Nanotechnology-Based Drug Delivery Systems

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Nanomedicine and Nanotechnology".

Deadline for manuscript submissions: closed (28 February 2023) | Viewed by 27260

Special Issue Editor

Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
Interests: nanoparticle preparation; polymers; biomaterials; nanobiotechnology; nanoscience; polymer nanoscience; nanotechnology in drug delivery; polymeric biomaterials; nanoparticles; controlled drug delivery
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

To date, there has been growing interest in the use of nanotechnologies for the creation and investigation of drug delivery systems (DDSs) in the development of novel forms of efficient pharmaceutical dosages. Such nano-sized drug carriers may be used not only to maintain a required blood level of a pharmaceutical agent for an extended period of time for a better drug bioavailability, but also to decrease a drug’s toxicity or provide the dissolubility of poorly soluble active substances for injection-administrated medicines in the form of highly dispersed aqueous systems. Numerous nano-scaled DDSs such as liposomes, metal nanoparticles, carbon nanoparticles and nanotubes, nano-crystals, polymeric nanospheres, nanocapsules and micelles, dendrimers, ghost bacteria and viruses and even quantum dots are being thoroughly investigated for the delivery of various drugs and diagnostic agents, both of a low- and high-molecular-weight origin.

The aim of this Special Issue of the Pharmaceutics journal is to collect research and review papers regarding nanotechnology-based DDS applications in the pharmaceutical field. We welcome articles dealing with all aspects of nano-scaled drug delivery systems and invite researchers and drug developers to publish their original research or review articles, including expert opinions and perspectives in the area of therapeutics and diagnostics.

Prof. Dr. Andrey N. Kuskov
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • drug delivery system
  • nanoparticle
  • controlled release
  • targeted delivery
  • bioavailability
  • nanotoxicity
  • nanoscale
  • theranostic

Related Special Issue

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 2022 KiB  
Article
Caveolin-Mediated Internalization of Fmoc-FF Nanogels in Breast Cancer Cell Lines
by Giovanni Smaldone, Elisabetta Rosa, Enrico Gallo, Carlo Diaferia, Giancarlo Morelli, Mariano Stornaiuolo and Antonella Accardo
Pharmaceutics 2023, 15(3), 1026; https://doi.org/10.3390/pharmaceutics15031026 - 22 Mar 2023
Cited by 4 | Viewed by 1398
Abstract
Introduction: Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the [...] Read more.
Introduction: Hydrogel nanoparticles, also known as nanogels (NGs), have been recently proposed as alternative supramolecular vehicles for the delivery of biologically relevant molecules like anticancer drugs and contrast agents. The inner compartment of peptide based NGs can be opportunely modified according to the chemical features of the cargo, thus improving its loading and release. A full understanding of the intracellular mechanism involved in nanogel uptake by cancer cells and tissues would further contribute to the potential diagnostic and clinical applications of these nanocarriers, allowing the fine tuning of their selectivity, potency, and activity. The structural characterization of nanogels were assessed by Dynamic Light Scattering (DLS) and Nanoparticles Tracking Analysis (NTA) analysis. Cells viability of Fmoc-FF nanogels was evaluated by MTT assay on six breast cancer cell lines at different incubation times (24, 48, and 72 h) and peptide concentrations (in the range 6.25 × 10−4 ÷ 5·10−3 × wt%). The cell cycle and mechanisms involved in Fmoc-FF nanogels intracellular uptake were evaluated using flow cytometry and confocal analysis, respectively. Fmoc-FF nanogels, endowed with a diameter of ~130 nm and a zeta potential of ~−20.0/−25.0 mV, enter cancer cells via caveolae, mostly those responsible for albumin uptake. The specificity of the machinery used by Fmoc-FF nanogels confers a selectivity toward cancer cell lines overexpressing the protein caveolin1 and efficiently performing caveolae-mediated endocytosis. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 26739 KiB  
Article
Drug Transport System Based on Phospholipid Nanoparticles: Production Technology and Characteristics
by Elena G. Tikhonova, Maxim A. Sanzhakov, Yulia A. Tereshkina, Lyubov V. Kostryukova, Yulia Yu. Khudoklinova, Nadezhda A. Orlova, Daria V. Bobrova and Olga M. Ipatova
Pharmaceutics 2022, 14(11), 2522; https://doi.org/10.3390/pharmaceutics14112522 - 19 Nov 2022
Cited by 5 | Viewed by 1247
Abstract
One of the current trends in modern pharmaceuticals is the supply of drugs by transport systems. The use of delivery systems allows to increase the therapeutic efficacy, tolerability, and safety of drug therapy. Liposomes, polymer nanoparticles, carbon nanoparticles, blood cells, metal nanoparticles, oxides, [...] Read more.
One of the current trends in modern pharmaceuticals is the supply of drugs by transport systems. The use of delivery systems allows to increase the therapeutic efficacy, tolerability, and safety of drug therapy. Liposomes, polymer nanoparticles, carbon nanoparticles, blood cells, metal nanoparticles, oxides, etc., are used as transport systems. This work is aimed at obtaining a finished technological product based on soy phospholipids with particle size in the nanometer range and reproducible characteristics (size, charge). For this purpose, we carried out investigations to select the optimal conditions of technological process. The developed technology makes it possible to obtain phospholipid nanoparticles without the use of any solubilizers and/or surfactants, which increases its practical relevance for further work. The versatility of the technology is demonstrated by the example of incorporation of drugs of various chemical nature and pharmacotherapeutic groups. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

27 pages, 6020 KiB  
Article
Nanomedicines Bearing an Alkylating Cytostatic Drug from the Group of 1,3,5-Triazine Derivatives: Development and Characterization
by Ekaterina Sinitsyna, Irina Bagaeva, Erik Gandalipov, Evgenia Fedotova, Viktor Korzhikov-Vlakh, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Pharmaceutics 2022, 14(11), 2506; https://doi.org/10.3390/pharmaceutics14112506 - 18 Nov 2022
Cited by 2 | Viewed by 1112
Abstract
Cancer is still one of the major diseases worldwide. The discovery of new drugs and the improvement of existing ones is one of the areas of priority in the fight against cancer. Dioxadet ([5-[[4,6-bis(aziridin-1-yl)-1,3,5-triazin-2-yl]amino]-2,2-dimethyl-1,3-dioxan-5-yl]methanol) represents one of the promising 1,3,5-triazine derivatives and has [...] Read more.
Cancer is still one of the major diseases worldwide. The discovery of new drugs and the improvement of existing ones is one of the areas of priority in the fight against cancer. Dioxadet ([5-[[4,6-bis(aziridin-1-yl)-1,3,5-triazin-2-yl]amino]-2,2-dimethyl-1,3-dioxan-5-yl]methanol) represents one of the promising 1,3,5-triazine derivatives and has cytostatic activity towards ovarian cancer. In this study, we first report the development of dioxadet-bearing nanomedicines based on block-copolymers of poly(ethylene glycol) monomethyl ether (mPEG) and poly(D,L-lactic acid) (PLA)/poly(ε-caprolactone) (PCL) and then conduct an investigation into their characteristics and properties. The preparation of narrow-sized nanoparticles with a hydrodynamic diameter of 100–120 nm was optimized using a nanoprecipitation approach. Thoughtful optimization of the preparation of nanomedicines was carried out through adjustments to the polymer’s molecular weight, the pH of the aqueous medium used for nanoprecipitation, the initial drug amount in respect to the polymer, and polymer concentration in the organic phase. Under optimized conditions, spherical-shaped nanomedicines with a hydrodynamic diameter of up to 230 nm (PDI < 0.2) containing up to 592 ± 22 μg of dioxadet per mg of polymer nanoparticles were prepared. Study of the drug’s release in a model medium revealed the release up to 64% and 46% of the drug after 8 days for mPEG-b-PLA and mPEG-b-PCL, respectively. Deep analysis of the release mechanisms was carried out with the use of a number of mathematical models. The developed nanoparticles were non-toxic towards both normal (CHO-K1) and cancer (A2780 and SK-OV-3) ovarian cells. A cell cycle study revealed lesser toxicity of nanomedicines towards normal cells and increased toxicity towards cancer cells. The IC50 values determined for dioxadet nanoformulations were in the range of 0.47–4.98 μg/mL for cancer cells, which is close to the free drug’s efficacy (2.60–4.14 μg/mL). The highest cytotoxic effect was found for dioxadet loaded to mPEG-b-PCL nanoparticles. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

17 pages, 4910 KiB  
Article
Biosynthesis of Silver Nanoparticles Using Commiphora mukul Extract: Evaluation of Anti-Arthritic Activity in Adjuvant-Induced Arthritis Rat Model
by Anupama Singh, Sateesha Shivally Boregowda, Afrasim Moin, Amr Selim Abu Lila, Mohammed F. Aldawsari, El-Sayed Khafagy, Hadil Faris Alotaibi and Rajamma Abburu Jayaramu
Pharmaceutics 2022, 14(11), 2318; https://doi.org/10.3390/pharmaceutics14112318 - 28 Oct 2022
Cited by 1 | Viewed by 2001
Abstract
Rheumatoid arthritis (RA) is a major global public health challenge, and novel therapies are required to combat it. Silver nanoparticles (AgNPs) have been employed as delivery vehicles of anti-inflammatory drugs for RA therapy, and it has been recently realized that AgNPs have anti-inflammatory [...] Read more.
Rheumatoid arthritis (RA) is a major global public health challenge, and novel therapies are required to combat it. Silver nanoparticles (AgNPs) have been employed as delivery vehicles of anti-inflammatory drugs for RA therapy, and it has been recently realized that AgNPs have anti-inflammatory action on their own. However, their conventional synthesis processes might result in cytotoxicity and environmental hazards. Instead, the use of natural products as a reducing and stabilizing agent in the biosynthesis of silver nanoparticles has arisen as an option to decrease the cytotoxic and environmental concerns associated with chemical synthesis of AgNPs. In this study, we challenged the efficacy of Commiphora mukul (guggul) aqueous extract as a reducing and/or capping agent for the biosynthesis of AgNPs. Guggul-mediated biosynthesized silver nanoparticles (G-AgNPs) were characterized via UV-vis spectroscopy, dynamic light scattering, and scanning electron microscopy. In addition, their anti-arthritic potential was evaluated in an adjuvant-induced arthritis (AIA) model. The fabricated NPs showed an absorption peak at 412 nm, corresponding to the typical surface plasmon resonance band of AgNPs. The synthesized G-AgNPs were nearly spherical, with a particle size of 337.6 ± 12.1 nm and a negative surface charge (−18.9 ± 1.8 mV). In AIA rat model, synthesized G-AgNPs exerted a potent anti-inflammatory action, as manifested by a remarkable reduction in paw volume (>40%) along with elicitation of a minimal arthritic score, compared to control rats. In addition, when compared to arthritic rats, treatment with G-AgNPs efficiently restored the activity of antioxidant enzyme, superoxide dismutase, and catalase, indicating the efficiency of synthesized G-AgNPs in alleviating the oxidative stress associated with RA. Finally, histological examination revealed comparatively lower inflammatory cells infiltration in ankle joint tissue upon treatment with G-AgNPs. Collectively, biosynthesized G-AgNPs might represent a plausible therapeutic option for the management of RA. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 5193 KiB  
Article
A Novel C@Fe@Cu Nanocomposite Loaded with Doxorubicin Tailored for the Treatment of Hepatocellular Carcinoma
by Mohammed S. Saddik, Mahmoud M. A. Elsayed, Amany A. Abdel-Rheem, Mohamed A. El-Mokhtar, Eisa S. Mosa, Mostafa F. Al-Hakkani, Samah A. Al-Shelkamy, Ali Khames, Mohamed A. Daha and Jelan A. Abdel-Aleem
Pharmaceutics 2022, 14(9), 1845; https://doi.org/10.3390/pharmaceutics14091845 - 01 Sep 2022
Cited by 9 | Viewed by 1743
Abstract
High mortality and morbidity rates are related to hepatocellular carcinoma (HCC), which is the most prevalent type of liver cancer. A new vision for cancer treatment and cancer cell targeting has emerged with the application of nanotechnology, which reduces the systemic toxicity and [...] Read more.
High mortality and morbidity rates are related to hepatocellular carcinoma (HCC), which is the most prevalent type of liver cancer. A new vision for cancer treatment and cancer cell targeting has emerged with the application of nanotechnology, which reduces the systemic toxicity and adverse effects of chemotherapy medications while increasing their effectiveness. It was the goal of the proposed work to create and investigate an anticancer C@Fe@Cu nanocomposite (NC) loaded with Doxorubicin (DOX) for the treatment of HCC. Scanning and transmission electron microscopes (SEM and TEM) were used to examine the morphology of the produced NC. The formulation variables (DOX content, C@Fe@Cu NC weight, and stirring speed) were analyzed and optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). Additionally, X-ray diffraction patterns (XRD) and Fourier Transform Infrared (FTIR) were investigated. Doxorubicin and DOX- loaded C@Fe@Cu NC (DOX-C@Fe@Cu NC) were also assessed against HEPG2 cells for anticancer efficacy (Hepatic cancer cell line). The results revealed the formation of C@Fe@Cu NC with a mean size of 7.8 nm. A D-R model with a mean size of 24.1 nm best fits the adsorption behavior of DOX onto the C@Fe@Cu NC surface. DOX-C@Fe@Cu NC has also been demonstrated to have a considerably lower IC50 and higher cytotoxicity than DOX alone in an in vitro investigation. Therefore, DOX-C@Fe@Cu NC is a promising DOX delivery vehicle for the full recovery of HCC. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

22 pages, 4297 KiB  
Article
Design and Evaluation of Autophagy-Inducing Particles for the Treatment of Abnormal Lipid Accumulation
by Stavroula Zagkou, Valentine Marais, Narimane Zeghoudi, Edouard Le Guillou, Eeva-Liisa Eskelinen, Ganna Panasyuk, Bernard Verrier and Charlotte Primard
Pharmaceutics 2022, 14(7), 1379; https://doi.org/10.3390/pharmaceutics14071379 - 29 Jun 2022
Cited by 3 | Viewed by 2184
Abstract
Autophagy is a fundamental housekeeping process by which cells degrade their components to maintain homeostasis. Defects in autophagy have been associated with aging, neurodegeneration and metabolic diseases. Non-alcoholic fatty liver diseases (NAFLDs) are characterized by hepatic fat accumulation with or without inflammation. No [...] Read more.
Autophagy is a fundamental housekeeping process by which cells degrade their components to maintain homeostasis. Defects in autophagy have been associated with aging, neurodegeneration and metabolic diseases. Non-alcoholic fatty liver diseases (NAFLDs) are characterized by hepatic fat accumulation with or without inflammation. No treatment for NAFLDs is currently available, but autophagy induction has been proposed as a promising therapeutic strategy. Here, we aimed to design autophagy-inducing particles, using the autophagy-inducing peptide (Tat-Beclin), and achieve liver targeting in vivo, taking NAFLD as a model disease. Polylactic acid (PLA) particles were prepared by nanoprecipitation without any surfactant, followed by surface peptide adsorption. The ability of Tat-Beclin nanoparticles (NP T-B) to modulate autophagy and to decrease intracellular lipid was evaluated in vitro by LC3 immunoblot and using a cellular model of steatosis, respectively. The intracellular localization of particles was evaluated by transmission electron microscopy (TEM). Finally, biodistribution of fluorescent NP T-B was evaluated in vivo using tomography in normal and obese mice. The results showed that NP T-B induce autophagy with a long-lasting and enhanced effect compared to the soluble peptide, and at a ten times lower dose. Intracellular lipid also decreased in a cellular model of NAFLD after treatment with T-B and NP T-B under the same dose conditions. Ultrastructural studies revealed that NP T-B are internalized and located in endosomal, endolysosomal and autolysosomal compartments, while in healthy and obese mice, NP T-B could accumulate for several days in the liver. Given the beneficial effects of autophagy-inducing particles in vitro, and their capacity to target the liver of normal and obese mice, NP T-B could be a promising therapeutic tool for NAFLDs, warranting further in vivo investigation. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

19 pages, 3901 KiB  
Article
siRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells
by Supusson Pengnam, Purin Charoensuksai, Boon-ek Yingyongnarongkul, Rungnapha Saeeng, Hasan Uludağ, Prasopchai Patrojanasophon, Praneet Opanasopit and Samarwadee Plianwong
Pharmaceutics 2022, 14(6), 1196; https://doi.org/10.3390/pharmaceutics14061196 - 03 Jun 2022
Cited by 4 | Viewed by 2132
Abstract
Breast cancer is the second leading cause of cancer-related death in the US. However, recurrence is frequently found despite adjuvant therapy being available. Combination therapy with cytotoxic drugs and gene therapy is being developed to be a new promising cancer treatment strategy. Introducing [...] Read more.
Breast cancer is the second leading cause of cancer-related death in the US. However, recurrence is frequently found despite adjuvant therapy being available. Combination therapy with cytotoxic drugs and gene therapy is being developed to be a new promising cancer treatment strategy. Introducing substituted dithiocarbamate moieties at the C12 position of andrographolide (3nAG) could improve its anticancer selectivity in the MCF-7 breast cancer cell line. However, its hydrophobicity is one of its main drawbacks. This work successfully prepared 3nAG nanosuspension stabilized with the chitosan derivative NSC (3nAGN-NSC) to increase solubility and pharmacological effectiveness. siRNAs have emerged as a promising therapeutic alternative for interfering with particular mRNA. The 3nAGN-NSC had also induced Mcl-1 mRNA expression in MCF-7 human breast cancer cells at 8, 12, and 24 h. This indicates that, in addition to Mcl-1 silencing by siRNA (siMcl-1) in MCF-7 with substantial Mcl-1 reliance, rationally devised combination treatment may cause the death of cancer cells in breast cancer. The Fa-CI analysis showed that the combination of 3nAGN-NSC and siMcl-1 had a synergistic effect with a combination index (CI) value of 0.75 (CI < 1 indicating synergistic effects) at the fractional inhibition of Fa 0.7. The synergistic effect was validated by flow cytometry, with the induction of apoptosis as the mechanism of reduced cell viability. Our findings suggested the rational use of 3nAGN-NSC in combination with siMcl-1 to kill breast cancer cells. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

21 pages, 1919 KiB  
Article
Amphiphilic Poly-N-vinylpyrrolidone Nanoparticles as Carriers for Nonsteroidal, Anti-Inflammatory Drugs: Pharmacokinetic, Anti-Inflammatory, and Ulcerogenic Activity Study
by Andrey Kuskov, Dragana Nikitovic, Aikaterini Berdiaki, Mikhail Shtilman and Aristidis Tsatsakis
Pharmaceutics 2022, 14(5), 925; https://doi.org/10.3390/pharmaceutics14050925 - 24 Apr 2022
Cited by 12 | Viewed by 2378
Abstract
Nanoparticles are increasingly utilized as drug delivery agents. Previously, we have developed a drug delivery system based on amphiphilic derivatives of poly-N-vinylpyrrolidone (PVP-OD4000) with excellent biocompatibility. In the current study, we assessed the pharmacokinetics, anti-inflammatory profile, and ulcerogenic potential of indomethacin [...] Read more.
Nanoparticles are increasingly utilized as drug delivery agents. Previously, we have developed a drug delivery system based on amphiphilic derivatives of poly-N-vinylpyrrolidone (PVP-OD4000) with excellent biocompatibility. In the current study, we assessed the pharmacokinetics, anti-inflammatory profile, and ulcerogenic potential of indomethacin (IMC)-loaded PVP-OD4000 nanoparticles compared to the free drug. Wistar male rats were utilized for a pharmacokinetics study and an anti-inflammatory study. Loaded IMC exhibited a slower elimination rate (p < 0.05) and a higher blood plasma concentration at 8 and 24 h after intraperitoneal injection compared with free IMC. In addition, decreased uptake of loaded IMC in the liver and kidney compared to free IMC (p < 0.05) was detected. Furthermore, PVP-OD4000 nanoparticles loaded with IMC showed an enhanced anti-inflammatory effect compared to free IMC (p < 0.05) in carrageenan-induced and complete Freund’s adjuvant-induced–(CFA) sub-chronic and chronic paw edema treatment (p < 0.01; p < 0.01). Notably, upon oral administration of loaded IMC, animals had a significantly lower ulcer score and Paul’s Index (3.9) compared to the free drug (p < 0.05). The obtained results suggest that IMC loaded to PVP nanoparticles exhibit superior anti-inflammatory activity in vivo and a safe gastrointestinal profile and pose a therapeutic alternative for the currently available NSAIDs’ administration. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

16 pages, 3034 KiB  
Article
Surface-Modified Bilosomes Nanogel Bearing a Natural Plant Alkaloid for Safe Management of Rheumatoid Arthritis Inflammation
by Mohammed H. Elkomy, Nabil K. Alruwaili, Mohammed Elmowafy, Khaled Shalaby, Ameeduzzafar Zafar, Naveed Ahmad, Izzeddin Alsalahat, Mohammed M. Ghoneim, Essam M. Eissa and Hussein M. Eid
Pharmaceutics 2022, 14(3), 563; https://doi.org/10.3390/pharmaceutics14030563 - 03 Mar 2022
Cited by 27 | Viewed by 2953
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory illness affecting the joints. The characteristic of RA is gradual joint deterioration. Current RA treatment alleviates signs such as inflammation and pain and substantially slows the progression of the disease. In this study, we aimed to [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory illness affecting the joints. The characteristic of RA is gradual joint deterioration. Current RA treatment alleviates signs such as inflammation and pain and substantially slows the progression of the disease. In this study, we aimed to boost the transdermal delivery of berberine (a natural product) by encapsulating it in chitosan, surface-modified bilosomes nanogel for better management of the inflammation of RA. The chitosan-coated bilosomes loaded with berberine (BER-CTS-BLS) were formulated according to the thin-film hydration approach and optimized for various causal variables, considering the effect of lipid, sodium deoxycholate, and chitosan concentrations on the size of the particles, entrapment, and the surface charge. The optimized BER-CTS-BLS has 202.3 nm mean diameter, 83.8% entrapment, and 30.8 mV surface charge. The optimized BER-CTS-BLS exhibited a delayed-release profile in vitro and increased skin permeability ex vivo. Additionally, histological examination revealed that the formulated BLS had no irritating effects on the skin. Furthermore, the optimized BER-CTS-BLS ability to reduce inflammation was evaluated in rats with carrageenan-induced paw edema. Our results demonstrate that the group treated with topical BER-CTS-BLS gel exhibited a dramatic reduction in rat paw edema swelling percentage to reach 24.4% after 12 h, which was substantially lower than other groups. Collectively, chitosan-coated bilosomes containing berberine have emerged as a promising therapeutic approach to control RA inflammation. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

Review

Jump to: Research

31 pages, 3391 KiB  
Review
Transforming Wound Management: Nanomaterials and Their Clinical Impact
by Ashwini T, Ashlesh Prabhu, Vishal Baliga, Shreesha Bhat, Siddarth T. Thenkondar, Yogendra Nayak and Usha Y. Nayak
Pharmaceutics 2023, 15(5), 1560; https://doi.org/10.3390/pharmaceutics15051560 - 22 May 2023
Cited by 6 | Viewed by 2349
Abstract
Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. [...] Read more.
Wound healing is a complex process that can be further complicated in chronic wounds, leading to prolonged healing times, high healthcare costs, and potential patient morbidity. Nanotechnology has shown great promise in developing advanced wound dressings that promote wound healing and prevent infection. The review article presents a comprehensive search strategy that was applied to four databases, namely Scopus, Web of Science, PubMed, and Google Scholar, using specific keywords and inclusion/exclusion criteria to select a representative sample of 164 research articles published between 2001 and 2023. This review article provides an updated overview of the different types of nanomaterials used in wound dressings, including nanofibers, nanocomposites, silver-based nanoparticles, lipid nanoparticles, and polymeric nanoparticles. Several recent studies have shown the potential benefits of using nanomaterials in wound care, including the use of hydrogel/nano silver-based dressings in treating diabetic foot wounds, the use of copper oxide-infused dressings in difficult-to-treat wounds, and the use of chitosan nanofiber mats in burn dressings. Overall, developing nanomaterials in wound care has complemented nanotechnology in drug delivery systems, providing biocompatible and biodegradable nanomaterials that enhance wound healing and provide sustained drug release. Wound dressings are an effective and convenient method of wound care that can prevent wound contamination, support the injured area, control hemorrhaging, and reduce pain and inflammation. This review article provides valuable insights into the potential role of individual nanoformulations used in wound dressings in promoting wound healing and preventing infections, and serves as an excellent resource for clinicians, researchers, and patients seeking improved healing outcomes. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 2134 KiB  
Review
Polymeric Gel Systems Cytotoxicity and Drug Release as Key Features for their Effective Application in Various Fields of Addressed Pharmaceuticals Delivery
by Veronika Smagina, Pavel Yudaev, Andrey Kuskov and Evgeniy Chistyakov
Pharmaceutics 2023, 15(3), 830; https://doi.org/10.3390/pharmaceutics15030830 - 03 Mar 2023
Cited by 7 | Viewed by 2550
Abstract
Modified polymeric gels, including nanogels, which play not only the role of a bioinert matrix, but also perform regulatory, catalytic, and transport functions due to the active fragments introduced into them, can significantly advance the solution to the problem of targeted drug delivery [...] Read more.
Modified polymeric gels, including nanogels, which play not only the role of a bioinert matrix, but also perform regulatory, catalytic, and transport functions due to the active fragments introduced into them, can significantly advance the solution to the problem of targeted drug delivery in an organism. This will significantly reduce the toxicity of used pharmaceuticals and expand the range of their therapeutic, diagnostic, and medical application. This review presents a comparative description of gels based on synthetic and natural polymers intended for pharmaceutical-targeted drug delivery in the field of therapy of inflammatory and infectious diseases, dentistry, ophthalmology, oncology, dermatology, rheumatology, neurology, and the treatment of intestinal diseases. An analysis was made of most actual sources published for 2021–2022. The review is focused on the comparative characteristics of polymer gels in terms of their toxicity to cells and the release rate of drugs from nano-sized hydrogel systems, which are crucial initial features for their further possible application in mentioned areas of biomedicine. Different proposed mechanisms of drug release from gels depending on their structure, composition, and application are summarized and presented. The review may be useful for medical professionals, and pharmacologists dealing with the development of novel drug delivery vehicles. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Graphical abstract

13 pages, 989 KiB  
Review
Nanoparticles for Lymph Node-Directed Delivery
by Jaeseong Lee, Sungtaek Kang, Hyeseon Park, Jeong Gil Sun, Eun Chae Kim and Gayong Shim
Pharmaceutics 2023, 15(2), 565; https://doi.org/10.3390/pharmaceutics15020565 - 08 Feb 2023
Cited by 9 | Viewed by 3472
Abstract
Lymph nodes are organs that control immune cells and provide a major pathway for primary tumors to metastasize. A nanoparticles-based strategy has several advantages that make it suitable for achieving effective lymphatic delivery. First, the size of nanoparticles can be tailored to meet [...] Read more.
Lymph nodes are organs that control immune cells and provide a major pathway for primary tumors to metastasize. A nanoparticles-based strategy has several advantages that make it suitable for achieving effective lymphatic delivery. First, the size of nanoparticles can be tailored to meet a size range appropriate for lymphatic migration. In addition, functionalized nanoparticles can target cells of interest for delivery of drugs or imaging probes. Existing lymph node contrast agents map all lymph nodes regardless of metastasis status; however, by using nanoparticles, it is possible to selectively target lymphatic metastases. Moreover, using functionalized nanoparticles, it is possible to specifically deliver anticancer drugs to metastatic lymph nodes. In this review, we introduce the use of nanoparticles for lymphatic mapping, in particular highlighting design considerations for detecting metastatic lymph nodes. Furthermore, we assess trends in lymph node-targeting nanoparticles in clinical practice and suggest future directions for lymph node-targeting nanoparticles. Full article
(This article belongs to the Special Issue Nanotechnology-Based Drug Delivery Systems)
Show Figures

Figure 1

Back to TopTop