Special Issue "Recent Advances in Radiopharmaceutics (Volume II)"

A special issue of Pharmaceutics (ISSN 1999-4923). This special issue belongs to the section "Drug Targeting and Design".

Deadline for manuscript submissions: 31 August 2023 | Viewed by 1913

Special Issue Editor

School of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
Interests: PET; SPECT; multimodality; imaging analysis; pharmacokinetics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The development of radiopharmaceuticals is important for diagnosis and/or radionuclide therapy in nuclear medicine with positron emission tomography (PET) and single-photon emission computed tomography (SPECT). It also has translational potential from preclinical study to clinical in oncology, neurodegenerative diseases, cardiovascular diseases, etc., for personalized medicine. Integrative imaging and therapy, in combination with other modalities, such as magnetic resonance imaging, ultrasonography, near-infrared imaging, etc., may move personalized medicine further. In addition, advances in PET and SPECT scanners emphasize the usefulness of radiopharmaceuticals.

This Special Issue focuses on the synthesis and evaluation of new radiopharmaceuticals, other applications of radiopharmaceuticals for clinical use, and the combination of radionuclides with other modalities. Novel PET and SPECT machines are also a target. However, the areas of interest are not limited to these keywords.

Dr. Masato Kobayashi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceutics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • PET
  • SPECT
  • radiopharmaceutical
  • multimodality
  • imaging
  • biofunction
  • pharmacokinetics
  • imaging scanner

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
[111In]In/[177Lu]Lu-AAZTA5-LM4 SST2R-Antagonists in Cancer Theranostics: From Preclinical Testing to First Patient Results
Pharmaceutics 2023, 15(3), 776; https://doi.org/10.3390/pharmaceutics15030776 - 26 Feb 2023
Cited by 1 | Viewed by 774
Abstract
Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent [...] Read more.
Aiming to expand the application of the SST2R-antagonist LM4 (DPhe-c[DCys-4Pal-DAph(Cbm)-Lys-Thr-Cys]-DTyr-NH2) beyond [68Ga]Ga-DATA5m-LM4 PET/CT (DATA5m, (6-pentanoic acid)-6-(amino)methy-1,4-diazepinetriacetate), we now introduce AAZTA5-LM4 (AAZTA5, 1,4-bis(carboxymethyl)-6-[bis(carboxymethyl)]amino-6-[pentanoic-acid]perhydro-1,4-diazepine), allowing for the convenient coordination of trivalent radiometals of clinical interest, such as In-111 (for SPECT/CT) or Lu-177 (for radionuclide therapy). After labeling, the preclinical profiles of [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 were compared in HEK293-SST2R cells and double HEK293-SST2R/wtHEK293 tumor-bearing mice using [111In]In-DOTA-LM3 and [177Lu]Lu-DOTA-LM3 as references. The biodistribution of [177Lu]Lu-AAZTA5-LM4 was additionally studied for the first time in a NET patient. Both [111In]In-AAZTA5-LM4 and [177Lu]Lu-AAZTA5-LM4 displayed high and selective targeting of the HEK293-SST2R tumors in mice and fast background clearance via the kidneys and the urinary system. This pattern was reproduced for [177Lu]Lu-AAZTA5-LM4 in the patient according to SPECT/CT results in a monitoring time span of 4–72 h pi. In view of the above, we may conclude that [177Lu]Lu-AAZTA5-LM4 shows promise as a therapeutic radiopharmaceutical candidate for SST2R-expressing human NETs, based on previous [68Ga]Ga-DATA5m-LM4 PET/CT, but further studies are needed to fully assess its clinical value. Furthermore, [111In]In-AAZTA5-LM4 SPECT/CT may represent a legitimate alternative diagnostic option in cases where PET/CT is not available. Full article
(This article belongs to the Special Issue Recent Advances in Radiopharmaceutics (Volume II))
Show Figures

Figure 1

Article
Biological Distribution after Oral Administration of Radioiodine-Labeled Acetaminophen to Estimate Gastrointestinal Absorption Function via OATPs, OATs, and/or MRPs
Pharmaceutics 2023, 15(2), 497; https://doi.org/10.3390/pharmaceutics15020497 - 02 Feb 2023
Viewed by 708
Abstract
We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter [...] Read more.
We evaluated the whole-body distribution of orally-administered radioiodine-125 labeled acetaminophen (125I-AP) to estimate gastrointestinal absorption of anionic drugs. 125I-AP was added to human embryonic kidney (HEK)293 and Flp293 cells expressing human organic anion transporting polypeptide (OATP)1B1/3, OATP2B1, organic anion transporter (OAT)1/2/3, or carnitine/organic cation transporter (OCTN)2, with and without bromosulfalein (OATP and multidrug resistance-associated protein (MRP) inhibitor) and probenecid (OAT and MRP inhibitor). The biological distribution in mice was determined by oral administration of 125I-AP with and without bromosulfalein and by intravenous administration of 125I-AP. The uptake of 125I-AP was significantly higher in HEK293/OATP1B1, OATP1B3, OATP2B1, OAT1, and OAT2 cells than that in mock cells. Bromosulfalein and probenecid inhibited OATP- and OAT-mediated uptake, respectively. Moreover, 125I-AP was easily excreted in the urine when administered intravenously. The accumulation of 125I-AP was significantly lower in the blood and urinary bladder of mice receiving oral administration of both 125I-AP and bromosulfalein than those receiving only 125I-AP, but significantly higher in the small intestine due to inhibition of OATPs and/or MRPs. This study indicates that whole-body distribution after oral 125I-AP administration can be used to estimate gastrointestinal absorption in the small intestine via OATPs, OATs, and/or MRPs by measuring radioactivity in the urinary bladder. Full article
(This article belongs to the Special Issue Recent Advances in Radiopharmaceutics (Volume II))
Show Figures

Figure 1

Back to TopTop