal safety and oral bioavailability, and is in part transported through intestinal lymphatics. Full article
Show Figures

Graphical abstract

Review
Revisiting the Latency of Uridine Diphosphate-Glucuronosyltransferases (UGTs)—How Does the Endoplasmic Reticulum Membrane Influence Their Function?
Pharmaceutics 2017, 9(3), 32; https://doi.org/10.3390/pharmaceutics9030032 - 30 Aug 2017
Cited by 14 | Viewed by 8962
Abstract
Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to [...] Read more.
Uridine diphosphate-glucuronosyltransferases (UGTs) are phase 2 conjugation enzymes mainly located in the endoplasmic reticulum (ER) of the liver and many other tissues, and can be recovered in artificial ER membrane preparations (microsomes). They catalyze glucuronidation reactions in various aglycone substrates, contributing significantly to the body’s chemical defense mechanism. There has been controversy over the last 50 years in the UGT field with respect to the explanation for the phenomenon of latency: full UGT activity revealed by chemical or physical disruption of the microsomal membrane. Because latency can lead to inaccurate measurements of UGT activity in vitro, and subsequent underprediction of drug clearance in vivo, it is important to understand the mechanisms behind this phenomenon. Three major hypotheses have been advanced to explain UGT latency: compartmentation, conformation, and adenine nucleotide inhibition. In this review, we discuss the evidence behind each hypothesis in depth, and suggest some additional studies that may reveal more information on this intriguing phenomenon. Full article
Show Figures

Graphical abstract

Article
Pharmacokinetic Analysis of an Oral Multicomponent Joint Dietary Supplement (Phycox®) in Dogs
Pharmaceutics 2017, 9(3), 30; https://doi.org/10.3390/pharmaceutics9030030 - 18 Aug 2017
Cited by 7 | Viewed by 6080
Abstract
Despite the lack of safety, efficacy and pharmacokinetic (PK) studies, multicomponent dietary supplements (nutraceuticals) have become increasingly popular as primary or adjunct therapies for clinical osteoarthritis in veterinary medicine. Phycox® is a line of multicomponent joint support supplements marketed for joint health [...] Read more.
Despite the lack of safety, efficacy and pharmacokinetic (PK) studies, multicomponent dietary supplements (nutraceuticals) have become increasingly popular as primary or adjunct therapies for clinical osteoarthritis in veterinary medicine. Phycox® is a line of multicomponent joint support supplements marketed for joint health in dogs and horses. Many of the active constituents are recognized anti-inflammatory and antioxidant agents. Due to a lack of PK studies in the literature for the product, a pilot PK study of select constituents in Phycox® was performed in healthy dogs. Two novel methods of analysis were developed and validated for quantification of glucosamine and select polyphenols using liquid chromatography-tandem mass spectrometry. After a single oral (PO) administrated dose of Phycox®, a series of blood samples from dogs were collected for 24 h post-dose and analyzed for concentrations of glucosamine HCl, hesperetin, resveratrol and naringenin. Non-compartmental PK analyses were carried out. Glucosamine was detected up to 8 h post-dose with a Tmax of 2 h and Cmax of 9.69 μg/mL. The polyphenols were not found at detectable concentrations in serum samples. Co-administration of glucosamine in the Phycox® formulation may enhance the absorption of glucosamine as determined by comparison of glucosamine PK data in the literature. Full article
Show Figures

Graphical abstract

Article
Theophylline-7β-d-Ribofuranoside (Theonosine), a New Theophylline Metabolite Generated in Human and Animal Lung Tissue
Pharmaceutics 2017, 9(3), 28; https://doi.org/10.3390/pharmaceutics9030028 - 14 Aug 2017
Cited by 1 | Viewed by 5546
Abstract
While assessing the ability of mammalian lung tissue to metabolize theophylline, a new metabolite was isolated and characterized. The metabolite was produced by the microsomal fraction of lungs from several species, including rat, rabbit, dog, pig, sheep and human tissue. Metabolite production was [...] Read more.
While assessing the ability of mammalian lung tissue to metabolize theophylline, a new metabolite was isolated and characterized. The metabolite was produced by the microsomal fraction of lungs from several species, including rat, rabbit, dog, pig, sheep and human tissue. Metabolite production was blocked by boiling the microsomal tissue. This new metabolite, theophylline-7β-d-ribofuranoside (theonosine), was confirmed by several spectral methods and by comparison to an authentic synthetic compound. Tissue studies from rats, rabbits, dogs, and humans for cofactor involvement demonstrated an absolute requirement for NADP and enhanced metabolite production in the presence of magnesium ion. It remains to be demonstrated whether theonosine may contribute to the known pharmacological effects of theophylline. Full article
Show Figures

Graphical abstract

Review
Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain: An Emerging Therapeutic Target
Pharmaceutics 2017, 9(1), 9; https://doi.org/10.3390/pharmaceutics9010009 - 20 Feb 2017
Cited by 39 | Viewed by 6786
Abstract
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, [...] Read more.
Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed the role of 20-HETE in the kidney, liver, lung, and brain during physiological and pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, and it is associated with liver cirrhotic ascites. In the respiratory system, 20-HETE plays a role in pulmonary cell survival, pulmonary vascular tone and tone of the airways. As for the brain, 20-HETE is involved in cerebral I/R injury. Moreover, 20-HETE has angiogenic and mitogenic properties and thus helps in tumor promotion. Several inhibitors and inducers of the synthesis of 20-HETE as well as 20-HETE analogues and antagonists are recently available and could be promising therapeutic options for the treatment of many disease states in the future. Full article
Show Figures

Graphical abstract

Back to TopTop