The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology

A special issue of Pharmaceuticals (ISSN 1424-8247). This special issue belongs to the section "Pharmacology".

Deadline for manuscript submissions: 25 August 2024 | Viewed by 2847

Special Issue Editor


E-Mail Website
Guest Editor
School of Pharmacy, University of Reading, Whiteknights, PO Box 228, Reading RG6 6AJ, UK
Interests: electrophysiology; voltage-gated calcium channels; cannabinoids; ion channels; GPCRs; pain; ataxia
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Pharmacology is the study of the interactions between living organisms and chemicals that affect normal or abnormal biochemical functions. It integrates knowledge from multiple scientific disciplines, including chemistry, biochemistry, molecular biology, and physiology, and has a significant positive impact on human health. Through pharmacological research, we can identify new molecular targets, develop unique chemical and biological molecules, and explore their preclinical effects.

As Editor-in-Chief of the Section Pharmacology of Pharmaceuticals, I am pleased to invite you to submit high-quality manuscripts on research activities in pharmacology for this Special Issue entitled “The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology”. Manuscripts focusing on pharmacodynamics, pharmacokinetics, toxicology, and all the different main fields of pharmacology are much welcomed.

Prof. Dr. Gary J. Stephens
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Pharmaceuticals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • behavioral pharmacology
  • cancer pharmacology
  • cardiovascular pharmacology
  • chronopharmacology
  • clinical pharmacology
  • immunopharmacology
  • molecular and biochemical pharmacology
  • neuropharmacology
  • pharmacoepidemiology
  • pharmacogenetics/pharmacogenomics
  • pharmacokinetics
  • systems pharmacology
  • toxicology
  • translational pharmacology/medicine
  • safety pharmacology

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 8869 KiB  
Article
Liposomal Rifabutin—A Promising Antibiotic Repurposing Strategy against Methicillin-Resistant Staphylococcus aureus Infections
by Jacinta O. Pinho, Magda Ferreira, Mariana Coelho, Sandra N. Pinto, Sandra I. Aguiar and Maria Manuela Gaspar
Pharmaceuticals 2024, 17(4), 470; https://doi.org/10.3390/ph17040470 - 08 Apr 2024
Viewed by 488
Abstract
Methicillin-resistant Staphylococcus aureus (M RSA) infections, in particular biofilm-organized bacteria, remain a clinical challenge and a serious health problem. Rifabutin (RFB), an antibiotic of the rifamycins class, has shown in previous work excellent anti-staphylococcal activity. Here, we proposed to load RFB in liposomes [...] Read more.
Methicillin-resistant Staphylococcus aureus (M RSA) infections, in particular biofilm-organized bacteria, remain a clinical challenge and a serious health problem. Rifabutin (RFB), an antibiotic of the rifamycins class, has shown in previous work excellent anti-staphylococcal activity. Here, we proposed to load RFB in liposomes aiming to promote the accumulation of RFB at infected sites and consequently enhance the therapeutic potency. Two clinical isolates of MRSA, MRSA-C1 and MRSA-C2, were used to test the developed formulations, as well as the positive control, vancomycin (VCM). RFB in free and liposomal forms displayed high antibacterial activity, with similar potency between tested formulations. In MRSA-C1, minimal inhibitory concentrations (MIC) for Free RFB and liposomal RFB were 0.009 and 0.013 μg/mL, respectively. Minimum biofilm inhibitory concentrations able to inhibit 50% biofilm growth (MBIC50) for Free RFB and liposomal RFB against MRSA-C1 were 0.012 and 0.008 μg/mL, respectively. Confocal microscopy studies demonstrated the rapid internalization of unloaded and RFB-loaded liposomes in the bacterial biofilm matrix. In murine models of systemic MRSA-C1 infection, Balb/c mice were treated with RFB formulations and VCM at 20 and 40 mg/kg of body weight, respectively. The in vivo results demonstrated a significant reduction in bacterial burden and growth index in major organs of mice treated with RFB formulations, as compared to Control and VCM (positive control) groups. Furthermore, the VCM therapeutic dose was two fold higher than the one used for RFB formulations, reinforcing the therapeutic potency of the proposed strategy. In addition, RFB formulations were the only formulations associated with 100% survival. Globally, this study emphasizes the potential of RFB nanoformulations as an effective and safe approach against MRSA infections. Full article
(This article belongs to the Special Issue The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology)
Show Figures

Graphical abstract

15 pages, 2771 KiB  
Article
Aloe-Emodin Derivative, an Anthraquinone Compound, Attenuates Pyroptosis by Targeting NLRP3 Inflammasome in Diabetic Cardiomyopathy
by Yingying Hu, Shuqian Zhang, Han Lou, Monayo Seth Mikaye, Run Xu, Ziyu Meng, Menghan Du, Pingping Tang, Zhouxiu Chen, Yongchao Chen, Xin Liu, Zhimin Du and Yong Zhang
Pharmaceuticals 2023, 16(9), 1275; https://doi.org/10.3390/ph16091275 - 08 Sep 2023
Viewed by 1256
Abstract
Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and [...] Read more.
Diabetic cardiomyopathy (DCM) is widely recognized as a major contributing factor to the development of heart failure in patients with diabetes. Previous studies have demonstrated the potential benefits of traditional herbal medicine for alleviating the symptoms of cardiomyopathy. We have chemically designed and synthesized a novel compound called aloe-emodin derivative (AED), which belongs to the aloe-emodin (AE) family of compounds. AED was formed by covalent binding of monomethyl succinate to the anthraquinone mother nucleus of AE using chemical synthesis techniques. The purpose of this study was to investigate the effects and mechanisms of AED in treating DCM. We induced type 2 diabetes in Sprague–Dawley (SD) rats by administering a high-fat diet and streptozotocin (STZ) injections. The rats were randomly divided into six groups: control, DCM, AED low concentration (50 mg/kg/day), AED high concentration (100 mg/kg/day), AE (100 mg/kg/day), and positive control (glyburide, 2 mg/kg/day) groups. There were eight rats in each group. The rats that attained fasting blood glucose of ˃16.7 mmol/L were considered successful models. We observed significant improvements in cardiac function in the DCM rats with both AED and AE following four weeks of intragastric treatment. However, AED had a more pronounced therapeutic effect on DCM compared to AE. AED exhibited an inhibitory effect on the inflammatory response in the hearts of DCM rats and high-glucose-treated H9C2 cells by suppressing the pyroptosis pathway mediated by the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain 3 (NLRP3) inflammasome. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes showed a significant enrichment in the NOD-like receptor signaling pathway compared to the high-glucose group. Furthermore, overexpression of NLRP3 effectively reversed the anti-pyroptosis effects of AED in high-glucose-treated H9C2 cells. This study is the first to demonstrate that AED possesses the ability to inhibit myocardial pyroptosis in DCM. Targeting the pyroptosis pathway mediated by the NLRP3 inflammasome could provide a promising therapeutic strategy to enhance our understanding and treatment of DCM. Full article
(This article belongs to the Special Issue The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 820 KiB  
Review
Role of Trimetazidine in Ameliorating Endothelial Dysfunction: A Review
by Yusof Kamisah and Hamat H. Che Hassan
Pharmaceuticals 2024, 17(4), 464; https://doi.org/10.3390/ph17040464 - 05 Apr 2024
Viewed by 412
Abstract
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine’s actions and its potential [...] Read more.
Endothelial dysfunction is a hallmark of cardiovascular diseases, contributing to impaired vasodilation, altered hemodynamics, and atherosclerosis progression. Trimetazidine, traditionally used for angina pectoris, exhibits diverse therapeutic effects on endothelial dysfunction. This review aims to elucidate the mechanisms underlying trimetazidine’s actions and its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders. Trimetazidine enhances vasodilation and hemodynamic function by modulating endothelial nitric oxide synthase activity, nitric oxide production, and endothelin-1. It also ameliorates metabolic parameters, including reducing blood glucose, mitigating oxidative stress, and dampening inflammation. Additionally, trimetazidine exerts antiatherosclerotic effects by inhibiting plaque formation and promoting its stability. Moreover, it regulates apoptosis and angiogenesis, fostering endothelial cell survival and neovascularization. Understanding trimetazidine’s multifaceted mechanisms underscores its potential as a therapeutic agent for endothelial dysfunction and associated cardiovascular disorders, warranting further investigation for clinical translation. Full article
(This article belongs to the Special Issue The 20th Anniversary of Pharmaceuticals—Advances in Pharmacology)
Show Figures

Figure 1

Back to TopTop