Nanotechnology and Natural Products: Plant Bioactive Compounds for Drug Delivery

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (30 April 2022) | Viewed by 45795

Special Issue Editor


E-Mail
Guest Editor
Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
Interests: phenolic compounds; immunometabolism; food nanotechnologies; nanoencapsulation; drug delivery systems; biodisponibility; colorectal cancerolic compounds; persimmon; food science; functional foods; biochemistry; haematology; in vitro/in vivo inflammation and cancer models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Currently, environmental and climate concerns have actively contributed to a growing interest in plant foods, be they exotic or not so well known, or underutilized or even discarded fruits/vegetables, which are all important sources of bioactive compounds with proven health benefits. The use of these bioactive compounds for drug delivery is only now beginning to gain interest at an increasing rate.

However, further studies are necessary in order to clarify mechanisms of action at the cellular, molecular and genetic levels, pharmacokinetics, and toxicokinetics. Pharmaceutical formulations, delivery systems and controlled-release systems have to be duly studied in order to guarantee the efficiency of these plant bioactive compounds.

This Special Issue aims to address this need and how we can be innovative when dealing with natural compounds in the management of health, and how “old” nutrition habits can be encompassed in modern lifestyles through supplementation, as a therapeutic adjuvant, or as an aid to personalized medicine through biopharmaceuticals and nutraceuticals.

New and promising strategies in the area of drug delivery systems that permit bioactive compounds from plants to be more bioavailable and/or even more potent in their health effects, that could improve the state of health in the face of certain diseases with safety, and efficacy, are especially welcome. Formulations with natural products, tested in vitro and in vivo models of chronic inflammatory diseases, cancer, non-communicable diseases (NCDs) in general, and preclinical studies demonstrating the beneficial effect, in which drug-delivery, dose and pharmacokinetics is involved, are encouraged to submit their work.

Authors are invited to submit original research articles and reviews in this important and exciting research field in an effort to envision future drug delivery strategies of natural products.

Dr. Rosa Direito
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • diet
  • plant foods
  • bioactive compounds
  • phenolic compounds
  • nutrition
  • delivery systems
  • nanoencapsulation
  • supplementation
  • inflammation
  • cancer
  • bioavailability
  • antioxidants
  • safety
  • efficacy
  • biopharmaceuticals
  • pharmacokinetics
  • toxicokinetics

Related Special Issue

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 4539 KiB  
Article
Improved Therapeutic Efficacy of CBD with Good Tolerance in the Treatment of Breast Cancer through Nanoencapsulation and in Combination with 20(S)-Protopanaxadiol (PPD)
by Jingxin Fu, Kunfeng Zhang, Likang Lu, Manzhen Li, Meihua Han, Yifei Guo and Xiangtao Wang
Pharmaceutics 2022, 14(8), 1533; https://doi.org/10.3390/pharmaceutics14081533 - 22 Jul 2022
Cited by 5 | Viewed by 3365
Abstract
Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, [...] Read more.
Cannabidiol (CBD), a nonpsychoactive major component derived from Cannabis sativa, widely used in neurodegenerative diseases, has now been proven to have growth inhibitory effects on many tumor cell lines, including breast tumors. Meanwhile CBD can effectively alleviate cancer-associated pain, anxiety, and depression, especially tumor cachexia, thus it is very promising as an anti-tumor drug with unique advantages. 20(S)-Protopanaxadiol (PPD) derived from the best-known tonic Chinese herbal medicine Ginseng was designed to be co-loaded with CBD into liposomes to examine their synergistic tumor-inhibitory effect. The CBD-PPD co-loading liposomes (CP-liposomes) presented a mean particle size of 138.8 nm. Further glycosyl-modified CP-liposomes (GMCP-liposomes) were prepared by the incorporation of n-Dodecyl β-D-maltoside (Mal) into the liposomal bilayer with glucose residue anchored on the surface to act as a ligand targeting the GLUT1 receptor highly expressed on tumor cells. In vivo studies on murine breast tumor (4T1 cells)-bearing BALB/c mice demonstrated good dose dependent anti-tumor efficacy of CP-liposomes. A high tumor inhibition rate (TIR) of 82.2% was achieved with good tolerance. However, glycosylation modification failed to significantly enhance TIR of CP-liposomes. In summary, combined therapy with PPD proved to be a promising strategy for CBD to be developed into a novel antitumor drug, with characteristics of effectiveness, good tolerance, and the potential to overcome tumor cachexia. Full article
Show Figures

Figure 1

15 pages, 5590 KiB  
Article
Enhanced Solubility and Antitumor Activity of Annona Squamosa Seed Oil via Nanoparticles Stabilized with TPGS: Preparation and In Vitro and In Vivo Evaluation
by Hui Ao, Likang Lu, Manzhen Li, Meihua Han, Yifei Guo and Xiangtao Wang
Pharmaceutics 2022, 14(6), 1232; https://doi.org/10.3390/pharmaceutics14061232 - 10 Jun 2022
Cited by 4 | Viewed by 1812
Abstract
Annona squamosa seed oil (ASSO), which is a waste product in the extraction of annonaceous acetogenins (ACGs), displays good antitumor activity against a variety of tumor cells. However, ASSO is insoluble and has low bioavailability. In order to improve the solubility and application [...] Read more.
Annona squamosa seed oil (ASSO), which is a waste product in the extraction of annonaceous acetogenins (ACGs), displays good antitumor activity against a variety of tumor cells. However, ASSO is insoluble and has low bioavailability. In order to improve the solubility and application value of ASSO, the seed oil nanoparticles (ASSO-NPs) were successfully prepared only using TPGS as a stabilizer. ASSO-NPs obtained were spherical with a uniform size (less than 200 nm). ASSO-NPs showed the good storage stability at 25 ± 2 °C and were suitable for both oral administration and intravenous injection. The antitumor study in vitro and in vivo demonstrated more enhanced antitumor efficacy of ASSO-NPs than free ASSO. The ASSO-NPs group (15 mg/kg) had the highest tumor inhibition rate (TIR) of 69.8%, greater than the ASSO solution (52.7%, 135 mg/kg, p < 0.05) in 4T1 tumor-bearing mice. The in vivo biodistribution data displayed that the fluorescence intensity of ASSO/DiR-NPs in tumor was similar to that in liver in the presence of the reticuloendothelial system. Besides, the relative tumor-targeting index (RTTI) of (ACGs + ASSO)-NPs was 1.47-fold that of ACGs delivered alone, and there is great potential in ASSO-NPs as tumor-targeted delivery vehicles. In this study, ASSO-NPs were firstly prepared by a very simple method with fewer excipients, which improved the solubility and antitumor activity of the ASSO, displaying a good prospect in the in vivo delivery of natural bioactive compounds. Full article
Show Figures

Graphical abstract

26 pages, 3536 KiB  
Article
Development of Cyclodextrin-Functionalized Transethoniosomes of 6-Gingerol: Statistical Optimization, In Vitro Characterization and Assessment of Cytotoxic and Anti-Inflammatory Effects
by Eman A. Mazyed, Farid A. Badria, Mai H. ElNaggar, Soha M. El-Masry and Sally A. Helmy
Pharmaceutics 2022, 14(6), 1170; https://doi.org/10.3390/pharmaceutics14061170 - 30 May 2022
Cited by 11 | Viewed by 1968
Abstract
The poor solubility and stability of 6-gingerol (6-G) could hamper its clinical applications. The aim of the current study was to develop a novel ultra-deformable cyclodextrin-functionalized transethoniosomes (CD-TENs) as a promising delivery system for 6-G. Transethoniosomes (TENs) are flexible niosomes (NVs) due to [...] Read more.
The poor solubility and stability of 6-gingerol (6-G) could hamper its clinical applications. The aim of the current study was to develop a novel ultra-deformable cyclodextrin-functionalized transethoniosomes (CD-TENs) as a promising delivery system for 6-G. Transethoniosomes (TENs) are flexible niosomes (NVs) due to their content of ethanol and edge activators (EAs). CD-functionalized nanoparticles could improve drug solubility and stability compared to the corresponding nanovesicles. 6-G-loaded ethoniosomes (ENs) were formulated by the ethanol injection technique in the presence and absence of EA and CD to explore the impact of the studied independent variables on entrapment efficiency (EE%) and % 6-G released after 24 h (Q24h). According to the desirability criteria, F8 (CD-functionalized transethoniosomal formula) was selected as the optimized formulation. F8 demonstrated higher EE%, permeation, deformability and stability than the corresponding TENs, ENs and NVs. Additionally, F8 showed higher cytotoxic and anti-inflammatory activity than pure 6-G. The synergism between complexation with CD and novel ultra-deformable nanovesicles (TENs) in the form of CD-TENs can be a promising drug delivery carrier for 6-G. Full article
Show Figures

Figure 1

18 pages, 2610 KiB  
Article
New Insight on the Bioactivity of Solanum aethiopicum Linn. Growing in Basilicata Region (Italy): Phytochemical Characterization, Liposomal Incorporation, and Antioxidant Effects
by Immacolata Faraone, Ludovica Lela, Maria Ponticelli, Domenico Gorgoglione, Filomena De Biasio, Patricia Valentão, Paula B. Andrade, Antonio Vassallo, Carla Caddeo, Roberto Falabella, Angela Ostuni and Luigi Milella
Pharmaceutics 2022, 14(6), 1168; https://doi.org/10.3390/pharmaceutics14061168 - 30 May 2022
Cited by 8 | Viewed by 2160
Abstract
Food extract’s biological effect and its improvement using nanotechnologies is one of the challenges of the last and the future decades; for this reason, the antioxidant effect of scarlet eggplant extract liposomal incorporation was investigated. Scarlet eggplant (Solanum aethiopicum L.) is a [...] Read more.
Food extract’s biological effect and its improvement using nanotechnologies is one of the challenges of the last and the future decades; for this reason, the antioxidant effect of scarlet eggplant extract liposomal incorporation was investigated. Scarlet eggplant (Solanum aethiopicum L.) is a member of the Solanaceae family, and it is one of the most consumed vegetables in tropical Africa and south of Italy. This study investigated the antioxidant activity and the phytochemical composition of S. aethiopicum grown in the Basilicata Region for the first time. The whole fruit, peel, and pulp were subjected to ethanolic exhaustive maceration extraction, and all extracts were investigated. The HPLC-DAD analysis revealed the presence of ten phenolic compounds, including hydroxycinnamic acids, flavanones, flavanols, and four carotenoids (one xanthophyll and three carotenes). The peel extract was the most promising, active, and the richest in specialized metabolites; hence, it was tested on HepG2 cell lines and incorporated into liposomes. The nanoincorporation enhanced the peel extract’s antioxidant activity, resulting in a reduction of the concentration used. Furthermore, the extract improved the expression of endogenous antioxidants, such as ABCG2, CAT, and NQO1, presumably through the Nrf2 pathway. Full article
Show Figures

Figure 1

22 pages, 5161 KiB  
Article
Optimization of the Synthesis of Natural Polymeric Nanoparticles of Inulin Loaded with Quercetin: Characterization and Cytotoxicity Effect
by Jocelyn C. Ayala-Fuentes, Melissa Zulahi Gallegos-Granados, Luis Jesús Villarreal-Gómez, Marilena Antunes-Ricardo, Daniel Grande and Rocio Alejandra Chavez-Santoscoy
Pharmaceutics 2022, 14(5), 888; https://doi.org/10.3390/pharmaceutics14050888 - 19 Apr 2022
Cited by 10 | Viewed by 3573
Abstract
Quercetin is a bioactive component that is capable of having therapeutic potential in the prevention of different noncommunicable chronic diseases (NCDs). However, it presents instability in the gastrointestinal tract in addition to low bioavailability. One way to overcome the limitations of quercetin lies [...] Read more.
Quercetin is a bioactive component that is capable of having therapeutic potential in the prevention of different noncommunicable chronic diseases (NCDs). However, it presents instability in the gastrointestinal tract in addition to low bioavailability. One way to overcome the limitations of quercetin lies in using nanotechnology for the development of nanoparticles, based on biopolymers, that are capable of being ingestible. Inulin, a fructan-type polysaccharide, acts as a delivery system for the release of quercetin in a target cell, guaranteeing the stability of the molecule. Inulin-coated quercetin nanoparticles were synthesized by the spray dryer method, and four variables were evaluated, namely inulin concentration (5–10% w/v), feed temperature (40–60 °C), inlet temperature (100–200 °C) and outlet temperature (60–100 °C). The optimal conditions were obtained at 10% w/v inulin concentration, with 45 °C feed temperature, 120 °C inlet temperature and 60 °C outlet temperature, and the nanoparticle size was 289.75 ± 16.3 nm in water. Fluorescence microscopy indicated quercetin loading in the inulin nanoparticles, with an encapsulation efficiency of approximately 73.33 ± 7.86%. Inulin-coated quercetin nanoparticles presented effects of inhibition in Caco-2 and HepG2 cells, but not in HDFa cells. The experimental data showed the potential of inulin nanoparticles as transport materials for unstable molecules, in oral administration systems, for the encapsulation, protection and release of quercetin. Full article
Show Figures

Graphical abstract

22 pages, 10569 KiB  
Article
Formulation and Evaluation of Apigenin-Loaded Hybrid Nanoparticles
by Imran Kazmi, Fahad A. Al-Abbasi, Syed Sarim Imam, Muhammad Afzal, Muhammad Shahid Nadeem, Hisham N. Altayb and Sultan Alshehri
Pharmaceutics 2022, 14(4), 783; https://doi.org/10.3390/pharmaceutics14040783 - 3 Apr 2022
Cited by 8 | Viewed by 2555
Abstract
Apigenin (AGN) is a potent phytochemical with strong antioxidant and anticancer potential. But its therapeutic efficacy is limited due to its high lipophilic characteristics. Therefore, the present investigation aimed to develop AGN-loaded polymer-lipid hybrid nanoparticles (AGN-PLHNPs). Herein, we successfully developed AGN-PLHNPs and optimized [...] Read more.
Apigenin (AGN) is a potent phytochemical with strong antioxidant and anticancer potential. But its therapeutic efficacy is limited due to its high lipophilic characteristics. Therefore, the present investigation aimed to develop AGN-loaded polymer-lipid hybrid nanoparticles (AGN-PLHNPs). Herein, we successfully developed AGN-PLHNPs and optimized them by a 33-Box-Behnken de-sign. The poly (lactic-co-glycolic acid) (PLGA; coded as F1), phospholipon 90 G (PL-90G; coded as F2), and poloxamer 188 (P-188; coded as F3) were considered as the independent factors while particle size (PS; coded as R1), entrapment efficiency (%EE; R2), and cumulative drug release (%CDR; R3) were selected as dependent responses. The average PS, %EE, and %CDR of the AGN-PLHNPs were observed in the range of 101.93 nm to 175.26 nm, 58.35% to 81.14%, and 71.21% to 93.31%, respectively. The optimized AGN-PLHNPs revealed better homogeneity (poly-dispersity index < 0.2) and colloidal stability with high zeta potential (>25 mV). It also exhibited fast release in the initial 4 h after that sustained release up to 48 h of study. Moreover, the results of both DPPH as well as ABTS assays revealed significant improvement in the antioxidant activity. Furthermore, the optimized AGN-PLHNPs exhibited enhanced cytotoxicity efficacy against MCF-7 as well as MDA-MB-231 breast cancer cell lines. Full article
Show Figures

Figure 1

31 pages, 7992 KiB  
Article
Biophysical Studies and In Vitro Effects of Tumor Cell Lines of Cannabidiol and Its Cyclodextrin Inclusion Complexes
by Kyriaki Hatziagapiou, Kostas Bethanis, Eleni Koniari, Elias Christoforides, Olti Nikola, Athena Andreou, Aimilia Mantzou, George P. Chrousos, Christina Kanaka-Gantenbein and George I. Lambrou
Pharmaceutics 2022, 14(4), 706; https://doi.org/10.3390/pharmaceutics14040706 - 26 Mar 2022
Cited by 10 | Viewed by 3074
Abstract
Phytocannabinoids possess anticancer properties, as established in vitro and in vivo. However, they are characterized by high lipophilicity. To improve the properties of cannabidiol (CBD), such as solubility, stability, and bioavailability, CBD inclusion complexes with cyclodextrins (CDs) might be employed, offering targeted, faster, [...] Read more.
Phytocannabinoids possess anticancer properties, as established in vitro and in vivo. However, they are characterized by high lipophilicity. To improve the properties of cannabidiol (CBD), such as solubility, stability, and bioavailability, CBD inclusion complexes with cyclodextrins (CDs) might be employed, offering targeted, faster, and prolonged CBD release. The aim of the present study is to investigate the in vitro effects of CBD and its inclusion complexes in randomly methylated β-CD (RM-β-CD) and 2-hyroxypropyl-β-CD (HP-β-CD). The enhanced solubility of CBD upon complexation with CDs was examined by phase solubility study, and the structure of the inclusion complexes of CBD in 2,6-di-O-methyl-β-CD (DM-β-CD) and 2,3,6-tri-O-methyl-β-CD (TM-β-CD) was determined by X-ray crystallography. The structural investigation was complemented by molecular dynamics simulations. The cytotoxicity of CBD and its complexes with RM-β-CD and HP-β-CD was tested on two cell lines, the A172 glioblastoma and TE671 rhabdomyosarcoma cell lines. Methylated β-CDs exhibited the best inclusion ability for CBD. A dose-dependent effect of CBD on both cancer cell lines and improved efficacy of the CBD–CDs complexes were verified. Thus, cannabinoids may be considered in future clinical trials beyond their palliative use as possible inhibitors of cancer growth. Full article
Show Figures

Graphical abstract

18 pages, 3180 KiB  
Article
Formulation and Evaluation of Kaempferol Loaded Nanoparticles against Experimentally Induced Hepatocellular Carcinoma: In Vitro and In Vivo Studies
by Imran Kazmi, Fahad A. Al-Abbasi, Muhammad Afzal, Hisham N. Altayb, Muhammad Shahid Nadeem and Gaurav Gupta
Pharmaceutics 2021, 13(12), 2086; https://doi.org/10.3390/pharmaceutics13122086 - 5 Dec 2021
Cited by 19 | Viewed by 2502 | Correction
Abstract
The present study was designed to prepare Kaempferol loaded nanoparticles (KFP-Np) and evaluate hepatoprotective and antioxidant effects in hepatocellular carcinoma models. KFP was encapsulated with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Kollicoat MAE 30 DP polymers to prepare nanoparticles (Nps) by quasi-emulsion solvent [...] Read more.
The present study was designed to prepare Kaempferol loaded nanoparticles (KFP-Np) and evaluate hepatoprotective and antioxidant effects in hepatocellular carcinoma models. KFP was encapsulated with hydroxypropyl methylcellulose acetate succinate (HPMC-AS) and Kollicoat MAE 30 DP polymers to prepare nanoparticles (Nps) by quasi-emulsion solvent diffusion technique (QESD). The prepared Nps were evaluated for different pharmaceutical characterization to select the optimum composition for the in vivo assessment. An animal model of cadmium chloride (CdCl2)-induced hepatocellular carcinoma in Male Sprague Dawley rats was used in vivo to test the antioxidant and hepatoprotective capacity of free and encapsulated KFP. The prepared Npsshowed nanometric size, low PDI, high drug load as well as encapsulation with a better drug release profile. There was a significant decrease in the increased serum levels of alanine transaminase (ALT), total bilirubin (TBiL), and aspartate transaminase (AST), and the lipid peroxidation’s (MDA) level was attenuated, and levels of markers of the cell antioxidant defence system were restored including Glutathione S-transferase (GST), glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) via oral pre-treatment with KFP-Np (50 mg/kg b.w. (body weight), 6 weeks). KFP-Np significantly declines an mRNA expression of interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-alpha (TNF-α) as well as decreased nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) protein expression. It also upregulated the mRNA expression and protein expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). While comparing the protective effects of KFP encapsulated in Kollicoat MAE 30 DP and HPMC-AS, Nps was found to be betterthan free KFP. Insummary, result indicate that encapsulation of KFP in NPs provides a potential platform for oxidative stress induce liver injury. Full article
Show Figures

Figure 1

27 pages, 72429 KiB  
Article
Beta vulgaris Assisted Fabrication of Novel Ag-Cu Bimetallic Nanoparticles for Growth Inhibition and Virulence in Candida albicans
by Majid Rasool Kamli, Maqsood Ahmad Malik, Shabir Ahmad Lone, Jamal S. M. Sabir, Ehab H. Mattar and Aijaz Ahmad
Pharmaceutics 2021, 13(11), 1957; https://doi.org/10.3390/pharmaceutics13111957 - 18 Nov 2021
Cited by 13 | Viewed by 3011
Abstract
Beta vulgaris extract contains water-soluble red pigment betanin and is used as a food colorant. In this study, the biogenic Ag-Cu bimetallic nanoparticles were synthesized and characterized by different spectroscopic and microscopic techniques, including UV–Visible, FTIR, TEM. SEM-EDX, XRD, and TGA. Further, Ag-Cu [...] Read more.
Beta vulgaris extract contains water-soluble red pigment betanin and is used as a food colorant. In this study, the biogenic Ag-Cu bimetallic nanoparticles were synthesized and characterized by different spectroscopic and microscopic techniques, including UV–Visible, FTIR, TEM. SEM-EDX, XRD, and TGA. Further, Ag-Cu bimetallic nanoparticles capped with Beta vulgaris biomolecules were evaluated for their antifungal activity against Candida albicans via targeting its major virulence factors, including adherence, yeast to hyphae transition, extracellular enzyme secretion, biofilm formation, and the expression of genes related to these pathogenic traits by using standard methods. C. albicans is an opportunistic human fungal pathogen that causes significant morbidity and mortality, mainly in immunocompromised patients. The current antifungal therapy is limited with various shortcomings such as host toxicity and developing multidrug resistance. Therefore, the development of novel antifungal agents is urgently required. Furthermore, NPs were screened for cell viability and cytotoxicity effect. Antifungal susceptibility testing showed potent antifungal activity of the Ag-Cu bimetallic NPs with a significant inhibitory effect on adherence, yeast to hyphae transition, extracellular enzymes secretion, and formation of biofilms in C. albicans at sub-inhibitory and inhibitory concentrations. The RT-qPCR results at an MIC value of the NPs exhibited a varying degree of downregulation in expression levels of virulence genes. Results also revealed the dose-dependent effect of NPs on cellular viability (up to 100%) using MUSE cell analyzer. Moreover, the low cytotoxicity effect of bimetallic NPs has been observed using haemolytic assay. The overall results indicated that the newly synthesized Ag-Cu bimetallic NPs capped with Beta vulgaris are proven to possess a potent anticandidal activity, by affecting the vital pathogenic factors of C. albicans. Full article
Show Figures

Figure 1

23 pages, 17196 KiB  
Article
The Tragedy of Alzheimer’s Disease: Towards Better Management via Resveratrol-Loaded Oral Bilosomes
by Haidy Abbas, Heba A. Gad, Mohamed A. Khattab and Mai Mansour
Pharmaceutics 2021, 13(10), 1635; https://doi.org/10.3390/pharmaceutics13101635 - 7 Oct 2021
Cited by 22 | Viewed by 2717
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disease where oxidative stress plays a major role as a key pathologic factor. The study aims to develop resveratrol (RES)-loaded bilosomes for oral use, aiming to enhance RES bioavailability. RES-loaded bilosomes were prepared using the thin-film hydration technique. The effect of different formulation variables viz. the number of extrusion cycles, drug concentration and the effect of pH of the medium and cholesterol addition on the physicochemical properties of the prepared bilosomes was investigated. Results revealed the successful entrapment of RES into bilosomes. An optimized formula was selected, showing the lowest particle size (189 ± 2.14), acceptable PDI (0.116) and entrapment efficiency (76.2 ± 1.36). In vivo studies on a streptozotocin-induced animal model of AD showed the preeminence of bilosomes over traditional drug suspension to enhance mice memory via Y-maze and Morris water maze tests. Moreover, mice treated with the optimized formula exhibited decreased COX2, IL-6, amyloid-beta peptide and Tau protein levels compared to the drug suspension. Immuno-histochemical analysis revealed a significant decrease of glial fibrillary acidic protein values and microglial cell count in mice treated with bilosomes. Finally, it could be advocated that RES-loaded bilosomes could be a promising drug delivery system to control AD. Full article
Show Figures

Figure 1

23 pages, 8094 KiB  
Article
Multifaced Role of Dual Herbal Principles Loaded-Lipid Nanocarriers in Providing High Therapeutic Efficacity
by Ioana Lacatusu, Teodora Alexandra Iordache, Mirela Mihaila, Dan Eduard Mihaiescu, Anca Lucia Pop and Nicoleta Badea
Pharmaceutics 2021, 13(9), 1511; https://doi.org/10.3390/pharmaceutics13091511 - 18 Sep 2021
Cited by 9 | Viewed by 2301
Abstract
Although many phytochemicals have been used in traditional medicine, there is a great need to refresh the health benefits and adjust the shortcomings of herbal medicine. In this research, two herbal principles (Diosgenin and Glycyrrhiza glabra extract) coopted in the Nanostructured Lipid Carriers [...] Read more.
Although many phytochemicals have been used in traditional medicine, there is a great need to refresh the health benefits and adjust the shortcomings of herbal medicine. In this research, two herbal principles (Diosgenin and Glycyrrhiza glabra extract) coopted in the Nanostructured Lipid Carriers have been developed for improving the most desirable properties of herbal medicine—antioxidant and anti-inflammatory actions. The contribution of phytochemicals, vegetable oils and of lipid matrices has been highlighted by comparative study of size, stability, entrapment efficiency, morphological characteristics, and thermal behavior. According to the in vitro MTS and RTCA results, the dual herbal-NLCs were no cytotoxic toward endothelial cells at concentrations between 25 and 100 µg/mL. A rapid release of Glycyrrhiza glabra and a motivated delay of Diosgenin was detected by the in vitro release experiments. Dual herbal-NLCs showed an elevated ability to annihilate long-life cationic radicals (ABTS•+) and short-life oxygenated radicals (an inhibition of 63.4% ABTS•+, while the ability to capture radical oxygen species reached 96%). The production of pro-inflammatory cytokines was significantly inhibited by the newly herbals-NLC (up to 97.9% inhibition of TNF-α and 62.5% for IL-6). The study may open a new pharmacotherapy horizon; it provides a comprehensive basis for the use of herbal-NLC in the treatment of inflammatory diseases. Full article
Show Figures

Graphical abstract

Review

Jump to: Research, Other

28 pages, 1415 KiB  
Review
Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review
by Bogdan-Stefan Negreanu-Pirjol, Ticuta Negreanu-Pirjol, Dan Razvan Popoviciu, Ruxandra-Elena Anton and Ana-Maria Prelipcean
Pharmaceutics 2022, 14(9), 1781; https://doi.org/10.3390/pharmaceutics14091781 - 25 Aug 2022
Cited by 12 | Viewed by 2538
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in [...] Read more.
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems. Full article
Show Figures

Figure 1

25 pages, 35262 KiB  
Review
Surface-Tailored Zein Nanoparticles: Strategies and Applications
by Ahmed M. Abdelsalam, Ahmed Somaida, Abdallah Mohamed Ayoub, Fahd M. Alsharif, Eduard Preis, Matthias Wojcik and Udo Bakowsky
Pharmaceutics 2021, 13(9), 1354; https://doi.org/10.3390/pharmaceutics13091354 - 28 Aug 2021
Cited by 24 | Viewed by 5832
Abstract
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The [...] Read more.
Plant-derived proteins have emerged as leading candidates in several drug and food delivery applications in diverse pharmaceutical designs. Zein is considered one of the primary plant proteins obtained from maize, and is well known for its biocompatibility and safety in biomedical fields. The ability of zein to carry various pharmaceutically active substances (PAS) position it as a valuable contender for several in vitro and in vivo applications. The unique structure and possibility of surface covering with distinct coating shells or even surface chemical modifications have enabled zein utilization in active targeted and site-specific drug delivery. This work summarizes up-to-date studies on zein formulation technology based on its structural features. Additionally, the multiple applications of zein, including drug delivery, cellular imaging, and tissue engineering, are discussed with a focus on zein-based active targeted delivery systems and antigenic response to its potential in vivo applicability. Full article
Show Figures

Graphical abstract

15 pages, 947 KiB  
Review
Recent Advances in the Anti-Inflammatory Activity of Plant-Derived Alkaloid Rhynchophylline in Neurological and Cardiovascular Diseases
by Rajeswari Gopal Geetha and Surya Ramachandran
Pharmaceutics 2021, 13(8), 1170; https://doi.org/10.3390/pharmaceutics13081170 - 29 Jul 2021
Cited by 20 | Viewed by 4028
Abstract
Rhynchophylline (Rhy) is a plant-derived indole alkaloid isolated from Uncaria species. Both the plant and the alkaloid possess numerous protective properties such as anti-inflammatory, neuroprotective, anti-hypertensive, anti-rhythmic, and sedative effects. Several studies support the significance of the anti-inflammatory activity of the plant as [...] Read more.
Rhynchophylline (Rhy) is a plant-derived indole alkaloid isolated from Uncaria species. Both the plant and the alkaloid possess numerous protective properties such as anti-inflammatory, neuroprotective, anti-hypertensive, anti-rhythmic, and sedative effects. Several studies support the significance of the anti-inflammatory activity of the plant as an underlying mechanism for most of the pharmacological activities of the alkaloid. Rhy is effective in protecting both the central nervous system and cardiovascular system. Cerebro-cardiovascular disease primarily occurs due to changes in lifestyle habits. Many previous studies have highlighted the significance of Rhy in modulating calcium channels and potassium channels, thereby protecting the brain from neurodegenerative diseases and related effects. Rhy also has anticoagulation and anti-platelet aggregation activity. Although Rhy has displayed its role in protecting the cardiovascular system, very little is explored about its intervention in early atherosclerosis. Extensive studies are required to understand the cardioprotective effects of Rhye. This review summarized and discussed the various pharmacological effects of Rhy in neuro- and cardioprotection and in particular the relevance of Rhy in preventing early atherosclerosis using Rhy-loaded nanoparticles. Full article
Show Figures

Graphical abstract

Other

Jump to: Research, Review

16 pages, 2570 KiB  
Systematic Review
Iron Oxide Nanoparticles-Plant Insignia Synthesis with Favorable Biomedical Activities and Less Toxicity, in the “Era of the-Green”: A Systematic Review
by Nadia M. Hamdy, Amira A. Boseila, Ahmed Ramadan and Emad B. Basalious
Pharmaceutics 2022, 14(4), 844; https://doi.org/10.3390/pharmaceutics14040844 - 12 Apr 2022
Cited by 10 | Viewed by 2400
Abstract
In the era of favoring environment-friendly approaches for pharmaceutical synthesis, “green synthesis” is expanding. Green-based nanomedicine (NM), being less toxic and if having biomedical acceptable activities, thence, the chemical methods of synthesis are to be replaced by plants for reductive synthesis. [...] Read more.
In the era of favoring environment-friendly approaches for pharmaceutical synthesis, “green synthesis” is expanding. Green-based nanomedicine (NM), being less toxic and if having biomedical acceptable activities, thence, the chemical methods of synthesis are to be replaced by plants for reductive synthesis. Iron oxide nanoparticles (IONPs) exhibited remarkable anti-microbial and anti-cancer properties, besides being a drug delivery tool. However, owing to limitations related to the chemical synthetic method, plant-mediated green synthesis has been recognized as a promising alternative synthetic method. This systematic review (SR) is addressing plant-based IONPs green synthesis, characteristics, and toxicity studies as well as their potential biomedical applications. Furthermore, the plant-based green-synthesized IONPs in comparison to nanoparticles (NPs) synthesized via other conventional methods, characteristics, and efficacy or toxicity profiles would be mentioned (if available). Search strategy design utilized electronic databases including Science Direct, PubMed, and Google Scholar search. Selection criteria included recent clinical studies, available in the English language, published till PROSPERO registration. After screening articles obtained by first electronic database search, by title, abstract and applying the PICO criteria, the search results yielded a total of 453 articles. After further full text filtrations only 48 articles were included. In conclusion, the current SR emphasizes the perspective of the IONPs plant-mediated green synthesis advantage(s) when utilized in the biomedical pharmaceutical field, with less toxicity. Full article
Show Figures

Graphical abstract

Back to TopTop