Microencapsulation for the Therapeutic Delivery of Drugs

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Physical Pharmacy and Formulation".

Deadline for manuscript submissions: closed (31 December 2020) | Viewed by 33984

Special Issue Editor


E-Mail Website
Guest Editor
Laboratory for the Conception and Application of Bioactive Molecules, Faculty of Pharmacy, University of Strasbourg, 67400 Illkirch-Graffenstaden, France
Interests: microencapsulation; nanoemulsions; biopharmacy; formulation; pharmaceutical engineering
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Microencapsulation is one of the techniques able to overcome the drug stability problem. Moreover, it creates the possibility to formulate encapsulated drug delivery systems with controlled release rates and, therefore, optimize their pharmacokinetics. On these bases, microencapsulated dosage forms represent new and effective therapeutic platforms. The active molecules are protected until they reach their specific action site. Most applied techniques for microencapsulation are based on modifications of the three basic methods: spray-drying, phase separation (coacervation), and solvent extraction/evaporation.

This Special Issue will cover different aspects of microencapsulation as a means to control or modify the release of drug substances from drug delivery systems, improving their biopharmacy. Since clinical efficacies have been reported to be improved by the encapsulation of pharmaceuticals, the bioavailability of drugs, controlling drug release kinetics, minimizing drug side effects, and masking the bitter taste of drug substances will be discussed.

Prof. Dr. Thierry Vandamme
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microencapsulation
  • encapsulation
  • encapsulation efficiency
  • coacervation
  • entrapment
  • lipid formulation
  • water-in-oil emulsion
  • spray-congealing
  • emulsion solvent evaporation
  • membrane emulsification
  • size-controlled emulsion
  • drug targeting
  • microspheres
  • microparticles
  • microcapsules
  • coating
  • emulsion
  • polymeric drug delivery systems
  • spray-drying
  • taste masking
  • aerosol
  • electrospray
  • self microemulsifying

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 2774 KiB  
Article
Lung Targeted Lipopolymeric Microspheres of Dexamethasone for the Treatment of ARDS
by Sabna Kotta, Hibah Mubarak Aldawsari, Shaimaa M. Badr-Eldin, Lenah S. Binmahfouz, Rana Bakur Bakhaidar, Nagaraja Sreeharsha, Anroop B. Nair and Chandramouli Ramnarayanan
Pharmaceutics 2021, 13(9), 1347; https://doi.org/10.3390/pharmaceutics13091347 - 27 Aug 2021
Cited by 13 | Viewed by 3114
Abstract
Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ [...] Read more.
Acute respiratory distress syndrome (ARDS), a catastrophic illness of multifactorial etiology, involves a rapid upsurge in inflammatory cytokines that leads to hypoxemic respiratory failure. Dexamethasone, a synthetic corticosteroid, mitigates the glucocorticoid-receptor-mediated inflammation and accelerates tissue homeostasis towards disease resolution. To minimize non-target organ side effects arising from frequent and chronic use of dexamethasone, we designed biodegradable, lung-targeted microspheres with sustained release profiles. Dexamethasone-loaded lipopolymeric microspheres of PLGA (Poly Lactic-co-Glycolic Acid) and DPPC (Dipalmitoylphosphatidylcholine) stabilized with vitamin E TPGS (D-α-tocopheryl polyethylene glycol succinate) were prepared by a single emulsion technique that had a mean diameter of 8.83 ± 0.32 μm and were spherical in shape as revealed from electron microscopy imaging. Pharmacokinetic and biodistribution patterns studied in the lungs, liver, and spleen of Wistar rats showed high selectivity and targeting efficiency for the lung tissue (re 13.98). As a proof-of-concept, in vivo efficacy of the microspheres was tested in the lipopolysaccharide-induced ARDS model in rats. Inflammation markers such as IL-1β, IL-6, and TNF-α, quantified in the bronchoalveolar lavage fluid indicated major improvement in rats treated with dexamethasone microspheres by intravenous route. Additionally, the microspheres substantially inhibited the protein infiltration, neutrophil accumulation and lipid peroxidation in the lungs of ARDS bearing rats, suggesting a reduction in oxidative stress. Histopathology showed decreased damage to the pulmonary tissue upon treatment with the dexamethasone-loaded microspheres. The multipronged formulation technology approach can thus serve as a potential treatment modality for reducing lung inflammation in ARDS. An improved therapeutic profile would help to reduce the dose, dosing frequency and, eventually, the toxicity. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Figure 1

17 pages, 3240 KiB  
Article
Targeting Beclin1 as an Adjunctive Therapy against HIV Using Mannosylated Polyethylenimine Nanoparticles
by Myosotys Rodriguez, Yemmy Soler, Mohan Kumar Muthu Karuppan, Yuling Zhao, Elena V. Batrakova and Nazira El-Hage
Pharmaceutics 2021, 13(2), 223; https://doi.org/10.3390/pharmaceutics13020223 - 06 Feb 2021
Cited by 6 | Viewed by 2750
Abstract
Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an [...] Read more.
Using nanoparticle-based RNA interference (RNAi), we have previously shown that silencing the host autophagic protein, Beclin1, in HIV-infected human microglia and astrocytes restricts HIV replication and its viral-associated inflammatory responses. Here, we confirmed the efficacy of Beclin1 small interfering RNA (siBeclin1) as an adjunctive antiviral and anti-inflammatory therapy in myeloid human microglia and primary human astrocytes infected with HIV, both with and without exposure to combined antiretroviral (cART) drugs. To specifically target human microglia and human astrocytes, we used a nanoparticle (NP) comprised of linear cationic polyethylenimine (PEI) conjugated with mannose (Man) and encapsulated with siBeclin1. The target specificity of the PEI-Man NP was confirmed in vitro using human neuronal and glial cells transfected with the NP encapsulated with fluorescein isothiocyanate (FITC). PEI-Man-siBeclin1 NPs were intranasally delivered to healthy C57BL/6 mice in order to report the biodistribution of siBeclin1 in different areas of the brain, measured using stem-loop RT-PCR. Postmortem brains recovered at 1–48 h post-treatment with the PEI-Man-siRNA NP showed no significant changes in the secretion of the chemokines regulated on activation, normal T cell expressed and secreted (RANTES) and monocyte chemotactic protein-1 (MCP-1) and showed significant decreases in the secretion of the cytokines interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) when compared to phosphate-buffered saline (PBS)-treated brains. Nissl staining showed minimal differences between the neuronal structures when compared to PBS-treated brains, which correlated with no adverse behavioral affects. To confirm the brain and peripheral organ distribution of PEI-siBeclin1 in living mice, we used the In vivo Imaging System (IVIS) and demonstrated a significant brain accumulation of siBeclin1 through intranasal administration. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Graphical abstract

14 pages, 1786 KiB  
Article
Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines
by Sylwia Łukasiewicz, Antoni Mikołajczyk, Ewa Błasiak, Ewelina Fic and Marta Dziedzicka-Wasylewska
Pharmaceutics 2021, 13(2), 191; https://doi.org/10.3390/pharmaceutics13020191 - 01 Feb 2021
Cited by 31 | Viewed by 2812
Abstract
An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase [...] Read more.
An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase inversion composition (PIC) technique. The two types of biopolymeric NPs that were obtained consisted of a biocompatible polymer, polycaprolactone (PCL), either with or without its copolymer with poly(ethylene glycol) (PCL-b-PEG). Both types of synthesized PCL NPs passed the first in vitro quality assessments as potential drug nanocarriers. Non-pegylated PCL NPs were internalized more effectively and the clathrin-mediated pathway was involved in that process. The investigated NPs did not affect the viability of the cells and did not elicit an immune response in the RAW 264.7 cells (neither a significant increase in the expression of genes encoding pro-inflammatory cytokines nor NO (nitric oxide) production were observed). It may be concluded that the synthesized NPs are promising candidates as nanocarriers of therapeutic compounds. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Figure 1

16 pages, 4829 KiB  
Article
Protein Loading into Spongelike PLGA Microspheres
by Yuyoung Kim and Hongkee Sah
Pharmaceutics 2021, 13(2), 137; https://doi.org/10.3390/pharmaceutics13020137 - 21 Jan 2021
Cited by 11 | Viewed by 2413
Abstract
A self-healing microencapsulation process involves mixing preformed porous microspheres in an aqueous solution containing the desired protein and converting them into closed-pore microspheres. Spongelike poly-d,l-lactide-co-glycolide (PLGA) microspheres are expected to be advantageous to protein loading through self-healing. [...] Read more.
A self-healing microencapsulation process involves mixing preformed porous microspheres in an aqueous solution containing the desired protein and converting them into closed-pore microspheres. Spongelike poly-d,l-lactide-co-glycolide (PLGA) microspheres are expected to be advantageous to protein loading through self-healing. This study aimed to identify and assess relevant critical parameters, using lysozyme as a model protein. Several parameters governed lysozyme loading. The pore characteristics (open-pore, closed-pore, and porosity) of the preformed microspheres substantially affected lysozyme loading efficiency. The type of surfactant present in the aqueous medium also influenced lysozyme loading efficiency. For instance, cetyltrimethylammonium bromide showing a superior wetting functionality increased the extent of lysozyme loading more than twice as compared to Tween 80. Dried preformed microspheres were commonly used before, but our study found that wet microspheres obtained at the end of the microsphere manufacturing process displayed significant advantages in lysozyme loading. Not only could an incubation time for hydrating the microspheres be shortened dramatically, but also a much more considerable amount of lysozyme was encapsulated. Interestingly, the degree of microsphere hydration determined the microstructure and morphology of closed-pore microspheres after self-healing. Understanding these critical process parameters would help tailor protein loading into spongelike PLGA microspheres in a bespoke manner. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Graphical abstract

22 pages, 4263 KiB  
Article
Evaluation of the Hemocompatibility and Anticancer Potential of Poly(ε-Caprolactone) and Poly(3-Hydroxybutyrate) Microcarriers with Encapsulated Chrysin
by Eleftherios Halevas, Chrysoula Kokotidou, Elda Zaimai, Alexandra Moschona, Efstratios Lialiaris, Anna Mitraki, Theodore Lialiaris and Anastasia Pantazaki
Pharmaceutics 2021, 13(1), 109; https://doi.org/10.3390/pharmaceutics13010109 - 16 Jan 2021
Cited by 11 | Viewed by 2561
Abstract
In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, [...] Read more.
In this work, novel chrysin-loaded poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers were synthesized according to a modified oil-in-water single emulsion/solvent evaporation method, utilizing poly(vinyl alcohol) surfactant as stabilizer and dispersing agent for the emulsification, and were evaluated for their physico-chemical and morphological properties, loading capacity and entrapment efficiency and in vitro release of their load. The findings suggest that the novel micro-formulations possess a spherical and relatively wrinkled structure with sizes ranging between 2.4 and 24.7 µm and a highly negative surface charge with z-potential values between (−18.1)–(−14.1) mV. The entrapment efficiency of chrysin in the poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers was estimated to be 58.10% and 43.63%, whereas the loading capacity was found to be 3.79% and 15.85%, respectively. The average release percentage of chrysin was estimated to be 23.10% and 18.01%, respectively. The novel micromaterials were further biologically evaluated for their hemolytic activity through hemocompatibility studies over a range of hematological parameters and cytoxicity against the epithelial human breast cancer cell line MDA-MB 231. The poly(ε-caprolactone) and poly(3-hydroxybutyrate) microcarriers reached an IC50 value with an encapsulated chrysin content of 149.19 µM and 312.18 µM, respectively, and showed sufficient blood compatibility displaying significantly low (up to 2%) hemolytic percentages at concentrations between 5 and 500 µg·mL−1. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Graphical abstract

21 pages, 2364 KiB  
Article
Studies on the Effect of Oil and Surfactant on the Formation of Alginate-Based O/W Lidocaine Nanocarriers Using Nanoemulsion Template
by Omar Sarheed, Manar Dibi and Kanteti V. R. N. S. Ramesh
Pharmaceutics 2020, 12(12), 1223; https://doi.org/10.3390/pharmaceutics12121223 - 17 Dec 2020
Cited by 75 | Viewed by 4173
Abstract
The application of various nanocarrier systems was widely explored in the field of pharmaceuticals to achieve better drug encapsulation and delivery. The aim of this study was to encapsulate lidocaine in alginate-based o/w nanocarriers based on the type of oil (i.e., solid or [...] Read more.
The application of various nanocarrier systems was widely explored in the field of pharmaceuticals to achieve better drug encapsulation and delivery. The aim of this study was to encapsulate lidocaine in alginate-based o/w nanocarriers based on the type of oil (i.e., solid or liquid), using a nanoemulsion template prepared by ultrasound-assisted phase inversion temperature (PIT) approach. The nanoemulsion template was initially prepared by dissolving lidocaine in the oil phase and surfactant and alginate in the aqueous phase, and keeping the PIT at around 85 °C, accompanied by gradual water dilution at 25 °C, to initiate the formation of nanoparticles (o/w) with the aid of low frequency ultrasound. The composition and concentration of the oil phase had a major impact on the particle size and led to an increase in the size of the droplet. The lipids that showed a higher drug solubility also showed higher particle size. On the other hand, increasing the concentration of surfactant decreases the size of the droplet before the concentration of the surfactant exceeds the limit, after which the size of the particle increases due to the aggregates that could be produced from the excess surfactant. The method used produced nanoemulsions that maintained nano-sized droplets < 50 nm, over long-term storage. Our findings are important for the design of nanocarrier systems for the encapsulation of lipophilic molecules. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Figure 1

21 pages, 3600 KiB  
Article
Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate
by Inga Matulyte, Giedre Kasparaviciene and Jurga Bernatoniene
Pharmaceutics 2020, 12(7), 628; https://doi.org/10.3390/pharmaceutics12070628 - 04 Jul 2020
Cited by 13 | Viewed by 2783
Abstract
Essential oils are volatile liquids which evaporate and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect nutmeg essential oil from environmental factors by encapsulation (shell material, sodium alginate) and determine the influence of crosslinker [...] Read more.
Essential oils are volatile liquids which evaporate and lose their pharmacological effect when exposed to the environment. The aim of this study is to protect nutmeg essential oil from environmental factors by encapsulation (shell material, sodium alginate) and determine the influence of crosslinker concentration (2%, 5% calcium chloride), different emulsifiers (polysorbate 80, sucrose esters), and magnesium aluminometasilicate on microcapsule physical parameters, encapsulation efficiency (EE), swelling index (SI), and other parameters. Nutmeg essential oil (NEO)-loaded calcium alginate microcapsules were prepared by extrusion. The swelling test was performed with and without enzymes in simulated gastric, intestinal, and gastrointestinal media. This study shows that the crosslinker concentration has a significant influence on EE, with 2% calcium chloride solution being more effective than 5%, and capsules being softer with 2% crosslinker solution. Using sucrose esters, EE is higher when polysorbate 80 is used. The swelling index is nearly three times higher in an intestinal medium without enzymes than in the medium with pancreatin. Microcapsule physical parameters depend on the excipients: the hardest capsules were obtained with the biggest amount of sodium alginate; the largest with magnesium aluminometasilicate. Sucrose esters and magnesium aluminometasilicate are new materials used in extrusion. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Graphical abstract

Review

Jump to: Research

30 pages, 2867 KiB  
Review
Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery
by Lu Tang, Jing Li, Qingqing Zhao, Ting Pan, Hui Zhong and Wei Wang
Pharmaceutics 2021, 13(8), 1151; https://doi.org/10.3390/pharmaceutics13081151 - 27 Jul 2021
Cited by 60 | Viewed by 5636
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery [...] Read more.
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Figure 1

23 pages, 601 KiB  
Review
Osteoarthritis In Vitro Models: Applications and Implications in Development of Intra-Articular Drug Delivery Systems
by Carlota Salgado, Olivier Jordan and Eric Allémann
Pharmaceutics 2021, 13(1), 60; https://doi.org/10.3390/pharmaceutics13010060 - 05 Jan 2021
Cited by 20 | Viewed by 6249
Abstract
Osteoarthritis (OA) is a complex multi-target disease with an unmet medical need for the development of therapies that slow and potentially revert disease progression. Intra-articular (IA) delivery has seen a surge in osteoarthritis research in recent years. As local administration of molecules, this [...] Read more.
Osteoarthritis (OA) is a complex multi-target disease with an unmet medical need for the development of therapies that slow and potentially revert disease progression. Intra-articular (IA) delivery has seen a surge in osteoarthritis research in recent years. As local administration of molecules, this represents a way to circumvent systemic drug delivery struggles. When developing intra-articular formulations, the main goals are a sustained and controlled release of therapeutic drug doses, taking into account carrier choice, drug molecule, and articular joint tissue target. Therefore, the selection of models is critical when developing local administration formulation in terms of accurate outcome assessment, target and off-target effects and relevant translation to in vivo. The current review highlights the applications of OA in vitro models in the development of IA formulation by means of exploring their advantages and disadvantages. In vitro models are essential in studies of OA molecular pathways, understanding drug and target interactions, assessing cytotoxicity of carriers and drug molecules, and predicting in vivo behaviors. However, further understanding of molecular and tissue-specific intricacies of cellular models for 2D and 3D needs improvement to accurately portray in vivo conditions. Full article
(This article belongs to the Special Issue Microencapsulation for the Therapeutic Delivery of Drugs)
Show Figures

Graphical abstract

Back to TopTop