Advances in Nanostructured Materials between Pharmaceutics and Biomedicine 2.0

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (10 March 2024) | Viewed by 6866

Special Issue Editors

Department of Physics and Geology, University of Perugia, Perugia, Italy
Interests: nanomaterials; sonochemistry; catalysis; electron microscopy imaging
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanostructured materials are materials containing an internal or surface structure in the nanometer length scale on which their properties depend. Organic, inorganic, and hybrid nanostructures find broad application across several areas of pharmaceutics and biomedicine. In particular, medicinal chemistry, drug delivery, and tissue engineering have benefited from the progress in such technologies. Considerable advances have characterized the recent application of nanostructured materials in medicine, from diagnostic biosensors to scaffolds for tissue engineering, without forgetting the high relevance in catalysis and biocatalysis applied to biology and chemical synthesis.

This Special Issue aims at the most recent advances in nanostructured material across chemistry and biology, including manufacturing and potential toxicity issues. Particular importance will be given to applications in medicinal chemistry and flow chemistry, targeted and local drug nanocarriers, nanostructured matrices for controlled release, biosensors, and functional nanomaterials and their biological relevance.

You may choose our Joint Special Issue in IJMS.

Prof. Dr. Stefano Giovagnoli
Prof. Dr. Alessandro Di Michele
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Nanostructured materials in medicinal chemistry
  • Nanomaterials and flow chemistry
  • Biofunctional nanomaterials
  • Nanostructured materials for catalysis
  • Nanostructured scaffolds for tissue engineering
  • Nanomaterials for local and targeted drug delivery
  • Nanostructured biosensors and diagnostic tools
  • Nanostructured scaffolds for biocatalysis
  • Nanostructured matrices for drug delivery
  • Nanostructured materials manufacturing
  • Nanomaterial toxicity
  • Nanomaterial functionalization and characterization
  • Nanomaterial structural analysis
  • Nanoparticles
  • Functional nanomaterials
  • Heterogenous catalysis
  • Biocatalysis
  • Flow chemistry
  • Biosensors
  • Diagnostics
  • Local and targeted drug delivery
  • Nanotoxicity
  • Nanostructured scaffolds

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3657 KiB  
Article
Strong Antimicrobial Activity of Highly Stable Nanocomposite Containing AgNPs Based on Water-Soluble Triazole-Sulfonate Copolymer
by Alexander Pozdnyakov, Artem Emel’yanov, Anastasiya Ivanova, Nadezhda Kuznetsova, Tat’yana Semenova, Yuliya Bolgova, Svetlana Korzhova, Olga Trofimova, Tat’yana Fadeeva and Galina Prozorova
Pharmaceutics 2022, 14(1), 206; https://doi.org/10.3390/pharmaceutics14010206 - 16 Jan 2022
Cited by 7 | Viewed by 1481
Abstract
A new hydrophilic polymeric nanocomposite containing AgNPs was synthesized by chemical reduction of metal ions in an aqueous medium in the presence of the copolymer. A new water-soluble copolymer of 1-vinyl-1,2,4-triazole and vinylsulfonic acid sodium salt (poly(VT-co-Na-VSA)) was obtained by free-radical copolymerization and [...] Read more.
A new hydrophilic polymeric nanocomposite containing AgNPs was synthesized by chemical reduction of metal ions in an aqueous medium in the presence of the copolymer. A new water-soluble copolymer of 1-vinyl-1,2,4-triazole and vinylsulfonic acid sodium salt (poly(VT-co-Na-VSA)) was obtained by free-radical copolymerization and was used as a stabilizing precursor agent. The structural, dimensional, and morphological properties of the nanocomposite were studied by UV–Vis, FTIR, X-ray diffraction, atomic absorption, transmission and scanning electron microscopy, dynamic and electrophoretic light scattering, gel permeation chromatography, thermogravimetric analysis, and differential scanning calorimetry. Hydrodynamic diameter of macroclubs for the copolymer was 171 nm, and for the nanocomposite it was 694 nm. Zeta potential for the copolymer was −63.8 mV, and for the nanocomposite it was −70.4 mV. The nanocomposite had strong antimicrobial activity towards Gram-negative and Gram-positive microorganisms: MIC and MBC values were in the range of 0.25–4.0 and 0.5–8.0 μg/mL, respectively. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

25 pages, 1386 KiB  
Review
Silver Nanoparticles as Potential Antiviral Agents
by Zubair Ahmed Ratan, Fazla Rabbi Mashrur, Anisha Parsub Chhoan, Sadi Md. Shahriar, Mohammad Faisal Haidere, Nusrat Jahan Runa, Sunggyu Kim, Dae-Hyuk Kweon, Hassan Hosseinzadeh and Jae Youl Cho
Pharmaceutics 2021, 13(12), 2034; https://doi.org/10.3390/pharmaceutics13122034 - 29 Nov 2021
Cited by 33 | Viewed by 4690
Abstract
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties [...] Read more.
Since the early 1990s, nanotechnology has led to new horizons in nanomedicine, which encompasses all spheres of science including chemistry, material science, biology, and biotechnology. Emerging viral infections are creating severe hazards to public health worldwide, recently, COVID-19 has caused mass human casualties with significant economic impacts. Interestingly, silver nanoparticles (AgNPs) exhibited the potential to destroy viruses, bacteria, and fungi using various methods. However, developing safe and effective antiviral drugs is challenging, as viruses use host cells for replication. Designing drugs that do not harm host cells while targeting viruses is complicated. In recent years, the impact of AgNPs on viruses has been evaluated. Here, we discuss the potential role of silver nanoparticles as antiviral agents. In this review, we focus on the properties of AgNPs such as their characterization methods, antiviral activity, mechanisms, applications, and toxicity. Full article
Show Figures

Figure 1

Back to TopTop