Skin Performance of Drug Delivery Systems: Scope, Challenges and Future Research and Regulatory Prospects

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Delivery and Controlled Release".

Deadline for manuscript submissions: closed (30 September 2022) | Viewed by 76802

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
Interests: nanoplatforms for brain and skin delivery; innovative biocompatible excipients; poorly water-soluble drugs; physicochemical/in vitro/in silico characterization methods; in vivo pharmacokinetics in rats
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
Interests: (trans)dermal delivery systems; film-forming polymers; polysaccharide excipients; in vitro/in vivo characterization; tape stripping
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Skin performance is an umbrella term for diverse attributes of topical products, ranging from bulk aesthetics to permeation testing. Although recent regulatory guidelines favour a patient-focused approach to topical product design, clear input on the suitable characterization techniques is often lacking, leaving opportunity for researchers in the field to contribute through novel or optimised testing protocols. Patient acceptability and adherence rely on a complex interplay of formulation attributes possibly discerned by rheology, texture, tribology and/or sensory profiling. The feel attributed to conventional dosage forms in terms of emolliency or occlusion is acknowledged, but inadequately assessed in case of innovative delivery systems. Finally, the transformation or metamorphosis phenomenon of certain formulations upon topical application needs special consideration, being directly responsible for effective drug delivery revealed via drug release and permeation testing. Therefore, both patient expectations and regulatory inclinations of topical formulations imply a need for tailored characterisation approaches.

Dr. Snezana Savic
Dr. Ivana Pantelić
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • topical drug delivery systems
  • formulation metamorphosis
  • patient acceptability
  • analysis of texture
  • rheology
  • tribology
  • substantivity
  • sensory profiling
  • in silico/in vitro/in vivo efficacy testing of skin performance

Published Papers (26 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 23375 KiB  
Article
Nanocellulose-Based Film-Forming Hydrogels for Improved Outcomes in Atopic Skin
by Katarina Bolko Seljak, Barbara Sterle Zorec and Mirjam Gosenca Matjaž
Pharmaceutics 2023, 15(7), 1918; https://doi.org/10.3390/pharmaceutics15071918 - 10 Jul 2023
Cited by 1 | Viewed by 1067
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by impaired skin barrier function. Amongst the various dermal formulations that are being used and/or investigated for AD treatment, one of the advanced approaches is the use of hydrogels as film-forming systems that [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by impaired skin barrier function. Amongst the various dermal formulations that are being used and/or investigated for AD treatment, one of the advanced approaches is the use of hydrogels as film-forming systems that are applied directly to the skin and have the added value of providing a physical barrier, which is lacking in atopic skin. Novel film-forming hydrogels based on two different nanocrystalline celluloses (NCCs) in combination with one of two natural polymers (alginate or pectin) were developed for incorporation of betamethasone dipropionate (BDP). Initially, the low water solubility of BDP was resolved by prior dissolution in a self-microemulsifying drug delivery system (SMEDDS). The mixture of Kolliphor® EL/Capryol® 90 in a ratio of 8/2 was chosen on the merit of its high BDP-saturated solubility and no BDP precipitation upon water dilution, enabling BDP to remain dissolved after incorporation into hydrogels. The solvent evaporation method was used to prepare the films, and their high water retention capacity was confirmed in vitro on artificial membranes and pig ear skin. The presented results thus confirm NCC-based film-forming hydrogels as a very promising drug delivery system for AD treatment. Full article
Show Figures

Figure 1

20 pages, 5312 KiB  
Article
Efficient Development of Green Emulsifier/Emollient-Based Emulsion Vehicles: From RSM Optimal Experimental Design to Abridged In Vivo Assessment
by Mila Vukašinović, Sanela Savić, Nebojša Cekić, Tanja Ilić, Ivana Pantelić and Snežana D. Savić
Pharmaceutics 2023, 15(2), 486; https://doi.org/10.3390/pharmaceutics15020486 - 01 Feb 2023
Cited by 3 | Viewed by 1991
Abstract
Since natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. [...] Read more.
Since natural-origin, sustainable ingredients are preferred by modern consumers, novel emulsifiers and emollients keep entering the market. This study hypothesizes that a combination of in silico, instrumental tools and simplified sensory studies could be used to efficiently characterize emulsions in a shorter timeframe. A total of 22 rather simple o/w emulsions were prepared by a time/energy-saving emulsification process. A natural mixed emulsifier (Lauryl Glucoside/Myristyl Glucoside/Polyglyceryl-6 Laurate) and two emollients (both with INCI name C15–19 Alkane) were used. The performed D-optimal experimental design within the response surface method (RSM) significantly narrowed down the number of samples about to enter the stage of texture, friction and sensory studies to the samples comprising 30% of a respective Emogreen emollient and 2% or 3% of the emulsifier. The sample comprising 2% emulsifier/30% Emogreen® L15 showed significantly higher firmness (42.12 mN) when compared to the one with 2% emulsifier/30% Emogreen® L19 (33.62 mN), which was somewhat unexpected considering the emollients’ inherent viscosity values (4.5 mPa·s for L15 and 9 mPa·s for L19). The sample with 2% emulsifier/30% Emogreen® L19 managed to maintain the lowest friction, while the one with 3% emulsifier/30% Emogreen® L19 released its full lubricating potential in the second part of the measurement (30–60 s). The obtained results revealed the strengths and weaknesses of each formulation, narrowing down their possible applications in the early development stage. Full article
Show Figures

Figure 1

19 pages, 2681 KiB  
Article
Film Forming Systems for Delivery of Active Molecules into and across the Skin
by Elka Touitou, Hiba Natsheh and Jana Zailer
Pharmaceutics 2023, 15(2), 397; https://doi.org/10.3390/pharmaceutics15020397 - 24 Jan 2023
Viewed by 1993
Abstract
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the [...] Read more.
We have investigated delivery systems that can form a structured matrix film on the skin after their application. In a previous work, we have shown that Weblike film forming systems (also called Pouches Drug Delivery Systems, PDDS) enable enhanced skin delivery of the incorporated molecules. These delivery systems are composed of one or more phospholipids, a short-chain alcohol, a polymer and optionally water. In this work, we continue the investigation and characterization of Weblike carriers focusing on some factors affecting the delivery properties such as components concentration and mode of application on the skin. Upon non-occluded application on the skin, the systems dry rapidly, forming a web-like structured film. Lidocaine, Ibuprofen, FITC and Cannabidiol are molecules with various physico-chemical properties that were incorporated in the carrier. The systems were tested in a number of in vitro and in vivo experiments. Results of the in vitro permeation of Ibuprofen through porcine skin indicated two-fold delivery through the skin of Ibuprofen when applied from our Weblike system in comparison with a nanovesicular carrier, the ethosome. We also have investigated weblike systems containing hemp seed oil (HSO). This addition enhanced the film’s ability to deliver lipophilic molecules to the deeper skin layers, leading to an improved pharmacodynamic effect. In analgesic tests carried out in a pain mice model following one hour application of CBD in Weblike system with and without HSO, the number of writhing episodes was decreased from 29 in the untreated animals to 9.5 and 18.5 writhes, respectively. The results of our work open the way towards a further investigation of Weblike film forming systems containing drugs for improved dermal and transdermal treatment of various ailments. Full article
Show Figures

Figure 1

11 pages, 4031 KiB  
Article
Topical Formulation of Nano Spray-Dried Levocetirizine Dihydrochloride against Allergic Edema
by Mirella Mirankó, Judit Tóth, Andrea Fodor-Kardos, Krisztina Móricz, Antal Balázs Szenes-Nagy, Attila Gácsi, Tamás Spaits, János Gyenis and Tivadar Feczkó
Pharmaceutics 2022, 14(12), 2577; https://doi.org/10.3390/pharmaceutics14122577 - 23 Nov 2022
Cited by 1 | Viewed by 1441
Abstract
Levocetirizine dihydrochloride active ingredient was microencapsulated using nano spray-drying technology for preparing microparticles containing topical gel against edema. Hydroxyl propyl methyl cellulose (HPMC) was used as a carrier polymer during spray drying. The active ingredient content of the nano spray-dried products was 52.81% [...] Read more.
Levocetirizine dihydrochloride active ingredient was microencapsulated using nano spray-drying technology for preparing microparticles containing topical gel against edema. Hydroxyl propyl methyl cellulose (HPMC) was used as a carrier polymer during spray drying. The active ingredient content of the nano spray-dried products was 52.81% (w/w) and 51.33% (w/w) for ex vivo and in vivo experiments, respectively, and the average particle size was 2.6 µm. X-ray diffraction analysis indicated an amorphous state of the active ingredient embedded in the amorphous matrix of the polymer. Dermal oil gels composed of Miglyol 812 gelated by Dermofeel viscolid included 5% (w/w) (for ex vivo) and 10% (w/w) (for in vivo) active ingredient without or with 0.05% (w/w) menthol penetration enhancer. Qualitative ex vivo penetration studies using a confocal Raman microscopic correlation mapping were executed on human abdominal skin. The results showed that the active ingredient was enriched in the epidermis and upper dermis layer of the skin using oleogel loaded with the nano spray-dried drug-HPMC composite. Menthol addition to the oleogel resulted in the concentration of levocetirizine in the dermis. In vivo tests were performed on a mouse model of croton oil-induced ear edema. Negative control and Fenistil-treated groups were compared using the prepared oil gels with and without menthol. Without penetration enhancer, 20 µL of our oil gel loaded with nano spray-dried levocetirizine dihydrochloride composite showed similar effectiveness to the same volume of Fenistil gel, while 5 µL menthol containing sample was sufficient to eliminate the skin irritation similarly to 20 µL Fenistil. Full article
Show Figures

Figure 1

16 pages, 3993 KiB  
Article
Influence of Mechanical Skin Treatments on Dermal Penetration Efficacy of Active Ingredients
by Cornelia M. Keck, Em-on Chaiprateep, Henriette Dietrich and Soma Sengupta
Pharmaceutics 2022, 14(9), 1788; https://doi.org/10.3390/pharmaceutics14091788 - 26 Aug 2022
Cited by 3 | Viewed by 2508
Abstract
The effective dermal penetration of active ingredients (AI) is a major task in the formulation of topical products. Besides the vehicle, the mechanical skin treatments are also considered to impact the penetration efficacy of AI. In particular, professional skin treatments, i.e., professional cosmetic [...] Read more.
The effective dermal penetration of active ingredients (AI) is a major task in the formulation of topical products. Besides the vehicle, the mechanical skin treatments are also considered to impact the penetration efficacy of AI. In particular, professional skin treatments, i.e., professional cosmetic skin treatments, are considered to be optimal for the dermal delivery of AI. However, a systematic study that proves these theories is not yet available and was therefore performed in this study while utilizing an ex vivo porcine ear model with subsequent digital image analysis. Hydrophilic and lipophilic fluorescent dyes were used as AI surrogates and were applied onto the skin without and with professional skin treatments. The skin hydration and the penetration efficacy were determined, respectively. Results showed that professional skin treatments with massage were able to increase the skin hydration, whereas a professional skin treatment without massage could not increase the skin hydration when compared to skin without professional skin treatment. Regarding the penetration efficacy, it was found that all parameters tested, i.e., type of professional skin treatment, lipophilicity of the AI, and the time point at which the AI are applied onto the skin, can have a tremendous impact on the penetration efficacy of the AI. The most effective penetration and the most effective skin hydration is achieved with a professional skin treatment that includes a professional skin massage. This kind of skin treatment can therefore be used to improve dermal drug delivery. Full article
Show Figures

Graphical abstract

13 pages, 2887 KiB  
Article
Structural and Functional Validation of a Full-Thickness Self-Assembled Skin Equivalent for Disease Modeling
by Bo Ram Mok, Su-Ji Shon, A Ram Kim, Carolyne Simard-Bisson, Israël Martel, Lucie Germain, Dong Hyun Kim and Jung U Shin
Pharmaceutics 2022, 14(6), 1211; https://doi.org/10.3390/pharmaceutics14061211 - 07 Jun 2022
Cited by 3 | Viewed by 1943
Abstract
Recently, various types of in vitro-reconstructed 3D skin models have been developed for drug testing and disease modeling. Herein, we structurally and functionally validated a self-assembled reconstructed skin equivalent (RSE) and developed an IL-17a-induced in vitro psoriasis-like model using a self-assembled RSE. The [...] Read more.
Recently, various types of in vitro-reconstructed 3D skin models have been developed for drug testing and disease modeling. Herein, we structurally and functionally validated a self-assembled reconstructed skin equivalent (RSE) and developed an IL-17a-induced in vitro psoriasis-like model using a self-assembled RSE. The tissue engineering approach was used to construct the self-assembled RSE. The dermal layer was generated using fibroblasts secreting their own ECM, and the epidermal layer was reconstructed by seeding keratinocytes on the dermal layer. To generate the psoriatic model, IL-17A was added to the culture medium during the air–liquid interface culture period. Self-assembled RSE resulted in a fully differentiated epidermal layer, a well-established basement membrane, and dermal collagen deposition. In addition, self-assembled RSE was tested for 20 reference chemicals according to the Performance Standard of OECD TG439 and showed overall sensitivity, specificity, and accuracy of 100%, 90%, and 95%, respectively. The IL-17a-treated psoriatic RSE model exhibited psoriatic epidermal characteristics, such as epidermal hyperproliferation, parakeratosis, and increased expression of KRT6, KRT17, hBD2, and S100A9. Thus, our results suggest that a self-assembled RSE that structurally and functionally mimics the human skin has a great potential for testing various drugs or cosmetic ingredients and modeling inflammatory skin diseases. Full article
Show Figures

Figure 1

20 pages, 3571 KiB  
Article
Chemical vs. Physical Methods to Improve Dermal Drug Delivery: A Case Study with Nanoemulsions and Iontophoresis
by Ines Nikolić, Mitar Simić, Ivana Pantelić, Goran Stojanović, Jelena Antić Stanković, Bojan Marković and Snežana Savić
Pharmaceutics 2022, 14(6), 1144; https://doi.org/10.3390/pharmaceutics14061144 - 27 May 2022
Viewed by 1529
Abstract
So far, various approaches have been proposed to improve dermal drug delivery. The use of chemical penetration enhancers has a long history of application, while methods based on the electrical current (such as iontophoresis) stand out as promising “active” techniques. Aiming to evaluate [...] Read more.
So far, various approaches have been proposed to improve dermal drug delivery. The use of chemical penetration enhancers has a long history of application, while methods based on the electrical current (such as iontophoresis) stand out as promising “active” techniques. Aiming to evaluate the contribution of different approaches to dermal delivery, in this work curcumin-loaded nanoemulsions with and without monoterpenes (eucalyptol or pinene) as chemical penetration enhancers, and a custom-made adhesive dermal delivery system based on iontophoresis were designed and assessed. In an in vivo study applying skin bioengineering techniques, their safety profile was proven. Three examined iontophoresis protocols, with total skin exposure time of 15 min (continuous flow for 15 min (15-0); 3 min of continuous flow and 2 min pause (3-2; 5 cycles) and 5 min of continuous flow and 1 min pause (5-1; 3 cycles) were equally efficient in terms of the total amount of curcumin that penetrated through the superficial skin layers (in vivo tape stripping) (Q3-2 = 7.04 ± 3.21 μg/cm2; Q5-1 = 6.66 ± 2.11 μg/cm2; Q15-0 = 6.96 ± 3.21 μg/cm2), significantly more efficient compared to the referent nanoemulsion and monoterpene-containing nanoemulsions. Further improvement of an efficient mobile adhesive system for iontophoresis would be a practical contribution in the field of dermal drug application. Full article
Show Figures

Graphical abstract

14 pages, 5435 KiB  
Article
Multi-Modal Imaging to Assess the Follicular Delivery of Zinc Pyrithione
by Sean E. Mangion, Lydia Sandiford, Yousuf Mohammed, Michael S. Roberts and Amy M. Holmes
Pharmaceutics 2022, 14(5), 1076; https://doi.org/10.3390/pharmaceutics14051076 - 17 May 2022
Cited by 6 | Viewed by 1865
Abstract
Zinc pyrithione (ZnPT) is a widely used antifungal, usually applied as a microparticle suspension to facilitate delivery into the hair follicles, where it then dissociates into a soluble monomeric form that is bioactive against yeast and other microorganisms. In this study, we use [...] Read more.
Zinc pyrithione (ZnPT) is a widely used antifungal, usually applied as a microparticle suspension to facilitate delivery into the hair follicles, where it then dissociates into a soluble monomeric form that is bioactive against yeast and other microorganisms. In this study, we use multiphoton microscopy (MPM) and fluorescence lifetime imaging microscopy (FLIM) to characterise ZnPT formulations and map the delivery of particles into follicles within human skin. To simulate real-world conditions, it was applied using a massage or no-massage technique, while simultaneously assessing the dissolution using Zinpyr-1, a zinc labile fluorescent probe. ZnPT particles can be detected in a range of shampoo formulations using both MPM and FLIM, though FLIM is optimal for detection as it allows spectral and lifetime discrimination leading to increased selectivity and sensitivity. In aqueous suspensions, the ZnPT 7.2 µm particles could be detected up to 500 µm in the follicle. The ZnPT particles in formulations were finer (1.0–3.3 µm), resulting in rapid dissolution on the skin surface and within follicles, evidenced by a reduced particle signal at 24 h but enhanced Zinpyr-1 intensity in the follicular and surface epithelium. This study shows how MPM-FLIM multimodal imaging can be used as a useful tool to assess ZnPT delivery to skin and its subsequent dissolution. Full article
Show Figures

Figure 1

17 pages, 3657 KiB  
Article
Particle-Assisted Dermal Penetration—A Simple Formulation Strategy to Foster the Dermal Penetration Efficacy
by Sabrina Wiemann and Cornelia M. Keck
Pharmaceutics 2022, 14(5), 1039; https://doi.org/10.3390/pharmaceutics14051039 - 11 May 2022
Cited by 5 | Viewed by 3326
Abstract
(1) Background: The study systematically investigated the influence of dispersed particles within a topical formulation on the dermal penetration efficacy of active compounds that are dissolved in the water phase of this formulation. The aim was to prove or disprove if particle-assisted dermal [...] Read more.
(1) Background: The study systematically investigated the influence of dispersed particles within a topical formulation on the dermal penetration efficacy of active compounds that are dissolved in the water phase of this formulation. The aim was to prove or disprove if particle-assisted dermal penetration can be used for improved dermal drug delivery. (2) Methods: Fluorescein was used as a surrogate for a hydrophilic active ingredient (AI). It was dissolved in the water phase of different formulations with and without particles. Two different types of particles (titanium dioxide and nanostructured lipid carriers (NLC)) were used. The influence of particle size and number of particles and the influence of skin hydrating excipients was also investigated. (3) Results demonstrate that the addition of particles can strongly increase the dermal penetration efficacy of AI. The effect depends on the size of the particles and the number of particles in the formulation, where smaller sizes and higher numbers resulted in higher penetration parameters. Formulations with NLC that contained 20% w/w or 40% w/w particles resulted in an about 2-fold higher amount of penetrated AI and increased the penetration depth about 2.5-fold. The penetration-enhancing effect was highly significant (p < 0.001) and allowed for an efficient delivery of the AI in the viable dermis. In contrast, the penetration-enhancing effect of excipients that increase the skin hydration was found to be very limited and not significant (≤5%, p > 0.05). (4) Conclusions: Based on the results, it can be concluded that particle-assisted dermal penetration can be considered to be a simple but highly efficient and industrially feasible formulation principle for improved and tailor-made dermal drug delivery of active compounds. Full article
Show Figures

Graphical abstract

24 pages, 2393 KiB  
Article
In Silico Prediction of Skin Permeability Using a Two-QSAR Approach
by Yu-Wen Wu, Giang Huong Ta, Yi-Chieh Lung, Ching-Feng Weng and Max K. Leong
Pharmaceutics 2022, 14(5), 961; https://doi.org/10.3390/pharmaceutics14050961 - 28 Apr 2022
Cited by 3 | Viewed by 2078
Abstract
Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human [...] Read more.
Topical and transdermal drug delivery is an effective, safe, and preferred route of drug administration. As such, skin permeability is one of the critical parameters that should be taken into consideration in the process of drug discovery and development. The ex vivo human skin model is considered as the best surrogate to evaluate in vivo skin permeability. This investigation adopted a novel two-QSAR scheme by collectively incorporating machine learning-based hierarchical support vector regression (HSVR) and classical partial least square (PLS) to predict the skin permeability coefficient and to uncover the intrinsic permeation mechanism, respectively, based on ex vivo excised human skin permeability data compiled from the literature. The derived HSVR model functioned better than PLS as represented by the predictive performance in the training set, test set, and outlier set in addition to various statistical estimations. HSVR also delivered consistent performance upon the application of a mock test, which purposely mimicked the real challenges. PLS, contrarily, uncovered the interpretable relevance between selected descriptors and skin permeability. Thus, the synergy between interpretable PLS and predictive HSVR models can be of great use for facilitating drug discovery and development by predicting skin permeability. Full article
Show Figures

Figure 1

12 pages, 2653 KiB  
Article
Liposomal Formulations to Improve Antioxidant Power of Myrtle Berry Extract for Potential Skin Application
by Maria De Luca, Daniela Lucchesi, Carlo Ignazio Giovanni Tuberoso, Xavier Fernàndez-Busquets, Antonio Vassallo, Giuseppe Martelli, Anna Maria Fadda, Laura Pucci and Carla Caddeo
Pharmaceutics 2022, 14(5), 910; https://doi.org/10.3390/pharmaceutics14050910 - 21 Apr 2022
Cited by 6 | Viewed by 2162
Abstract
Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug [...] Read more.
Many substances in plant extracts are known for their biological activities. These substances act in different ways, exerting overall protective effects against many diseases, especially skin disorders. However, plant extracts’ health benefits are often limited by low bioavailability. To overcome these limitations, drug delivery systems can be employed. In this study, we evaluated the antioxidant power of an ethanolic extract from Myrtus communis L. (myrtle) berries through colorimetric tests (DPPH and FRAP). The antioxidant activity was also verified by using fibroblast cell culture through cellular Reactive Oxygen Species (ROS) levels measurements. Moreover, the myrtle extract was formulated in phospholipid vesicles to improve its bioavailability and applicability. Myrtle liposomes were characterized by size, surface charge, storage stability, and entrapment efficiency; visualized by using cryo-TEM images; and assayed for cytocompatibility and anti-ROS activity. Our results suggest that myrtle liposomes were cytocompatible and improved the extract’s antioxidant power in fibroblasts, suggesting a potential skin application for these formulations and confirming that nanotechnologies could be a valid tool to enhance plant extracts’ potentialities. Full article
Show Figures

Figure 1

10 pages, 2133 KiB  
Article
Pharmacokinetic Evaluation of a Novel Transdermal Ketoprofen Formulation in Healthy Dogs
by Halley Gora Ravuri, Nana Satake, Alexandra Balmanno, Jazmine Skinner, Samantha Kempster and Paul C. Mills
Pharmaceutics 2022, 14(3), 646; https://doi.org/10.3390/pharmaceutics14030646 - 15 Mar 2022
Cited by 2 | Viewed by 3205
Abstract
Dogs undergo various surgical procedures such as castration, ovariohysterectomy, and other orthopedic procedures, which are known to cause inflammation and pain. Non-steroidal anti-inflammatory drugs (NSAIDs) are very effective analgesics for alleviating postoperative pain in veterinary medicine. Ketoprofen is currently approved in Australia and [...] Read more.
Dogs undergo various surgical procedures such as castration, ovariohysterectomy, and other orthopedic procedures, which are known to cause inflammation and pain. Non-steroidal anti-inflammatory drugs (NSAIDs) are very effective analgesics for alleviating postoperative pain in veterinary medicine. Ketoprofen is currently approved in Australia and the United States for treating different painful conditions in dogs. This study evaluated the pharmacokinetic parameters of ketoprofen after intravenous (IV) and transdermal (TD) administration in healthy dogs. A novel transdermal ketoprofen (TDK) formulation containing 20% ketoprofen, dissolved in a combination of 45:45% isopropanol and Transcutol, along with 10% eucalyptus oil, was developed and evaluated for in vitro dermal permeation using Franz diffusion cells. A crossover study was then conducted to determine the pharmacokinetic parameters of the formulation in six dogs following IV ketoprofen (1 mg/kg) and TDK (10 mg/kg) administration. A liquid chromatography–mass spectrometry (LC-M/MS) method was used to measure plasma concentrations of ketoprofen over time, and a non-compartmental analysis determined the pharmacokinetic parameters. The mean terminal elimination half-life (T½ h), AUC0-t (µg·h/mL), and mean residence time (MRT, h) between IV and TDK groups were 4.69 ± 1.33 and 25.77 ± 22.15 h, 15.75 ± 7.72 and 8.13 ± 4.28 µg·h/mL, and 4.86 ± 1.81 and 41.63 ± 32.33 h, respectively. The calculated bioavailability (F%) was ~7%, with a lag time of 30 min to achieve effective plasma concentrations after the application of TDK. Full article
Show Figures

Figure 1

15 pages, 2171 KiB  
Article
Simultaneous Physico-Mechanical and In Vivo Assessment towards Factual Skin Performance Profile of Topical Polymeric Film-Forming Systems
by Mirjana D. Timotijević, Tanja Ilić, Snežana Savić and Ivana Pantelić
Pharmaceutics 2022, 14(2), 223; https://doi.org/10.3390/pharmaceutics14020223 - 18 Jan 2022
Cited by 2 | Viewed by 1873
Abstract
Topical film-forming systems (FFS) change drastically after solvent displacement, therefore indicating their skin metamorphosis/transformation as a property of special regulatory and research interest. This paper deals with the lack of suitable characterization techniques, suggesting a set of methods able to provide a comprehensive [...] Read more.
Topical film-forming systems (FFS) change drastically after solvent displacement, therefore indicating their skin metamorphosis/transformation as a property of special regulatory and research interest. This paper deals with the lack of suitable characterization techniques, suggesting a set of methods able to provide a comprehensive notion of FFS skin performance. After screening the physico-chemical, mechanical and sensory properties of FFS and resulting films, an elaborate three-phase in vivo study was performed, covering skin irritation, friction and substantivity. Upon removal of 24-hour occlusion, no significant change in erythema index was observed, while the film-former type (cellulose ether, acrylate and/or vinyl polymer) affected transepidermal water loss (TEWL); hydrophobic methacrylate copolymer-based samples decreased TEWL by 40–50%, suggesting a semi-occlusive effect. Although both the tribological parameters related to the friction coefficient and the friction curve’s plateau provided valuable data, their analysis indicated the importance of the moment the plateau is reached as the onset of the secondary formulation, while the tertiary state is still best described by the completion of the film’s drying time. The final part of the in vivo study proved the high in-use substantivity of all samples but confirmed the optimal 4:1 ratio of hydrophobic cationic and hydrophilic polymers, as indicated during early physico-mechanical screening. Full article
Show Figures

Graphical abstract

19 pages, 19149 KiB  
Article
DELOS Nanovesicles-Based Hydrogels: An Advanced Formulation for Topical Use
by Lídia Ballell-Hosa, Elisabet González-Mira, Hector Santana, Judit Morla-Folch, Marc Moreno-Masip, Yaima Martínez-Prieto, Albert Revuelta, Primiano Pio Di Mauro, Jaume Veciana, Santi Sala, Lidia Ferrer-Tasies and Nora Ventosa
Pharmaceutics 2022, 14(1), 199; https://doi.org/10.3390/pharmaceutics14010199 - 15 Jan 2022
Cited by 4 | Viewed by 2595
Abstract
Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. [...] Read more.
Topical delivery has received great attention due to its localized drug delivery, its patient compliance, and its low risk for side effects. Recent developments have focused on studying new drug delivery systems as a strategy for addressing the challenges of current topical treatments. Here we describe the advances on an innovative drug delivery platform called DELOS nanovesicles for topical drug delivery. Previously, the production of DELOS nanovesicles demonstrated potentiality for the topical treatment of complex wounds, achieving well-tolerated liquid dispersions by this route. Here, research efforts have been focused on designing these nanocarriers with the best skin tolerability to be applied even to damaged skin, and on exploring the feasibility of adapting the colloidal dispersions to a more suitable dosage form for topical application. Accordingly, these drug delivery systems have been efficiently evolved to a hydrogel using MethocelTM K4M, presenting proper stability and rheological properties. Further, the integrity of these nanocarriers when being gellified has been confirmed by cryo-transmission electron microscopy and by Förster resonance energy transfer analysis with fluorescent-labeled DELOS nanovesicles, which is a crucial characterization not widely reported in the literature. Additionally, in vitro experiments have shown that recombinant human Epidermal Growth Factor (rhEGF) protein integrated into gellified DELOS nanovesicles exhibits an enhanced bioactivity compared to the liquid form. Therefore, these studies suggest that such a drug delivery system is maintained unaltered when hydrogellified, becoming the DELOS nanovesicles-based hydrogels, an advanced formulation for topical use. Full article
Show Figures

Graphical abstract

15 pages, 5813 KiB  
Article
Enhanced Skin Delivery of Therapeutic Peptides Using Spicule-Based Topical Delivery Systems
by Chi Zhang, Jiwen Duan, Yongxiang Huang and Ming Chen
Pharmaceutics 2021, 13(12), 2119; https://doi.org/10.3390/pharmaceutics13122119 - 08 Dec 2021
Cited by 3 | Viewed by 3413
Abstract
This study reports two therapeutic peptides, insulin (INS, as a hydrophilic model peptide) and cyclosporine A (CysA, as a hydrophobic one), that can be administrated through a transdermal or dermal route by using spicule-based topical delivery systems in vitro and in vivo. We [...] Read more.
This study reports two therapeutic peptides, insulin (INS, as a hydrophilic model peptide) and cyclosporine A (CysA, as a hydrophobic one), that can be administrated through a transdermal or dermal route by using spicule-based topical delivery systems in vitro and in vivo. We obtained a series of spicules with different shapes and sizes from five kinds of marine sponges and found a good correlation between the skin permeability enhancement induced by these spicules and their aspect ratio L/D. In the case of INS, Sponge Haliclona sp. spicules (SHS) dramatically increased the transdermal flux of INS (457.0 ± 32.3 ng/cm2/h) compared to its passive penetration (5.0 ± 2.2 ng/cm2/h) in vitro. Further, SHS treatment slowly and gradually reduced blood glucose to 13.1 ± 6.3% of the initial level in 8 h, while subcutaneous injection resulted in a rapid blood glucose reduction to 15.9 ± 1.4% of the initial level in 4 h, followed by a rise back to 75.1 ± 24.0% of the initial level in 8 h. In the case of CysA, SHS in combination with ethosomes (SpEt) significantly (p < 0.05) increased the accumulation of CysA in viable epidermis compared to other groups. Further, SpEt reduced the epidermis thickness by 41.5 ± 9.4% in 7 days, which was significantly more effective than all other groups. Spicule-based topical delivery systems offer promising strategies for delivering therapeutic peptides via a transdermal or dermal route. Full article
Show Figures

Figure 1

28 pages, 44249 KiB  
Article
Novel Naproxen Salts with Increased Skin Permeability
by Ewelina Świątek, Paula Ossowicz-Rupniewska, Ewa Janus, Anna Nowak, Peter Sobolewski, Wiktoria Duchnik, Łukasz Kucharski and Adam Klimowicz
Pharmaceutics 2021, 13(12), 2110; https://doi.org/10.3390/pharmaceutics13122110 - 07 Dec 2021
Cited by 11 | Viewed by 3224
Abstract
The paper presents the synthesis, full identification, and characterization of new salts-L-proline alkyl ester naproxenates [ProOR][NAP], where R was a chain from ethyl to butyl (including isopropyl). All obtained compounds were characterized by Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray [...] Read more.
The paper presents the synthesis, full identification, and characterization of new salts-L-proline alkyl ester naproxenates [ProOR][NAP], where R was a chain from ethyl to butyl (including isopropyl). All obtained compounds were characterized by Nuclear Magnetic Resonance (NMR), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffractometry (XRD), and in vitro dissolution studies. The specific rotation, phase transition temperatures (melting point), and thermal stability were also determined. In addition, their lipophilicity, permeability, and accumulation in pigskin were determined. Finally, toxicity against mouse L929 fibroblast cells was tested. The obtained naproxen derivatives showed improved solubility and higher absorption of drug molecules by biological membranes. Their lipophilicity was lower and increased with the increase in the alkyl chain of the ester. The derivative with isopropyl ester had the best permeability through pigskin. The use of L-proline isopropyl ester naproxenate increased the permeation of naproxen through the skin almost four-fold. It was also shown that the increase in permeability is not associated with additional risk: all compounds had a similar effect on cell viability as the parent naproxen. Full article
Show Figures

Graphical abstract

18 pages, 5050 KiB  
Article
Pilot Equivalence Study Comparing Different Batches of Topical 0.025% Capsaicin Emulsion: Product Microstructure, Release, and Permeation Evaluation
by Francesc Navarro-Pujol, Sanja Bulut, Charlotte Hessman, Kostas Karabelas, Carles Nieto and Francisco Fernandez-Campos
Pharmaceutics 2021, 13(12), 2083; https://doi.org/10.3390/pharmaceutics13122083 - 04 Dec 2021
Cited by 5 | Viewed by 2009
Abstract
The European Medical Agency (EMA) has issued a draft guideline on the quality and equivalence of topical products. The equivalence for complex semisolid formulations involves several steps: the same quantitative content, the same microstructure, the same release, and permeation profile. In this paper, [...] Read more.
The European Medical Agency (EMA) has issued a draft guideline on the quality and equivalence of topical products. The equivalence for complex semisolid formulations involves several steps: the same quantitative content, the same microstructure, the same release, and permeation profile. In this paper, several batches of a low strength topical product, which we used as a reference/comparator product, were evaluated according to the recommendations of the EMA draft guideline. The batches were 0.025% capsaicin emulsions from the same manufacturer that were evaluated in terms of droplet size, X-ray diffraction patterns, rheology, release, and permeation profile. The generated data revealed a large batch-to-batch variability, and if the EMA guideline was applied, these batches would not be considered equivalent, although they were produced by the same manufacturer. The result of this work illustrates the difficulties in obtaining equivalence according to the current draft guidelines. It also highlights that the equivalence guidelines should consider the variability of the comparator product, and in our opinion, the guidelines should allow for claiming equivalence by comparing the limits in the variability of the data generated for the comparator product with the limits in the variability of the data generated for the intended equivalence product. Full article
Show Figures

Figure 1

15 pages, 3457 KiB  
Article
Monitoring the Effect of Transdermal Drug Delivery Patches on the Skin Using Terahertz Sensing
by Hannah Lindley-Hatcher, Jiarui Wang, Arturo I. Hernandez-Serrano, Joseph Hardwicke, Gabit Nurumbetov, David M. Haddleton and Emma Pickwell-MacPherson
Pharmaceutics 2021, 13(12), 2052; https://doi.org/10.3390/pharmaceutics13122052 - 01 Dec 2021
Cited by 7 | Viewed by 2242
Abstract
Water content of the skin is an important parameter for controlling the penetration rate of chemicals through the skin barrier; therefore, for transdermal patches designed for drug delivery to be successful, the effects of the patches on the water content of the skin [...] Read more.
Water content of the skin is an important parameter for controlling the penetration rate of chemicals through the skin barrier; therefore, for transdermal patches designed for drug delivery to be successful, the effects of the patches on the water content of the skin must be understood. Terahertz (THz) spectroscopy is a technique which is being increasingly investigated for biomedical applications due to its high sensitivity to water content and non-ionizing nature. In this study, we used THz measurements of the skin (in vivo) to observe the effect of partially and fully occlusive skin patches on the THz response of the skin after the patches had been applied for 24 h. We were able to observe an increase in the water content of the skin following the application of the patches and to identify that the skin remained hyper-hydrated for four hours after the removal of the fully occlusive patches. Herein, we show that THz spectroscopy has potential for increasing the understanding of how transdermal patches affect the skin, how long the skin takes to recover following patch removal, and what implications these factors might have for how transdermal drug patches are designed and used. Full article
Show Figures

Graphical abstract

19 pages, 4914 KiB  
Article
Transdermal Drug Delivery in the Pig Skin
by Ignacio Ordiz, José A. Vega, Raquel Martín-Sanz, Olivia García-Suárez, Miguel E. del Valle and Jorge Feito
Pharmaceutics 2021, 13(12), 2016; https://doi.org/10.3390/pharmaceutics13122016 - 26 Nov 2021
Cited by 5 | Viewed by 3353
Abstract
Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier [...] Read more.
Transdermal delivery can be accomplished through various mechanisms including formulation optimization, epidermal stratum corneum barrier disruption, or directly by removing the stratum corneum layer. Microneedling, electroporation, a combination of both and also the intradermal injection known as mesotherapy have proved efficacy in epidermal-barrier disruption. Here we analyzed the effects of these methods of epidermal-barrier disruption in the structure of the skin and the absorption of four compounds with different characteristics and properties (ketoprofen, biotin, caffein, and procaine). Swine skin (Pietrain x Durox) was used as a human analogue, both having similar structure and pharmacological release. They were biopsied at different intervals, up to 2 weeks after application. High-pressure liquid chromatography and brightfield microscopy were performed, conducting a biometric analysis and measuring histological structure and vascular status. The performed experiments led to different results in the function of the studied molecules: ketoprofen and biotin had the best concentrations with intradermal injections, while delivery methods for obtaining procaine and caffein maximum concentrations changed on the basis of the lapsed time. The studied techniques did not produce significant histological alterations after their application, except for an observed increase in Langerhans cells and melanocytes after applying electroporation, and an epidermal thinning after using microneedles, with variable results regarding dermal thickness. Although all the studied barrier disruptors can accomplish transdermal delivery, the best disruptor is dependent on the particular molecule. Full article
Show Figures

Figure 1

19 pages, 19460 KiB  
Article
Characterization and In Vitro and In Vivo Evaluation of Tacrolimus-Loaded Poly(ε-Caprolactone) Nanocapsules for the Management of Atopic Dermatitis
by Guilherme dos Anjos Camargo, Leandro Ferreira, Diego José Schebelski, Amanda Martinez Lyra, Fernanda Malaquias Barboza, Bruna Carletto, Adriana Yuriko Koga, Betina Christi Semianko, Daniele Toniolo Dias, Leandro Cavalcante Lipinski, Andressa Novatski, Vijayasankar Raman, Jane Manfron, Jessica Mendes Nadal and Paulo Vitor Farago
Pharmaceutics 2021, 13(12), 2013; https://doi.org/10.3390/pharmaceutics13122013 - 26 Nov 2021
Cited by 6 | Viewed by 2429
Abstract
Background: Tacrolimus (TAC) is a drug of natural origin used in conventional topical dosage forms to control atopic dermatitis. However, direct application of the drug often causes adverse side effects in some patients. Hence, drug nanoencapsulation could be used as an improved novel [...] Read more.
Background: Tacrolimus (TAC) is a drug of natural origin used in conventional topical dosage forms to control atopic dermatitis. However, direct application of the drug often causes adverse side effects in some patients. Hence, drug nanoencapsulation could be used as an improved novel therapy to mitigate the adverse effects and enhance bioavailability of the drug. Methods: Physicochemical properties, in vitro drug release experiments, and in vivo anti-inflammatory activity studies were performed. Results: TAC-loaded nanocapsules were successfully prepared by the interfacial deposition of preformed polymer using poly(ε-caprolactone) (PCL). The nanoparticulate systems presented a spherical shape with a smooth and regular surface, adequate diameter (226 to 250 nm), polydispersity index below 0.3, and suitable electrical stability (−38 to −42 mV). X-ray diffraction confirmed that the encapsulation method provided mainly the drug molecular dispersion in the nanocapsule oily core. Fourier-transform infrared spectra suggested that nanoencapsulation did not result in chemical bonds between drug and polymer. In vitro drug dissolution experiments showed a controlled release with a slight initial burst. The release kinetics showed zero-order kinetics. As per the Korsmeyer–Peppas model, anomalous transport features were observed. TAC-loaded PCL nanocapsules exhibited excellent anti-inflammatory activity when compared to the free drug. Conclusions: TAC-loaded PCL nanocapsules can be suitably used as a novel nano-based dosage form to control atopic dermatitis. Full article
Show Figures

Graphical abstract

23 pages, 5710 KiB  
Article
Biocompatibility and Antimicrobial Activity of Nanostructured Lipid Carriers for Topical Applications Are Affected by Type of Oils Used in Their Composition
by Dragana P. C. de Barros, Patricia Reed, Marta Alves, Rafaela Santos and Abel Oliva
Pharmaceutics 2021, 13(11), 1950; https://doi.org/10.3390/pharmaceutics13111950 - 17 Nov 2021
Cited by 9 | Viewed by 2466
Abstract
Nanostructured lipid carriers (NLCs) have gained significant attention as tools for the dermal delivery of therapeutics due to their stability, biocompatibility, and ability to improve drug bioavailability. The use of natural plant oils (NPO) in NLC formulations has numerous benefits for the skin [...] Read more.
Nanostructured lipid carriers (NLCs) have gained significant attention as tools for the dermal delivery of therapeutics due to their stability, biocompatibility, and ability to improve drug bioavailability. The use of natural plant oils (NPO) in NLC formulations has numerous benefits for the skin due to their therapeutic potential. This work shows the effect of NLC composition on bioavailability in epidermal cells and antimicrobial activity against Staphylococcus aureus. Sixteen systems containing fixed (sunflower, olive, corn, peanut, coconut, castor, and sweet almond) and essential (eucalyptus) oils, with different solid lipid (SL): liquid lipid (LL) ratios, were engineered. The structural properties, bioavailability, and antimicrobial action of the particles was studied. The choice of NPO influenced the physicochemical stability by changing the diameter of NLC formulations (between 160 nm and 185 nm) and Z-potential (between −46 mV and −61 mV). All of the systems were characterized by concentration-dependent cytocompatibility with human epidermal keratinocytes (HaCaT) and human dermal fibroblasts (HDFn). The SL:LL ratio in some NLC systems impacted cell cytotoxicity differently. Antimicrobial properties were observed in all 16 systems; however, the type of oil and SL:LL ratio affected the activity of the formulations. Two NLC-NPO systems were found to be non-cytotoxic to human cells lines at concentrations that completely inhibited bacterial growth. These results present a strong argument that the use of natural oils in NLC formulations presents a promising tool for the treatment of skin infections. Full article
Show Figures

Graphical abstract

16 pages, 12556 KiB  
Article
Enhanced Skin Performance of Emulgel vs. Cream as Systems for Topical Delivery of Herbal Actives (Immortelle Extract and Hemp Oil)
by Vanja M. Tadić, Ana Žugić, Milica Martinović, Milica Stanković, Svetolik Maksimović, Almut Frank and Ivana Nešić
Pharmaceutics 2021, 13(11), 1919; https://doi.org/10.3390/pharmaceutics13111919 - 12 Nov 2021
Cited by 13 | Viewed by 3536
Abstract
Immortelle, as rich source of chlorogenic acid and the phloroglucinol alpha-pyrone compound arzanol, possesses anti-inflammatory and antioxidant properties, affects cell regeneration, and has positive effect on many skin conditions. Hemp oil, characterized by a favorable omega-6 to omega-3 ratio, as well as an [...] Read more.
Immortelle, as rich source of chlorogenic acid and the phloroglucinol alpha-pyrone compound arzanol, possesses anti-inflammatory and antioxidant properties, affects cell regeneration, and has positive effect on many skin conditions. Hemp oil, characterized by a favorable omega-6 to omega-3 ratio, as well as an abundance of essential fatty acids and vitamin E, participates in immunoregulation and also act as an anti-inflammatory. In the present study, we examined the effect on the skin of creams and emulgels with immortelle extract and hemp oil, by comparing them to placebo samples and a non-treated control. A long-term in vivo study of biophysical skin characteristics, which lasted for 30 days, was conducted on 25 healthy human volunteers. Measured parameters were electrical capacitance of the stratum corneum, trans-epidermal water loss (TEWL), and skin pH and erythema index. Further, a sensory study was carried out in which the panelists had to choose descriptive terms for sensory attributes in questionnaire. The results showed that application of all preparations led to increase of skin hydration and TEWL reduction, while the skin was not irritated, and its normal pH was not disrupted. This study also showed importance of the carrier. Not only were emulgels described by panelists as preparations with better sensory properties, there was a significant difference between the skin hydration effect of emulgel with immortelle extract and hemp oil compared to the placebo emulgel, which was not the case with creams. Such findings indicated enhanced delivery of herbal active substances from emulgel compared to the cream. Full article
Show Figures

Figure 1

26 pages, 6919 KiB  
Article
Development, Characterization, and Clinical Investigation of a New Topical Emulsion System Containing a Castanea sativa Spiny Burs Active Extract
by Tiziana Esposito, Teresa Mencherini, Francesca Sansone, Giulia Auriemma, Patrizia Gazzerro, Rosa Valentina Puca, Raffaele Iandoli and Rita Patrizia Aquino
Pharmaceutics 2021, 13(10), 1634; https://doi.org/10.3390/pharmaceutics13101634 - 07 Oct 2021
Cited by 4 | Viewed by 2355
Abstract
The study focused on the development and characterization of an O/W emulsion for skincare containing Castanea sativa spiny burs extract (CSE) as functional agent. The emulsion was stable and had suitable physicochemical and technological properties for dermal application and CSE showed no cytotoxicity [...] Read more.
The study focused on the development and characterization of an O/W emulsion for skincare containing Castanea sativa spiny burs extract (CSE) as functional agent. The emulsion was stable and had suitable physicochemical and technological properties for dermal application and CSE showed no cytotoxicity in spontaneously immortalized keratinocytes (HaCaT) at active concentrations. A single-blind, placebo-controlled, monocentric study was designed to evaluate the skin tolerability and the skin performance of the CSE-loaded emulsion on healthy human volunteers. An improvement was observed in skin biomechanical properties such as hydration, skin elasticity and a reduction in the periorbital wrinkles in 30 days without altering the skin barrier function, sebum, pH, and erythema values. A significant skin moisturizing effect was detected while the skin barrier function was preserved. The selected natural ingredient combined with the designed formulation and the optimized preparation method has led to a final product that satisfies the physico-chemical and technological requirements underlying the safety of use and the formulative stability over time. With no negative skin reactions and highly significant effects on skin elasticity, wrinkles, and moisturization, the CSE-based emulsion achieved very satisfying outcomes representing a promising functional formulation for skin care. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 1796 KiB  
Review
Skin Barrier Function in Infants: Update and Outlook
by Annisa Rahma and Majella E. Lane
Pharmaceutics 2022, 14(2), 433; https://doi.org/10.3390/pharmaceutics14020433 - 17 Feb 2022
Cited by 12 | Viewed by 6222
Abstract
A good understanding of infant skin should provide a rationale for optimum management of the health of this integument. In this review, we discuss the skin barrier function of infants, particularly with reference to the use of diapers and baby wipes. The skin [...] Read more.
A good understanding of infant skin should provide a rationale for optimum management of the health of this integument. In this review, we discuss the skin barrier function of infants, particularly with reference to the use of diapers and baby wipes. The skin barrier of newborns continues to develop with age. Two years after birth, the barrier properties of infant skin closely resemble those of adult skin. However, several risk factors may contribute to impaired skin barrier and altered skin permeability in infants. Problems may arise from the use of diapers and baby wipes. The skin covered by a diaper is effectively an occluded environment, and thus is vulnerable to over-hydration. To date there has been no published information regarding dermal absorption of ingredients contained in baby wipes. Similarly, dermal absorption of topical ingredients in infants with underlying skin conditions has not been widely explored. Clearly, there are serious ethical concerns related to conducting skin permeation studies on infant skin. However, the increasing availability of non-invasive methods for in vivo studies is encouraging and offers new directions for studying this important patient group. Full article
Show Figures

Graphical abstract

18 pages, 973 KiB  
Review
Vehicles for Drug Delivery and Cosmetic Moisturizers: Review and Comparison
by Tanya M. Barnes, Dalibor Mijaljica, Joshua P. Townley, Fabrizio Spada and Ian P. Harrison
Pharmaceutics 2021, 13(12), 2012; https://doi.org/10.3390/pharmaceutics13122012 - 26 Nov 2021
Cited by 34 | Viewed by 7681
Abstract
Many dermatological conditions, such as eczema and psoriasis, are treated with topical therapeutic products. Instead of applying the active drug directly onto the skin, it is combined with a vehicle to aid in its delivery across the stratum corneum (SC) and into deeper [...] Read more.
Many dermatological conditions, such as eczema and psoriasis, are treated with topical therapeutic products. Instead of applying the active drug directly onto the skin, it is combined with a vehicle to aid in its delivery across the stratum corneum (SC) and into deeper regions of the skin, namely the epidermis and dermis. Absorption into the systemic circulation is minimized. Topical vehicles are also used as cosmetic moisturizers (often termed emollient therapy) to ameliorate dry skin, which is a cornerstone of the management of various dermatological conditions, including xerosis, eczema, psoriasis, and aging. The most common topical vehicles include ointments, creams, gels, and lotions, among others. It is crucial that topical vehicles are chosen based upon the size and properties (wet/dry, mucous/non-mucous, healthy/diseased) of the skin to be treated in order to optimize application and contact of the product with the skin, as this can have profound impacts on potency, efficacy, and patient compliance. This review examines common topical vehicles used for drug delivery and cosmetic moisturizers, including their formulation, advantages and disadvantages, and effects on the skin. The unique rules imposed by governing regulatory bodies in Australia and around the world, in terms of topical product claims, are also briefly examined. Full article
Show Figures

Figure 1

30 pages, 2826 KiB  
Review
Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns
by Chiara Ferraris, Clara Rimicci, Sara Garelli, Elena Ugazio and Luigi Battaglia
Pharmaceutics 2021, 13(9), 1408; https://doi.org/10.3390/pharmaceutics13091408 - 05 Sep 2021
Cited by 28 | Viewed by 5001
Abstract
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are [...] Read more.
Nanosystems exhibit various innovative physico-chemical properties as well as a range of cosmetic functions, including increased skin retention for loaded compounds. The worldwide nano-market has therefore been consistently extensive in recent decades. This review summarizes the most important properties of nanosystems that are employed in cosmetics, including composition, functions and interactions with skin, with particular attention being paid to marketed products. Moreover, the worldwide regulatory landscape of nanomaterials used as cosmetic ingredients is considered, and the main safety concerns are indicated. In general, advanced physico-chemical characterization is preliminarily needed to assess the safety of nanomaterials for human health and the environment. However, there is currently a shortfall in global legislation as a universally accepted and unambiguous definition of a nanomaterial is still lacking. Therefore, each country follows its own regulations. Anyhow, the main safety concerns arise from the European context, which is the most restrictive. Accordingly, the poor dermal permeation of nanomaterials generally limits their potential toxic effects, which should be mainly ascribed to unwanted or accidental exposure routes. Full article
Show Figures

Figure 1

Back to TopTop