Editor’s Choice Articles

Editor’s Choice articles are based on recommendations by the scientific editors of MDPI journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
Article
Role of Bacterial Surface Components in the Pathogenicity of Proteus mirabilis in a Murine Model of Catheter-Associated Urinary Tract Infection
Pathogens 2023, 12(4), 509; https://doi.org/10.3390/pathogens12040509 - 24 Mar 2023
Cited by 1 | Viewed by 804
Abstract
Proteus mirabilis (PM) is a Gram-negative, rod-shaped bacterium that causes catheter-associated urinary tract infections (CAUTIs). The specific roles of bacterial surface components (BSCs) in PM pathogenicity and CAUTIs remain unknown. To address this knowledge gap, we utilized relevant in vitro adhesion/invasion [...] Read more.
Proteus mirabilis (PM) is a Gram-negative, rod-shaped bacterium that causes catheter-associated urinary tract infections (CAUTIs). The specific roles of bacterial surface components (BSCs) in PM pathogenicity and CAUTIs remain unknown. To address this knowledge gap, we utilized relevant in vitro adhesion/invasion models and a well-established murine model of CAUTI to assess the ability of wildtype (WT) and seven mutant strains (MSs) of PM with deficiencies in various genes encoding BSCs to undergo the infectious process (including adhesion to catheters) in both model systems. Overall, MSs adhesion to catheters and the different cell types tested was significantly reduced compared to WT, while no invasion of cells was evident at 24 h. In vivo, WT showed a greater number of planktonic (urine) bacteria, bacteria adherent to catheters, and bacteria adherent to/invading bladder tissue when compared to the MSs. Bacterial counts in urine for PMI3191 and waaE mutants were lower than that for WT and other MSs. The complementation of mutated BSC genes resulting in the biggest defects restored the invasion phenotype both in vitro and in vivo. BSCs play a critical role at various steps in the pathogenicity of PM including adhesion to indwelling medical devices and adhesion/invasion of urinary tissue in vivo. Full article
(This article belongs to the Special Issue Molecular and Cellular Aspects of Urinary Tract Infection)
Show Figures

Figure 1

Article
Hepatitis E Virus in Finland: Epidemiology and Risk in Blood Donors and in the General Population
Pathogens 2023, 12(3), 484; https://doi.org/10.3390/pathogens12030484 - 18 Mar 2023
Viewed by 1097
Abstract
Autochthonous hepatitis E (HEV) cases have been increasingly recognized and reported in Europe, caused predominantly by the zoonotic HEV genotype 3. The clinical picture is highly variable, from asymptomatic to acute severe or prolonged hepatitis in immunocompromised patients. The main route of transmission [...] Read more.
Autochthonous hepatitis E (HEV) cases have been increasingly recognized and reported in Europe, caused predominantly by the zoonotic HEV genotype 3. The clinical picture is highly variable, from asymptomatic to acute severe or prolonged hepatitis in immunocompromised patients. The main route of transmission to humans in Europe is the ingestion of undercooked pork meat. Transfusion-transmitted HEV infections have also been reported. The aim of the study was to determine the HEV epidemiology and risk in the Finnish blood donor population. A total of 23,137 samples from Finnish blood donors were screened for HEV RNA from individual samples and 1012 samples for HEV antibodies. Additionally, laboratory-confirmed hepatitis E cases in 2016–2022 were extracted from national surveillance data. The HEV RNA prevalence data was used to estimate the risk of transfusion transmission of HEV in the Finnish blood transfusion setting. Four HEV RNA-positive were found, resulting in 1:5784 (0.02%) RNA prevalence. All HEV RNA-positive samples were IgM-negative, and genotyped samples represented genotype HEV 3c. HEV IgG seroprevalence was 7.4%. From the HEV RNA rate found in this study and data on blood component usage in Finland in 2020, the risk estimate for a severe transfusion-transmitted HEV infection is 1:1,377,000 components or one in every 6–7 years. In conclusion, the results indicate that the risk of transfusion-transmitted HEV (HEV TTI) in Finland is low. However, continuous follow-up of the HEV epidemiology in relation to the transfusion risk landscape in Finland is necessary, as well as promoting awareness in the medical community of the small risk for HEV TTI, especially for immunocompromised patients. Full article
(This article belongs to the Special Issue Transfusion-Transmissible Infections and Epidemiological Surveillance)
Show Figures

Figure 1

Review
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases
Pathogens 2023, 12(3), 456; https://doi.org/10.3390/pathogens12030456 - 14 Mar 2023
Viewed by 1964
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least [...] Read more.
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases. Full article
(This article belongs to the Special Issue Infection in Inborn Errors of Immunity)
Show Figures

Figure 1

Article
Pre-Vaccination Human Papillomavirus Genotypes and HPV16 Variants among Women Aged 25 Years or Less with Cervical Cancer
Pathogens 2023, 12(3), 451; https://doi.org/10.3390/pathogens12030451 - 13 Mar 2023
Viewed by 857
Abstract
Background: In 2007, Australia introduced a national human papillomavirus (HPV) vaccination program. In 2017, the onset of cervical screening changed from 18 to 25 years of age, utilising human papillomavirus (HPV) nucleic acid testing. The objective of the study is to describe the [...] Read more.
Background: In 2007, Australia introduced a national human papillomavirus (HPV) vaccination program. In 2017, the onset of cervical screening changed from 18 to 25 years of age, utilising human papillomavirus (HPV) nucleic acid testing. The objective of the study is to describe the HPV genotypes and HPV16 variants in biopsies from women ≤ 25 years of age with cervical carcinoma (CC) (cases), compared with those aged >25 years (controls), in a pre-vaccination cohort. Methods: HPV genotyping of archival paraffin blocks (n = 96) was performed using the INNO-LiPA HPV Genotyping assay. HPV16-positive samples were analysed for variants by type-specific PCR spanning L1, E2 and E6 regions. Results: HPV16 was the commonest genotype in cases (54.5%, 12/22) and controls (66.7%, 46/69) (p = 0.30), followed by HPV18 (36.3%, 8/22 vs. 17.3% 12/69, respectively) (p = 0.08). Furthermore, 90% (20/22) of cases and 84.1% (58/69) of controls were positive for HPV16 or 18 (p = 0.42); 100% (22/22) of cases and 95.7% (66/69) of controls had at least one genotype targeted by the nonavalent vaccine (p = 0.3). The majority of HPV16 variants (87.3%, 48/55) were of European lineage. The proportion of unique nucleotide substitutions was significantly higher in cases (83.3%, 10/12) compared with controls (34.1%, 15/44), (p < 0.003, χ2, OR 9.7, 95%CI 1.7–97.7). Conclusions: Virological factors may account for the differences in CCs observed in younger compared with older women. All CCs in young women in this study had preventable 9vHPV types, which is important messaging for health provider adherence to new cervical screening guidelines. Full article
(This article belongs to the Special Issue Latest Advances in Human Papillomavirus (HPV) Research)
Show Figures

Figure 1

Review
Role of Innate Interferon Responses at the Ocular Surface in Herpes Simplex Virus-1-Induced Herpetic Stromal Keratitis
Pathogens 2023, 12(3), 437; https://doi.org/10.3390/pathogens12030437 - 10 Mar 2023
Viewed by 1323
Abstract
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the [...] Read more.
Herpes simplex virus type 1 (HSV-1) is a highly successful pathogen that primarily infects epithelial cells of the orofacial mucosa. After initial lytic replication, HSV-1 enters sensory neurons and undergoes lifelong latency in the trigeminal ganglion (TG). Reactivation from latency occurs throughout the host’s life and is more common in people with a compromised immune system. HSV-1 causes various diseases depending on the site of lytic HSV-1 replication. These include herpes labialis, herpetic stromal keratitis (HSK), meningitis, and herpes simplex encephalitis (HSE). HSK is an immunopathological condition and is usually the consequence of HSV-1 reactivation, anterograde transport to the corneal surface, lytic replication in the epithelial cells, and activation of the host’s innate and adaptive immune responses in the cornea. HSV-1 is recognized by cell surface, endosomal, and cytoplasmic pattern recognition receptors (PRRs) and activates innate immune responses that include interferons (IFNs), chemokine and cytokine production, as well as the recruitment of inflammatory cells to the site of replication. In the cornea, HSV-1 replication promotes type I (IFN-α/β) and type III (IFN-λ) IFN production. This review summarizes our current understanding of HSV-1 recognition by PRRs and innate IFN-mediated antiviral immunity during HSV-1 infection of the cornea. We also discuss the immunopathogenesis of HSK, current HSK therapeutics and challenges, proposed experimental approaches, and benefits of promoting local IFN-λ responses. Full article
(This article belongs to the Special Issue Viruses and Ocular Infection)
Show Figures

Figure 1

Article
Field Resistance to Rose Rosette Disease as Determined by Multi-Year Evaluations in Tennessee and Delaware
Pathogens 2023, 12(3), 439; https://doi.org/10.3390/pathogens12030439 - 10 Mar 2023
Cited by 1 | Viewed by 1210
Abstract
Rose rosette disease (RRD) caused by the rose rosette emaravirus (RRV) and transmitted by the eriophyid mite Phyllocoptes fructiphilus (Pf), both native to North America, has caused significant damage to roses over the last several decades. As cultural and chemical control of [...] Read more.
Rose rosette disease (RRD) caused by the rose rosette emaravirus (RRV) and transmitted by the eriophyid mite Phyllocoptes fructiphilus (Pf), both native to North America, has caused significant damage to roses over the last several decades. As cultural and chemical control of this disease is difficult and expensive, a field trial was established to systematically screen rose germplasm for potential sources of resistance. One hundred and eight rose accessions representing the diversity of rose germplasm were planted in Tennessee and Delaware, managed to encourage disease development, and evaluated for symptom development and viral presence for three years. All major commercial rose cultivars were susceptible to this viral disease to varying levels. The rose accessions with no or few symptoms were species accessions from the sections Cinnamomeae, Carolinae, Bracteatae, and Systylae or hybrids with these. Among these, some were asymptomatic; they displayed no symptoms but were infected by the virus. Their potential depends on their ability to serve as a source of viruses. The next step is to understand the mechanism of resistance and genetic control of the various sources of resistance identified. Full article
(This article belongs to the Special Issue Rose Rosette Disease)
Show Figures

Figure 1

Article
Simulation of Foot-and-Mouth Disease Spread and Effects of Mitigation Strategies to Support Veterinary Contingency Planning in Denmark
Pathogens 2023, 12(3), 435; https://doi.org/10.3390/pathogens12030435 - 09 Mar 2023
Viewed by 913
Abstract
To forge a path towards livestock disease emergency preparedness in Denmark, 15 different strategies to mitigate foot-and-mouth disease (FMD) were examined by modelling epidemics initiated in cattle, pig or small ruminant herds across various production systems located in four different Danish regions (Scenario [...] Read more.
To forge a path towards livestock disease emergency preparedness in Denmark, 15 different strategies to mitigate foot-and-mouth disease (FMD) were examined by modelling epidemics initiated in cattle, pig or small ruminant herds across various production systems located in four different Danish regions (Scenario 1), or in one specific livestock production system within each of the three species geographically distributed throughout Denmark (Scenario 2). When additional mitigation strategies were implemented on top of basic control strategies in the European foot-and-mouth disease spread model (EuFMDiS), no significant benefits were predicted in terms of the number of infected farms, the epidemic control duration, and the total economic cost. Further, the model results indicated that the choice of index herd, the resources for outbreak control, and the detection time of FMD significantly influenced the course of an epidemic. The present study results emphasise the importance of basic mitigation strategies, including an effective back-and-forward traceability system, adequate resources for outbreak response, and a high level of awareness among farmers and veterinarians concerning the detection and reporting of FMD at an early stage of an outbreak for FMD control in Denmark. Full article
(This article belongs to the Special Issue Monitoring, Prevention and Control of Infectious Animal Diseases)
Show Figures

Figure 1

Review
Occurrence, Distribution, and Management of Aphid-Transmitted Viruses in Cucurbits in Spain
Pathogens 2023, 12(3), 422; https://doi.org/10.3390/pathogens12030422 - 07 Mar 2023
Viewed by 1116
Abstract
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also [...] Read more.
The effectiveness of pest and disease management in crops relies on knowledge about their presence and distribution in crop-producing areas. Aphids and whiteflies are among the main threats to vegetable crops since these hemipterans feed on plants, causing severe damage, and are also able to transmit a large number of devastating plant viral diseases. In particular, the widespread occurrence of aphid-transmitted viruses in cucurbit crops, along with the lack of effective control measures, makes surveillance programs and virus epidemiology necessary for providing sound advice and further integration into the management strategies that can ensure sustainable food production. This review describes the current presence and distribution of aphid-transmitted viruses in cucurbits in Spain, providing valuable epidemiological information, including symptom expressions of virus-infected plants for further surveillance and viral detection. We also provide an overview of the current measures for virus infection prevention and control strategies in cucurbits and indicate the need for further research and innovative strategies against aphid pests and their associated viral diseases. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Plant Viruses in a Context of Global Change)
Show Figures

Figure 1

Review
Preventing Persistence of HPV Infection with Natural Molecules
Pathogens 2023, 12(3), 416; https://doi.org/10.3390/pathogens12030416 - 06 Mar 2023
Viewed by 1654
Abstract
Human papillomavirus (HPV) infection is one the most common sexually transmitted infections worldwide. In most cases, the infection is temporary and asymptomatic; however, when persistent, it may lead to lesions that can evolve into cancer in both women and men. Nowadays, prophylactic vaccination [...] Read more.
Human papillomavirus (HPV) infection is one the most common sexually transmitted infections worldwide. In most cases, the infection is temporary and asymptomatic; however, when persistent, it may lead to lesions that can evolve into cancer in both women and men. Nowadays, prophylactic vaccination is the primary preventive strategy for HPV infections, but vaccines do not cover all types of HPV strains. Scientific research has uncovered the beneficial role of some natural supplements in preventing persistent HPV infections or treating HPV-related lesions. We review the current insight into the roles of natural molecules in HPV infection with a special focus on epigallocatechin gallate (EGCG), folic acid, vitamin B12, and hyaluronic acid (HA). Specifically, EGCG from green tea extracts plays a critical role in suppressing HPV oncogenes and oncoproteins (E6/E7), which are responsible for HPV oncogenic activity and cancer development. Folic acid and vitamin B12 are essential vitamins for multiple functions in the body, and accumulating evidence suggests their importance in maintaining a high degree of methylation of the HPV genome, thus decreasing the likelihood of causing malignant lesions. HA, due to its re-epithelizing property, may prevent HPV virus entry in damaged mucosa and epithelia. Thereby, based on these premises, the combination of EGCG, folic acid, vitamin B12, and HA may be a very promising therapeutic approach to prevent HPV persistence. Full article
(This article belongs to the Special Issue Epidemiology of Human Papillomavirus Infection)
Show Figures

Figure 1

Review
Effective Treatments of UTI—Is Intravesical Therapy the Future?
Pathogens 2023, 12(3), 417; https://doi.org/10.3390/pathogens12030417 - 06 Mar 2023
Viewed by 1036
Abstract
Urinary tract infection (UTI) afflicts millions of patients globally each year. While the majority of UTIs are successfully treated with orally administered antibiotics, the impact of oral antibiotics on the host microbiota is under close research scrutiny and the potential for dysbiosis is [...] Read more.
Urinary tract infection (UTI) afflicts millions of patients globally each year. While the majority of UTIs are successfully treated with orally administered antibiotics, the impact of oral antibiotics on the host microbiota is under close research scrutiny and the potential for dysbiosis is a cause for concern. Optimal treatment of UTI relies upon the selection of an agent which displays appropriate pharmacokinetic-pharmacodynamic (PK-PD) properties that will deliver appropriately high concentrations in the urinary tract after oral administration. Alternatively, high local concentrations of antibiotic at the urothelial surface can be achieved by direct instillation into the urinary tract. For antibiotics with the appropriate physicochemical properties, this can be of critical importance in cases for which an intracellular urothelial bacterial reservoir is suspected. In this review, we summarise the underpinning biopharmaceutical barriers to effective treatment of UTI and provide an overview of the evidence for the deployment of the intravesical administration route for antibiotics. Full article
(This article belongs to the Special Issue Molecular and Cellular Aspects of Urinary Tract Infection)
Show Figures

Figure 1

Article
Bacterial and Viral Pathogens with One Health Relevance in Invasive Raccoons (Procyon lotor, Linné 1758) in Southwest Germany
Pathogens 2023, 12(3), 389; https://doi.org/10.3390/pathogens12030389 - 01 Mar 2023
Viewed by 1155
Abstract
In Europe, raccoons are invasive neozoons with their largest population in Germany. Globally, this mesocarnivore acts as a wildlife reservoir for many (non-)zoonotic (re-)emerging pathogens, but very little epidemiological data is available for southwest Germany. This exploratory study aimed to screen free-ranging raccoons [...] Read more.
In Europe, raccoons are invasive neozoons with their largest population in Germany. Globally, this mesocarnivore acts as a wildlife reservoir for many (non-)zoonotic (re-)emerging pathogens, but very little epidemiological data is available for southwest Germany. This exploratory study aimed to screen free-ranging raccoons in Baden-Wuerttemberg (BW, Germany) for the occurrence of selected pathogens with One Health relevance. Organ tissue and blood samples collected from 102 animals, obtained by hunters in 2019 and 2020, were subsequently analysed for two bacterial and four viral pathogens using a qPCR approach. Single samples were positive for the carnivore protoparvovirus-1 (7.8%, n = 8), canine distemper virus (6.9%, n = 7), pathogenic Leptospira spp. (3.9%, n = 4) and Anaplasma phagocytophilum (15.7%, n = 16). West Nile virus and influenza A virus were not detected. Due to their invasive behaviour and synanthropic habit, raccoons may increase the risk of infections for wildlife, domestic animals, zoo animals and humans by acting as a link between them. Therefore, further studies should be initiated to evaluate these risks. Full article
(This article belongs to the Special Issue Surveillance of Zoonotic Pathogens Carried by Wildlife)
Show Figures

Figure 1

Article
Design and Optimization of a Monkeypox virus Specific Serological Assay
Pathogens 2023, 12(3), 396; https://doi.org/10.3390/pathogens12030396 - 01 Mar 2023
Viewed by 1100
Abstract
Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the [...] Read more.
Monkeypox virus (MPXV), a member of the Orthopoxvirus (OPXV) genus, is a zoonotic virus, endemic to central and western Africa that can cause smallpox-like symptoms in humans with fatal outcomes in up to 15% of patients. The incidence of MPXV infections in the Democratic Republic of the Congo, where the majority of cases have occurred historically, has been estimated to have increased as much as 20-fold since the end of smallpox vaccination in 1980. Considering the risk global travel carries for future disease outbreaks, accurate epidemiological surveillance of MPXV is warranted as demonstrated by the recent Mpox outbreak, where the majority of cases were occurring in non-endemic areas. Serological differentiation between childhood vaccination and recent infection with MPXV or other OPXVs is difficult due to the high level of conservation within OPXV proteins. Here, a peptide-based serological assay was developed to specifically detect exposure to MPXV. A comparative analysis of immunogenic proteins across human OPXVs identified a large subset of proteins that could potentially be specifically recognized in response to a MPXV infection. Peptides were chosen based upon MPXV sequence specificity and predicted immunogenicity. Peptides individually and combined were screened in an ELISA against serum from well-characterized Mpox outbreaks, vaccinee sera, and smallpox sera collected prior to eradication. One peptide combination was successful with ~86% sensitivity and ~90% specificity. The performance of the assay was assessed against the OPXV IgG ELISA in the context of a serosurvey by retrospectively screening a set of serum specimens from the region in Ghana believed to have harbored the MPXV-infected rodents involved in the 2003 United States outbreak. Full article
Show Figures

Figure 1

Article
Screening for Influenza and Morbillivirus in Seals and Porpoises in the Baltic and North Sea
Pathogens 2023, 12(3), 357; https://doi.org/10.3390/pathogens12030357 - 21 Feb 2023
Cited by 1 | Viewed by 1098
Abstract
Historically, the seals and harbour porpoises of the Baltic Sea and North Sea have been subjected to hunting, chemical pollutants and repeated mass mortalities, leading to significant population fluctuations. Despite the conservation implications and the zoonotic potential associated with viral disease outbreaks in [...] Read more.
Historically, the seals and harbour porpoises of the Baltic Sea and North Sea have been subjected to hunting, chemical pollutants and repeated mass mortalities, leading to significant population fluctuations. Despite the conservation implications and the zoonotic potential associated with viral disease outbreaks in wildlife, limited information is available on the circulation of viral pathogens in Baltic Sea seals and harbour porpoises. Here, we investigated the presence of the influenza A virus (IAV), the phocine distemper virus (PDV) and the cetacean morbillivirus (CeMV) in tracheal swabs and lung tissue samples from 99 harbour seals, 126 grey seals, 73 ringed seals and 78 harbour porpoises collected in the Baltic Sea and North Sea between 2002–2019. Despite screening 376 marine mammals collected over nearly two decades, we only detected one case of PDV and two cases of IAV linked to the documented viral outbreaks in seals in 2002 and 2014, respectively. Although we find no evidence of PDV and IAV during intermediate years, reports of isolated cases of PDV in North Sea harbour seals and IAV (H5N8) in Baltic and North Sea grey seals suggest introductions of those pathogens within the sampling period. Thus, to aid future monitoring efforts we highlight the need for a standardized and continuous sample collection of swabs, tissue and blood samples across Baltic Sea countries. Full article
(This article belongs to the Special Issue Wildlife Hosts Pathogen Interaction)
Show Figures

Figure 1

Review
Orthopoxvirus Zoonoses—Do We Still Remember and Are Ready to Fight?
Pathogens 2023, 12(3), 363; https://doi.org/10.3390/pathogens12030363 - 21 Feb 2023
Cited by 2 | Viewed by 951
Abstract
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines [...] Read more.
The eradication of smallpox was an enormous achievement due to the global vaccination program launched by World Health Organization. The cessation of the vaccination program led to steadily declining herd immunity against smallpox, causing a health emergency of global concern. The smallpox vaccines induced strong, humoral, and cell-mediated immune responses, protecting for decades after immunization, not only against smallpox but also against other zoonotic orthopoxviruses that now represent a significant threat to public health. Here we review the major aspects regarding orthopoxviruses’ zoonotic infections, factors responsible for viral transmissions, as well as the emerging problem of the increased number of monkeypox cases recently reported. The development of prophylactic measures against poxvirus infections, especially the current threat caused by the monkeypox virus, requires a profound understanding of poxvirus immunobiology. The utilization of animal and cell line models has provided good insight into host antiviral defenses as well as orthopoxvirus evasion mechanisms. To survive within a host, orthopoxviruses encode a large number of proteins that subvert inflammatory and immune pathways. The circumvention of viral evasion strategies and the enhancement of major host defenses are key in designing novel, safer vaccines, and should become the targets of antiviral therapies in treating poxvirus infections. Full article
(This article belongs to the Special Issue Immune Response of the Host and Vaccine Development)
Show Figures

Figure 1

Article
Discovery and Development Strategies for SARS-CoV-2 NSP3 Macrodomain Inhibitors
Pathogens 2023, 12(2), 324; https://doi.org/10.3390/pathogens12020324 - 15 Feb 2023
Viewed by 1420
Abstract
The worldwide public health and socioeconomic consequences caused by the COVID-19 pandemic highlight the importance of increasing preparedness for viral disease outbreaks by providing rapid disease prevention and treatment strategies. The NSP3 macrodomain of coronaviruses including SARS-CoV-2 is among the viral protein repertoire [...] Read more.
The worldwide public health and socioeconomic consequences caused by the COVID-19 pandemic highlight the importance of increasing preparedness for viral disease outbreaks by providing rapid disease prevention and treatment strategies. The NSP3 macrodomain of coronaviruses including SARS-CoV-2 is among the viral protein repertoire that was identified as a potential target for the development of antiviral agents, due to its critical role in viral replication and consequent pathogenicity in the host. By combining virtual and biophysical screening efforts, we discovered several experimental small molecules and FDA-approved drugs as inhibitors of the NSP3 macrodomain. Analogue characterisation of the hit matter and crystallographic studies confirming binding modes, including that of the antibiotic compound aztreonam, to the active site of the macrodomain provide valuable structure–activity relationship information that support current approaches and open up new avenues for NSP3 macrodomain inhibitor development. Full article
(This article belongs to the Special Issue ADP-Ribosylation in Pathogens)
Show Figures

Figure 1

Review
The Evolution of the Safety of Plasma Products from Pathogen Transmission—A Continuing Narrative
Pathogens 2023, 12(2), 318; https://doi.org/10.3390/pathogens12020318 - 15 Feb 2023
Viewed by 1592
Abstract
Chronic recipients of plasma products are at risk of infection from blood-borne pathogens as a result of their inevitable exposure to agents which will contaminate a plasma manufacturing pool made up of thousands of individual donations. The generation of such a pool is [...] Read more.
Chronic recipients of plasma products are at risk of infection from blood-borne pathogens as a result of their inevitable exposure to agents which will contaminate a plasma manufacturing pool made up of thousands of individual donations. The generation of such a pool is an essential part of the large-scale manufacture of these products and is required for good manufacturing practice (GMP). Early observations of the transmission of hepatitis by pooled plasma and serum led to the incorporation of heat treatment of the albumin solution produced by industrial Cohn fractionation of plasma. This led to an absence of pathogen transmission by albumin over decades, during which hepatitis continued to be transmitted by other early plasma fractions, as well as through mainstream blood transfusions. This risk was decreased greatly over the 1960s as an understanding of the epidemiology and viral aetiology of transfusion-transmitted hepatitis led to the exclusion of high-risk groups from the donor population and the development of a blood screening test for hepatitis B. Despite these measures, the first plasma concentrates to treat haemophilia transmitted hepatitis B and other, poorly understood, forms of parenterally transmitted hepatitis. These risks were considered to be acceptable given the life-saving nature of the haemophilia treatment products. The emergence of the human immunodeficiency virus (HIV) as a transfusion-transmitted infection in the early 1980s shifted the focus of attention to this virus, which proved to be vulnerable to a number of inactivation methods introduced during manufacture. Further developments in the field obviated the risk of hepatitis C virus (HCV) which had also infected chronic recipients of plasma products, including haemophilia patients and immunodeficient patients receiving immunoglobulin. The convergence of appropriate donor selection driven by knowledge of viral epidemiology, the development of blood screening now based on molecular diagnostics, and the incorporation of viral inactivation techniques in the manufacturing process are now recognised as constituting a “safety tripod” of measures contributing to safety from pathogen transmission. Of these three components, viral inactivation during manufacture is the major contributor and has proven to be the bulwark securing the safety of plasma derivatives over the past thirty years. Concurrently, the safety of banked blood and components continues to depend on donor selection and screening, in the absence of universally adopted pathogen reduction technology. This has resulted in an inversion in the relative safety of the products of blood banking compared to plasma products. Overall, the experience gained in the past decades has resulted in an absence of pathogen transmission from the current generation of plasma derivatives, but maintaining vigilance, and the surveillance of the emergence of infectious agents, is vital to ensure the continued efficacy of the measures in place and the development of further interventions aimed at obviating safety threats. Full article
(This article belongs to the Special Issue Transfusion-Transmissible Infections and Epidemiological Surveillance)
Show Figures

Figure 1

Review
HPV and Cervical Cancer: A Review of Epidemiology and Screening Uptake in the UK
Pathogens 2023, 12(2), 298; https://doi.org/10.3390/pathogens12020298 - 11 Feb 2023
Cited by 2 | Viewed by 2716
Abstract
Cervical cancer is the fourth most common malignancy in females worldwide, and a leading cause of death in the United Kingdom (UK). The human papillomavirus (HPV) is the strongest risk factor for developing cervical intraepithelial neoplasia and cancer. Across the UK, the national [...] Read more.
Cervical cancer is the fourth most common malignancy in females worldwide, and a leading cause of death in the United Kingdom (UK). The human papillomavirus (HPV) is the strongest risk factor for developing cervical intraepithelial neoplasia and cancer. Across the UK, the national HPV immunisation programme, introduced in 2008, has been successful in protecting against HPV-related infections. Furthermore, the National Health Service (NHS) implemented the cytology-based cervical cancer screening service to all females aged 25 to 64, which has observed a decline in cervical cancer incidence. In the UK, there has been an overall decline in age-appropriate coverage since April 2010. In 2019, the COVID-19 pandemic disrupted NHS cancer screening and immunisation programmes, leading to a 6.8% decreased uptake of cervical cancer screening from the previous year. Engagement with screening has also been associated with social deprivation. In England, incidence rates of cervical cancer were reported to be 65% higher in the most deprived areas compared to the least, with lifestyle factors such as cigarette consumption contributing to 21% of cervical cancer cases. In this article, we provide an update on the epidemiology of cervical cancer, and HPV pathogenesis and transmission, along with the current prevention programmes within the NHS. Full article
(This article belongs to the Special Issue Oncopathogens)
Show Figures

Figure 1

Review
Advances in Babesia Vaccine Development: An Overview
Pathogens 2023, 12(2), 300; https://doi.org/10.3390/pathogens12020300 - 11 Feb 2023
Cited by 2 | Viewed by 1583
Abstract
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. [...] Read more.
Babesiosis is a tick-borne zoonotic disease, which is caused by various species of intracellular Babesia parasite. It is a problem not only for the livestock industry but also for global health. Significant global economic losses, in particular in cattle production, have been observed. Since the current preventive measures against babesiosis are insufficient, there is increasing pressure to develop a vaccine. In this review, we survey the achievements and recent advances in the creation of antibabesiosis vaccine. The scope of this review includes the development of a vaccine against B. microti, B. bovis, B. bigemina, B. orientalis and B. divergens. Here, we present different strategies in their progress and evaluation. Scientists worldwide are still trying to find new targets for a vaccine that would not only reduce symptoms among animals but also prevent the further spread of the disease. Molecular candidates for the production of a vaccine against various Babesia spp. are presented. Our study also describes the current prospects of vaccine evolution for successful Babesia parasites elimination. Full article
(This article belongs to the Special Issue Immune Response of the Host and Vaccine Development)
Show Figures

Figure 1

Article
Phytophthora Species Involved in Alnus glutinosa Decline in Portugal
Pathogens 2023, 12(2), 276; https://doi.org/10.3390/pathogens12020276 - 08 Feb 2023
Cited by 2 | Viewed by 1039
Abstract
Recent field surveys conducted in five common alder ecosystems in Portugal have shown the occurrence of severe canopy dieback, bleeding canker and root rot symptoms indicative of Phytophthora infections. Isolations from symptomatic tissues, rhizosphere and water samples yielded a total of 13 Phytophthora [...] Read more.
Recent field surveys conducted in five common alder ecosystems in Portugal have shown the occurrence of severe canopy dieback, bleeding canker and root rot symptoms indicative of Phytophthora infections. Isolations from symptomatic tissues, rhizosphere and water samples yielded a total of 13 Phytophthora species belonging to 6 phylogenetic clades, including P. lacustris (13 isolates), P. multivora (10), P. amnicola (9), P. chlamydospora (6), P. polonica (6), P. bilorbang (4), P. plurivora (4), P. cinnamomi (3), P. asparagi (2), P. cactorum (2), P. pseudocryptogea (2), P. gonapodyides (1) and P. rosacearum (1). Results of the pathogenicity test confirmed the complex aetiology of common alder decline and the additional risk posed by Phytophthora multivora to the riparian habitats in Portugal. At the same time, the diversity of Phytophthora assemblages detected among the investigated sites suggests that different species could contribute to causing the same symptoms on this host. Two species, P. amnicola and P. rosacearum, are reported here for the first time in natural ecosystems in Europe. Full article
Show Figures

Figure 1

Review
A Review on the Immunological Response against Trypanosoma cruzi
Pathogens 2023, 12(2), 282; https://doi.org/10.3390/pathogens12020282 - 08 Feb 2023
Cited by 1 | Viewed by 1128
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer [...] Read more.
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease. Full article
(This article belongs to the Special Issue Current Research on Trypanosoma cruzi Infection)
Show Figures

Figure 1

Review
Borrelia miyamotoi: A Comprehensive Review
Pathogens 2023, 12(2), 267; https://doi.org/10.3390/pathogens12020267 - 07 Feb 2023
Cited by 1 | Viewed by 1800
Abstract
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and [...] Read more.
Borrelia miyamotoi is an emerging tick-borne pathogen in the Northern Hemisphere and is the causative agent of Borrelia miyamotoi disease (BMD). Borrelia miyamotoi is vectored by the same hard-bodied ticks as Lyme disease Borrelia, yet phylogenetically groups with relapsing fever Borrelia, and thus, has been uniquely labeled a hard tick-borne relapsing fever Borrelia. Burgeoning research has uncovered new aspects of B. miyamotoi in human patients, nature, and the lab. Of particular interest are novel findings on disease pathology, prevalence, diagnostic methods, ecological maintenance, transmission, and genetic characteristics. Herein, we review recent literature on B. miyamotoi, discuss how findings adapt to current Borrelia doctrines, and briefly consider what remains unknown about B. miyamotoi. Full article
Show Figures

Figure 1

Review
A Review of Major Patents on Potential Malaria Vaccine Targets
Pathogens 2023, 12(2), 247; https://doi.org/10.3390/pathogens12020247 - 03 Feb 2023
Cited by 1 | Viewed by 1483
Abstract
Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the [...] Read more.
Malaria is a parasitic infection that is a great public health concern and is responsible for high mortality rates worldwide. Different strategies have been employed to improve disease control, demonstrating the ineffectiveness of controlling vectors, and parasite resistance to antimalarial drugs requires the development of an effective preventive vaccine. There are countless challenges to the development of such a vaccine directly related to the parasite’s complex life cycle. After more than four decades of basic research and clinical trials, the World Health Organization (WHO) has recommended the pre-erythrocytic Plasmodium falciparum (RTS, S) malaria vaccine for widespread use among children living in malaria-endemic areas. However, there is a consensus that major improvements are needed to develop a vaccine with a greater epidemiological impact in endemic areas. This review discusses novel strategies for malaria vaccine design taking the target stages within the parasite cycle into account. The design of the multi-component vaccine shows considerable potential, especially as it involves transmission-blocking vaccines (TBVs) that eliminate the parasite’s replication towards sporozoite stage parasites during a blood meal of female anopheline mosquitoes. Significant improvements have been made but additional efforts to achieve an efficient vaccine are required to improve control measures. Different strategies have been employed, thus demonstrating the ineffectiveness in controlling vectors, and parasite resistance to antimalarial drugs requires the development of a preventive vaccine. Despite having a vaccine in an advanced stage of development, such as the RTS, S malaria vaccine, the search for an effective vaccine against malaria is far from over. This review discusses novel strategies for malaria vaccine design taking into account the target stages within the parasite’s life cycle. Full article
(This article belongs to the Special Issue Neglected and Emergent Diseases)
Show Figures

Figure 1

Review
Epidemiology of Ebolaviruses from an Etiological Perspective
Pathogens 2023, 12(2), 248; https://doi.org/10.3390/pathogens12020248 - 03 Feb 2023
Viewed by 2459
Abstract
Since the inception of the ebolavirus in 1976, 32 outbreaks have resulted in nearly 15,350 deaths in more than ten countries of the African continent. In the last decade, the largest (2013–2016) and second largest (2018–2020) ebolavirus outbreaks have occurred in West Africa [...] Read more.
Since the inception of the ebolavirus in 1976, 32 outbreaks have resulted in nearly 15,350 deaths in more than ten countries of the African continent. In the last decade, the largest (2013–2016) and second largest (2018–2020) ebolavirus outbreaks have occurred in West Africa (mainly Guinea, Liberia, and Sierra Leone) and the Democratic Republic of the Congo, respectively. The 2013–2016 outbreak indicated an alarming geographical spread of the virus and was the first to qualify as an epidemic. Hence, it is imperative to halt ebolavirus progression and develop effective countermeasures. Despite several research efforts, ebolaviruses’ natural hosts and secondary reservoirs still elude the scientific world. The primary source responsible for infecting the index case is also unknown for most outbreaks. In this review, we summarize the history of ebolavirus outbreaks with a focus on etiology, natural hosts, zoonotic reservoirs, and transmission mechanisms. We also discuss the reasons why the African continent is the most affected region and identify steps to contain this virus. Full article
(This article belongs to the Special Issue Surveillance of Zoonotic Pathogens Carried by Wildlife)
Show Figures

Figure 1

Review
SARS-CoV-2-Specific T Cell Responses in Immunocompromised Individuals with Cancer, HIV or Solid Organ Transplants
Pathogens 2023, 12(2), 244; https://doi.org/10.3390/pathogens12020244 - 03 Feb 2023
Cited by 2 | Viewed by 1626
Abstract
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T [...] Read more.
Adaptive immune responses play an important role in the clinical course of SARS-CoV-2 infection. While evaluations of the virus-specific defense often focus on the humoral response, cellular immunity is crucial for the successful control of infection, with the early development of cytotoxic T cells being linked to efficient viral clearance. Vaccination against SARS-CoV-2 induces both CD4+ and CD8+ T cell responses and permits protection from severe COVID-19, including infection with the currently circulating variants of concern. Nevertheless, in immunocompromised individuals, first data imply significantly impaired SARS-CoV-2-specific immune responses after both natural infection and vaccination. Hence, these high-risk groups require particular consideration, not only in routine clinical practice, but also in the development of future vaccination strategies. In order to assist physicians in the guidance of immunocompromised patients, concerning the management of infection or the benefit of (booster) vaccinations, this review aims to provide a concise overview of the current knowledge about SARS-CoV-2-specific cellular immune responses in the vulnerable cohorts of cancer patients, people living with HIV (PLWH), and solid organ transplant recipients (SOT). Recent findings regarding the virus-specific cellular immunity in these differently immunocompromised populations might influence clinical decision-making in the future. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens: T Cells in Pathogenic Infections)
Show Figures

Figure 1

Review
Factors Affecting Arbovirus Midgut Escape in Mosquitoes
Pathogens 2023, 12(2), 220; https://doi.org/10.3390/pathogens12020220 - 31 Jan 2023
Cited by 1 | Viewed by 1576
Abstract
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to [...] Read more.
Arboviral diseases spread by mosquitoes cause significant morbidity and mortality throughout much of the world. The treatment and prevention of these diseases through medication and vaccination is often limited, which makes controlling arboviruses at the level of the vector ideal. One way to prevent the spread of an arbovirus would be to stop its vector from developing a disseminated infection, which is required for the virus to make its way to the saliva of the mosquito to be potentially transmitted to a new host. The midgut of the mosquito provides one such opportunity to stop an arbovirus in its tracks. It has been known for many years that in certain arbovirus–vector combinations, or under certain circumstances, an arbovirus can infect and replicate in the midgut but is unable to escape from the tissue to cause disseminated infection. This situation is known as a midgut escape barrier. If we better understand why this barrier occurs, it might aid in the development of more informed control strategies. In this review, we discuss how the midgut escape barrier contributes to virus–vector specificity and possible mechanisms that may allow this barrier to be overcome in successful virus–vector combinations. We also discuss several of the known factors that either increase or decrease the likelihood of midgut escape. Full article
(This article belongs to the Special Issue Advances in Mosquito-Borne Pathogens and Diseases)
Show Figures

Figure 1

Article
Evaluation of Genomic Typing Methods in the Salmonella Reference Laboratory in Public Health, England, 2012–2020
Pathogens 2023, 12(2), 223; https://doi.org/10.3390/pathogens12020223 - 31 Jan 2023
Cited by 1 | Viewed by 958
Abstract
We aim to provide an evidence-based evaluation of whole genome sequence (WGS) methods, employed at the Salmonella reference laboratory in England, in terms of its impact on public health and whether these methods remain a fit for purpose test under UKAS ISO 15189. [...] Read more.
We aim to provide an evidence-based evaluation of whole genome sequence (WGS) methods, employed at the Salmonella reference laboratory in England, in terms of its impact on public health and whether these methods remain a fit for purpose test under UKAS ISO 15189. The evaluation of the genomic methods were mapped against the value of detecting microbiological clusters to support the investigation of food-borne outbreaks of Salmonella in England between 2012–2020. The analysis of WGS with both SNP- and allelic-based methods provided an unprecedented level of strain discrimination and detection of additional clusters when comparing to all of the previous typing methods. The robustness of the routine genomic sequencing at the reference laboratory ensured confidence in the microbiological identifications, even in large outbreaks with complex international food distribution networks. There was evidence that the phylogeny derived from the WGS data can be used to inform the provenance of strains and support discrimination between domestic and non-domestic transmission events. Further insight on the evolutionary context of the emerging pathogenic strains was enabled with a deep dive of the phylogenetic data, including the detection of nested clusters. The public availability of the WGS data linked to the clinical, epidemiological and environmental context of the sequenced strains has improved the trace-back investigations during outbreaks. The global expansion in the use of WGS-based typing in reference laboratories has shown that the WGS methods are a fit for purpose test in public health as it has ensured the rapid implementation of interventions to protect public health, informed risk assessment and has facilitated the management of national and international food-borne outbreaks of Salmonella. Full article
(This article belongs to the Special Issue Genomic Epidemiology of Foodborne Pathogens 2.0)
Show Figures

Figure 1

Article
Seroprevalence of Tick-Borne Encephalitis (TBE) Virus Antibodies in Wild Rodents from Two Natural TBE Foci in Bavaria, Germany
Pathogens 2023, 12(2), 185; https://doi.org/10.3390/pathogens12020185 - 25 Jan 2023
Cited by 2 | Viewed by 826
Abstract
Tick-borne encephalitis (TBE) is Eurasia’s most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the [...] Read more.
Tick-borne encephalitis (TBE) is Eurasia’s most important tick-borne viral disease. Rodents play an important role as natural hosts. Longitudinal studies on the dynamics of the seroprevalence rates in wild rodents in natural foci over the year are rare, and the dynamics of the transmission cycle still need to be understood. To better understand the infection dynamics, rodents were captured in a capture-mark-release-recapture-study in two natural foci in Bavaria, Germany, monthly from March 2019 to October 2022. Overall, 651 blood and thoracic lavage samples from 478 different wild rodents (Clethrionomys glareolus and Apodemus flavicollis) were analyzed for antibodies against tick-borne encephalitis virus (TBEV) by indirect immunofluorescence assay (IIFA) and confirmed using a serum neutralization test (SNT). Furthermore, a generalized linear mixed model (GLMM) analysis was performed to investigate ecological and individual factors for the probability of infection in rodents. Clethrionomys glareolus (19.4%) had a higher seroprevalence than A. flavicollis (10.5%). Within Cl. glareolus, more males (40.4%) than females (15.6%) were affected, and more adults (25.4%) than juveniles (9.8%). The probability of infection of rodents rather depends on factors such as species, sex, and age than on the study site of a natural focus, year, and season. The high incidence rates of rodents, particularly male adult bank voles, highlight their critical role in the transmission cycle of TBEV in a natural focus and demonstrate that serologically positive rodents can be reliably detected in a natural focus regardless of season or year. In addition, these data contribute to a better understanding of the TBEV cycle and thus could improve preventive strategies for human infections. Full article
(This article belongs to the Special Issue Tick-Borne Encephalitis Virus)
Show Figures

Figure 1

Review
Pathogenesis of Anemia in Canine Babesiosis: Possible Contribution of Pro-Inflammatory Cytokines and Chemokines—A Review
Pathogens 2023, 12(2), 166; https://doi.org/10.3390/pathogens12020166 - 20 Jan 2023
Cited by 1 | Viewed by 2071
Abstract
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite’s developmental stages only have a marginal role [...] Read more.
Canine babesiosis is a tick-borne protozoan disease caused by intraerythrocytic parasites of the genus Babesia. The infection may lead to anemia in infected dogs. However, anemia is not directly caused by the pathogen. The parasite’s developmental stages only have a marginal role in contributing to a decreased red blood cell (RBC) count. The main cause of anemia in affected dogs is the immune response to the infection. This response includes antibody production, erythrophagocytosis, oxidative damage of RBCs, complement activation, and antibody-dependent cellular cytotoxicity. Moreover, both infected and uninfected erythrocytes are retained in the spleen and sequestered in micro-vessels. All these actions are driven by pro-inflammatory cytokines and chemokines, especially IFN-γ, TNF-α, IL-6, and IL-8. Additionally, imbalance between the actions of pro- and anti-inflammatory cytokines plays a role in patho-mechanisms leading to anemia in canine babesiosis. This article is a review of the studies on the pathogenesis of anemia in canine babesiosis and related diseases, such as bovine or murine babesiosis and human or murine malaria, and the role of pro-inflammatory cytokines and chemokines in the mechanisms leading to anemia in infected dogs. Full article
(This article belongs to the Special Issue Immune Response of the Host and Vaccine Development)
Show Figures

Figure 1

Article
Zoonotic Mutation of Highly Pathogenic Avian Influenza H5N1 Virus Identified in the Brain of Multiple Wild Carnivore Species
Pathogens 2023, 12(2), 168; https://doi.org/10.3390/pathogens12020168 - 20 Jan 2023
Cited by 1 | Viewed by 23699
Abstract
Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021–2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). [...] Read more.
Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021–2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum. In contrast, the virus was rarely detected in the respiratory tract and intestinal tract and associated lesions were minimal. Full genome sequencing followed by phylogenetic analysis demonstrated that these carnivore viruses were related to viruses detected in wild birds in the Netherlands. The carnivore viruses themselves were not closely related, and the infected carnivores did not cluster geographically, suggesting that they were infected separately. The mutation PB2-E627K was identified in most carnivore virus genomes, providing evidence for mammalian adaptation. This study showed that brain samples should be included in wild life surveillance programs for the reliable detection of the HPAI H5N1 virus in mammals. Surveillance of the wild carnivore population and notification to the Veterinary Authority are important from a one-heath perspective, and instrumental to pandemic preparedness. Full article
(This article belongs to the Collection Emerging and Re-emerging Pathogens)
Show Figures

Figure 1

Review
Endogenous Retroviruses as Modulators of Innate Immunity
Pathogens 2023, 12(2), 162; https://doi.org/10.3390/pathogens12020162 - 19 Jan 2023
Cited by 2 | Viewed by 1290
Abstract
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations [...] Read more.
Endogenous retroviruses (ERVs), or LTR retrotransposons, are a class of transposable elements that are highly represented in mammalian genomes. Human ERVs (HERVs) make up roughly 8.3% of the genome and over the course of evolution, HERV elements underwent positive selection and accrued mutations that rendered them non-infectious; thereby, the genome could co-opt them into constructive roles with important biological functions. In the past two decades, with the help of advances in sequencing technology, ERVs are increasingly considered to be important components of the innate immune response. While typically silenced, expression of HERVs can be induced in response to traumatic, toxic, or infection-related stress, leading to a buildup of viral transcripts and under certain circumstances, proteins, including functionally active reverse transcriptase and viral envelopes. The biological activity of HERVs in the context of the innate immune response can be based on the functional effect of four major viral components: (1) HERV LTRs, (2) HERV-derived RNAs, (3) HERV-derived RNA:DNA duplexes and cDNA, and (4) HERV-derived proteins and ribonucleoprotein complexes. In this review, we will discuss the implications of HERVs in all four contexts in relation to innate immunity and their association with various pathological disease states. Full article
(This article belongs to the Special Issue Host Immune Responses to RNA Viruses)
Show Figures

Figure 1

Review
Prevention and Treatment Strategies for Respiratory Syncytial Virus (RSV)
Pathogens 2023, 12(2), 154; https://doi.org/10.3390/pathogens12020154 - 17 Jan 2023
Cited by 3 | Viewed by 3079
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease, especially in young children. Despite its global impact on healthcare, related to its high prevalence and its association with significant morbidity, the current therapy is still mostly supportive. Moreover, [...] Read more.
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract disease, especially in young children. Despite its global impact on healthcare, related to its high prevalence and its association with significant morbidity, the current therapy is still mostly supportive. Moreover, while more than 50 years have passed since the first trial of an RSV vaccine (which unfortunately caused enhanced RSV disease), no vaccine has been approved for RSV prevention. In the last two decades, our understanding of the pathogenesis and immunopathology of RSV have continued to evolve, leading to significant advancements in RSV prevention strategies. These include both the development of new potential vaccines and the successful implementation of passive immunization, which, together, will provide coverage from infancy to old age. In this review, we provide an update of the current treatment options for acute disease (RSV-specific and -non-specific) and different therapeutic approaches focusing on RSV prevention. Full article
(This article belongs to the Special Issue The Changing Landscape of Respiratory Syncytial Virus Infections)
Show Figures

Figure 1

Article
Fusarium Yellows of Ginger (Zingiber officinale Roscoe) Caused by Fusarium oxysporum f. sp. zingiberi Is Associated with Cultivar-Specific Expression of Defense-Responsive Genes
Pathogens 2023, 12(1), 141; https://doi.org/10.3390/pathogens12010141 - 14 Jan 2023
Cited by 1 | Viewed by 1130
Abstract
Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop [...] Read more.
Ginger (Zingiber officinale Roscoe) is an important horticultural crop, valued for its culinary and medicinal properties. Fusarium yellows of ginger, caused by Fusarium oxysporum f. sp. zingiberi (Foz), is a devastating disease that has significantly reduced the quality and crop yield of ginger worldwide. The compatible interaction between ginger and Foz leading to susceptibility is dissected here. The pathogenicity of two Foz isolates on ginger was confirmed by their ability to colonise ginger and in turn induce both internal and external plant symptoms typical of Fusarium yellows. To shed light on Foz susceptibility at the molecular level, a set of defense-responsive genes was analysed for expression in the roots of ginger cultivars challenged with Foz. These include nucleotide-binding site (NBS) type of resistant (R) genes with a functional role in pathogen recognition, transcription factors associated with systemic acquired resistance, and enzymes involved in terpenoid biosynthesis and cell wall modifications. Among three R genes, the transcripts of ZoNBS1 and ZoNBS3 were rapidly induced by Foz at the onset of infection, and the expression magnitude was cultivar-dependent. These expression characteristics extend to the other genes. This study is the first step in understanding the mechanisms of compatible host–pathogen interactions in ginger. Full article
(This article belongs to the Special Issue Current Research on Fusarium)
Show Figures

Figure 1

Review
Self-Amplifying RNA Vaccine Candidates: Alternative Platforms for mRNA Vaccine Development
Pathogens 2023, 12(1), 138; https://doi.org/10.3390/pathogens12010138 - 13 Jan 2023
Cited by 1 | Viewed by 3583
Abstract
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance [...] Read more.
The present use of mRNA vaccines against COVID-19 has shown for the first time the potential of mRNA vaccines for infectious diseases. Here we will summarize the current knowledge about improved mRNA vaccines, i.e., the self-amplifying mRNA (saRNA) vaccines. This approach may enhance antigen expression by amplification of the antigen-encoding RNA. RNA design, RNA delivery, and the innate immune responses induced by RNA will be reviewed. Full article
(This article belongs to the Special Issue Infectious Diseases and Vaccine Technology Research)
Show Figures

Figure 1

Review
Molecular Targets for Foodborne Pathogenic Bacteria Detection
Pathogens 2023, 12(1), 104; https://doi.org/10.3390/pathogens12010104 - 08 Jan 2023
Cited by 1 | Viewed by 1622
Abstract
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the [...] Read more.
The detection of foodborne pathogenic bacteria currently relies on their ability to grow on chemically defined liquid and solid media, which is the essence of the classical microbiological approach. Such procedures are time-consuming and the quality of the result is affected by the selectivity of the media employed. Several alternative strategies based on the detection of molecular markers have been proposed. These markers may be cell constituents, may reside on the cell envelope or may be specific metabolites. Each marker provides specific advantages and, at the same time, suffers from specific limitations. The food matrix and chemical composition, as well as the accompanying microbiota, may also severely compromise detection. The aim of the present review article is to present and critically discuss all available information regarding the molecular targets that have been employed as markers for the detection of foodborne pathogens. Their strengths and limitations, as well as the proposed alleviation strategies, are presented, with particular emphasis on their applicability in real food systems and the challenges that are yet to be effectively addressed. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens—Feature Papers)
Article
Genomics of Tenacibaculum Species in British Columbia, Canada
Pathogens 2023, 12(1), 101; https://doi.org/10.3390/pathogens12010101 - 06 Jan 2023
Cited by 2 | Viewed by 983
Abstract
Tenacibaculum is a genus of Gram-negative filamentous bacteria with a cosmopolitan distribution. The research describing Tenacibaculum genomes stems primarily from Norway and Chile due to their impacts on salmon aquaculture. Canadian salmon aquaculture also experiences mortality events related to the presence of Tenacibaculum [...] Read more.
Tenacibaculum is a genus of Gram-negative filamentous bacteria with a cosmopolitan distribution. The research describing Tenacibaculum genomes stems primarily from Norway and Chile due to their impacts on salmon aquaculture. Canadian salmon aquaculture also experiences mortality events related to the presence of Tenacibaculum spp., yet no Canadian Tenacibaculum genomes are publicly available. Ribosomal DNA sequencing of 16S and four species-specific 16S quantitative-PCR assays were used to select isolates cultured from Atlantic salmon with mouthrot in British Columbia (BC), Canada. Ten isolates representing four known and two unknown species of Tenacibaculum were selected for shotgun whole genome sequencing using the Oxford Nanopore’s MinION platform. The genome assemblies achieved closed circular chromosomes for seven isolates and long contigs for the remaining three isolates. Average nucleotide identity analysis identified T. ovolyticum, T. maritimum, T. dicentrarchi, two genomovars of T. finnmarkense, and two proposed novel species T. pacificus sp. nov. type strain 18-2881-AT and T. retecalamus sp. nov. type strain 18-3228-7BT. Annotation in most of the isolates predicted putative virulence and antimicrobial resistance genes, most-notably toxins (i.e., hemolysins), type-IX secretion systems, and oxytetracycline resistance. Comparative analysis with the T. maritimum type-strain predicted additional toxins and numerous C-terminal secretion proteins, including an M12B family metalloprotease in the T. maritimum isolates from BC. The genomic prediction of virulence-associated genes provides important targets for studies of mouthrot disease, and the annotation of the antimicrobial resistance genes provides targets for surveillance and diagnosis in veterinary medicine. Full article
(This article belongs to the Special Issue Emerging Infections in Aquatic Animals)
Show Figures

Figure 1

Article
Systematic Review and Modelling of Age-Dependent Prevalence of Toxoplasma gondii in Livestock, Wildlife and Felids in Europe
Pathogens 2023, 12(1), 97; https://doi.org/10.3390/pathogens12010097 - 06 Jan 2023
Cited by 1 | Viewed by 1519
Abstract
Toxoplasma gondii is a zoonotic parasite of importance to both human and animal health. The parasite has various transmission routes, and the meat of infected animals appears to be a major source of human infections in Europe. We aimed to estimate T. gondii [...] Read more.
Toxoplasma gondii is a zoonotic parasite of importance to both human and animal health. The parasite has various transmission routes, and the meat of infected animals appears to be a major source of human infections in Europe. We aimed to estimate T. gondii prevalence in a selection of animal host species. A systematic literature review resulting in 226 eligible publications was carried out, and serological data were analyzed using an age-dependent Bayesian hierarchical model to obtain estimates for the regional T. gondii seroprevalence in livestock, wildlife, and felids. Prevalence estimates varied between species, regions, indoor/outdoor rearing, and types of detection methods applied. The lowest estimated seroprevalence was observed for indoor-kept lagomorphs at 4.8% (95% CI: 1.8–7.5%) and the highest for outdoor-kept sheep at 63.3% (95% CI: 53.0–79.3%). Overall, T. gondii seroprevalence estimates were highest within Eastern Europe, whilst being lowest in Northern Europe. Prevalence data based on direct detection methods were scarce and were not modelled but rather directly summarized by species. The outcomes of the meta-analysis can be used to extrapolate data to areas with a lack of data and provide valuable inputs for future source attribution approaches aiming to estimate the relative contribution of different sources of T. gondii human infection. Full article
(This article belongs to the Special Issue Epidemiology and Management of Foodborne Parasitic Diseases)
Show Figures

Figure 1

Article
Risk Factors for Exposure of Wild Birds to West Nile Virus in A Gradient of Wildlife-Livestock Interaction
Pathogens 2023, 12(1), 83; https://doi.org/10.3390/pathogens12010083 - 03 Jan 2023
Cited by 1 | Viewed by 1313
Abstract
West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with [...] Read more.
West Nile virus (WNV) transmission rate is shaped by the interaction between virus reservoirs and vectors, which may be maximized in farm environments. Based on this hypothesis, we screened for WNV in wild birds in three scenarios with decreasing gradient of interaction with horses: (i) the farm (A1); (ii) the neighborhood (A2); and (iii) a wild area (A3). We captured wild birds and analyzed their sera for WNV antibodies by blocking ELISA and micro-virus neutralization test. Flavivirus infections were tested with generic and specific PCR protocols. We parameterized linear mixed models with predictors (bird abundance and diversity, vector abundance, vector host abundance, and weather quantities) to identify Flavivirus spp. and WNV exposure risk factors. We detected a low rate of Flavivirus infections by PCR (0.8%) and 6.9% of the birds were seropositive by ELISA. Exposure to Flavivirus spp. was higher in A1 (9%) than in A2 and A3 (5.6% and 5.8%, respectively). Bird diversity was the most relevant predictor of exposure risk and passerines dominated the on-farm bird community. Our results suggest that measures deterring the use of the farm by passerines should be implemented because the environmental favorability of continental Mediterranean environments for WNV is increasing and more outbreaks are expected. Full article
(This article belongs to the Special Issue Surveillance of Zoonotic Pathogens Carried by Wildlife)
Show Figures

Graphical abstract

Article
Occurrence of Escherichia coli Pathotypes in Diarrheic Calves in a Low-Income Setting
Pathogens 2023, 12(1), 42; https://doi.org/10.3390/pathogens12010042 - 27 Dec 2022
Viewed by 1732
Abstract
Different E. coli pathotypes are common zoonotic agents. Some of these pathotypes cause recurrent and widespread calf diarrhea and contribute to significant economic losses in the livestock sector worldwide in addition to putting humans at risk. Here, we investigated the occurrence of E. [...] Read more.
Different E. coli pathotypes are common zoonotic agents. Some of these pathotypes cause recurrent and widespread calf diarrhea and contribute to significant economic losses in the livestock sector worldwide in addition to putting humans at risk. Here, we investigated the occurrence of E. coli pathotypes in diarrheic calves in Ethiopia kept under various calf management practices. One hundred fecal samples were collected from diarrheic calves in 98 different farms. E. coli was isolated in the samples from 99 of the diarrheic calves, and virulence genes were detected in 80% of the samples. The occurrence of E. coli pathotypes in the samples was 32% ETEC, 23% STEC, 18% STEC/ETEC, 3% EPEC, 2% EAEC, and 1% EHEC. No diarrheic calves were positive for the EIEC and DAEC pathotypes. The occurrence of pathotypes was positively associated with female calves (EPEC, p = 0.006), aged less than 2 weeks (STEC, p = 0.059), and calves fed colostrum via the hand method (STEC, p = 0.008 and EAEC, p = 0.003). This study revealed that several E. coli pathotypes occurred among calves affected with diarrhea. Moreover, the presence of a mixed STEC/ETEC pathotypes infection was present in the studied low-income setting. These findings indicate a considerable risk for the zoonotic transmission from calves to humans and the options to provide the better management for younger calves in order to reduce the economic loss. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

Article
Genomic Analysis Unveils the Pervasiveness and Diversity of Prophages Infecting Erwinia Species
Pathogens 2023, 12(1), 44; https://doi.org/10.3390/pathogens12010044 - 27 Dec 2022
Viewed by 2370
Abstract
Prophages are abundant elements integrated into bacterial genomes and contribute to inter-strain genetic variability and, in some cases, modulate the environmental behavior of bacteria, such as pathogen virulence. Here, we described prophage occurrence and diversity in publicly available Erwinia genome assemblies, a genus [...] Read more.
Prophages are abundant elements integrated into bacterial genomes and contribute to inter-strain genetic variability and, in some cases, modulate the environmental behavior of bacteria, such as pathogen virulence. Here, we described prophage occurrence and diversity in publicly available Erwinia genome assemblies, a genus containing plant pathogens. Prophage-like sequences were identified and taxonomically classified. Sequence diversity was analyzed through intergenomic similarities. Furthermore, we searched for anti-phage defense systems in Erwinia spp., such as DISARM, BREX, and CRISPR-Cas systems, and identified the putative targets of CRISPR spacers. We identified 939 prophage-like sequences in 221 Erwinia spp. genome assemblies. Only 243 prophage-like sequences were classified, all belonging to the Caudoviricetes class. The set of putative Erwinia prophages was mostly unique since only three sequences showed more than 70% intergenomic similarities to known Erwinia phages. Overall, the number and type of CRISPR-Cas systems were conserved within Erwinia species, with many spacers directed to the putative prophages identified. This study increased the knowledge of the diversity and distribution of Erwinia prophages, contributing to the characterization of genetic and ecological factors influencing Erwinia spp. environmental fitness. Full article
(This article belongs to the Special Issue Viruses of Microbes: From Basics to Biotechnological Application)
Show Figures

Figure 1

Review
The Use of Natural Methods to Control Foodborne Biofilms
Pathogens 2023, 12(1), 45; https://doi.org/10.3390/pathogens12010045 - 27 Dec 2022
Cited by 3 | Viewed by 1766
Abstract
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food [...] Read more.
Biofilms are large aggregates of various species of bacteria or other microorganisms tightly attached to surfaces through an intricate extracellular matrix. These complex microbial communities present quite the challenge in the food processing industry, as conditions such as raw meats and diverse food product content in contact with workers, drains, machinery, and ventilation systems, make for prime circumstances for contamination. Adding to the challenge is the highly resistant nature of these biofilm growths and the need to keep in mind that any antimicrobials utilized in these situations risk health implications with human consumption of the products that are being processed in these locations. For that reason, the ideal means of sanitizing areas of foodborne biofilms would be natural means. Herein, we review a series of innovative natural methods of targeting foodborne biofilms, including bacteriocins, bacteriophages, fungi, phytochemicals, plant extracts, essential oils, gaseous and aqueous control, photocatalysis, enzymatic treatments, and ultrasound mechanisms. Full article
Show Figures

Figure 1

Review
Many Ways to Communicate—Crosstalk between the HBV-Infected Cell and Its Environment
Pathogens 2023, 12(1), 29; https://doi.org/10.3390/pathogens12010029 - 24 Dec 2022
Cited by 1 | Viewed by 1631
Abstract
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have [...] Read more.
Chronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells. They do so by both interacting directly and by secreting factors into their environment. Such factors may be small molecules, such as metabolites, single viral proteins or host proteins, but can also be more complex, such as virions, protein complexes, and extracellular vesicles. The latter are small, membrane-enclosed vesicles that are exchanged between cells, and have recently gained a lot of attention for their potential to mediate complex communication and their potential for therapeutic repurposing. Here, we review how HBV infection affects the communication between HBV-infected cells and cells in their environment. We discuss the impact of these interactions on viral persistence in chronic infection, as well as their relation to HBV infection-related pathology. Full article
Show Figures

Figure 1

Review
The Never-Ending Presence of Phytophthora Species in Italian Nurseries
Pathogens 2023, 12(1), 15; https://doi.org/10.3390/pathogens12010015 - 22 Dec 2022
Cited by 2 | Viewed by 1508
Abstract
Plant trade coupled with climate change has led to the increased spread of well-known and new Phytophthora species, a group of fungus-like organisms placed in the Kingdom Chromista. Their presence in plant nurseries is of particular concern because they are responsible for many [...] Read more.
Plant trade coupled with climate change has led to the increased spread of well-known and new Phytophthora species, a group of fungus-like organisms placed in the Kingdom Chromista. Their presence in plant nurseries is of particular concern because they are responsible for many plant diseases, with high environmental, economic and social impacts. This paper offers a brief overview of the current status of Phytophthora species in European plant nurseries. Focus was placed on Italian sites. Despite the increasing awareness of the risk of Phytophthora spread and the management strategies applied for controlling it, the complexity of the Phytophthora community in the horticulture industry is increasing over time. Since the survey carried out by Jung et al. (2016), new Phytophthora taxa and Phytophthora-host associations were identified. Phytophthorahydropathica, P. crassamura, P. pseudocryptogea and P. meadii were reported for the first time in European plant nurseries, while P. pistaciae, P. mediterranea and P. heterospora were isolated from Italian ornamental nurseries. Knowledge of Phytophthora diversity in plant nurseries and the potential damage caused by them will help to contribute to the development of early detection methods and sustainable management strategies to control Phytophthora spread in the future. Full article
Show Figures

Figure 1

Review
The History of the Intestinal Microbiota and the Gut-Brain Axis
Pathogens 2022, 11(12), 1540; https://doi.org/10.3390/pathogens11121540 - 15 Dec 2022
Viewed by 1437
Abstract
The gut-brain axis and the intestinal microbiota have been an area of an intensive research in the last few years. However, it is not a completely novel area of interest for physicians and scientists. From the earliest centuries, both professionals and patients turned [...] Read more.
The gut-brain axis and the intestinal microbiota have been an area of an intensive research in the last few years. However, it is not a completely novel area of interest for physicians and scientists. From the earliest centuries, both professionals and patients turned their attention to the gastrointestinal system in order to find the root of physical and mental disturbances. The approach to the gut-brain axis and the therapeutic methods have changed alongside the development of different medical approaches to health and illness. They often reflected the social changes. The authors of this article aim to provide a brief history of the gut-brain axis and the intestinal microbiota in order to demonstrate how important the study of these systems is for both scientists and medical professionals, as well as for the general public. We analysed the publications accessible through PubMed regarding the microbiota and gut-brain axis history. If available, we accessed the original historical sources. We conclude that although the history of this science might be long, there are still many areas that need to be researched, analysed, and understood in future projects. The interest in the subject is not diminishing, but rather it has increased throughout the years. Full article
(This article belongs to the Special Issue The Role of the Gut Microbiome in Health and Disease)
Show Figures

Figure 1

Article
Artificial Insemination as an Alternative Transmission Route for African Swine Fever Virus
Pathogens 2022, 11(12), 1539; https://doi.org/10.3390/pathogens11121539 - 14 Dec 2022
Cited by 3 | Viewed by 2551
Abstract
The rapid spread of the African swine fever virus (ASFV), causing severe disease with often high fatality rates in Eurasian suids, prevails as a threat for pig populations and dependent industries worldwide. Although advancing scientific progress continually enhances our understanding of ASFV pathogenesis, [...] Read more.
The rapid spread of the African swine fever virus (ASFV), causing severe disease with often high fatality rates in Eurasian suids, prevails as a threat for pig populations and dependent industries worldwide. Although advancing scientific progress continually enhances our understanding of ASFV pathogenesis, alternative transmission routes for ASFV have yet to be assessed. Here, we demonstrate that ASFV can efficiently be transferred from infected boars to naïve recipient gilts through artificial insemination (AI). In modern pig production, semen from boar studs often supplies many sow herds. Thus, the infection of a boar stud presents the risk of rapidly and widely distributing ASFV within or between countries. Daily blood and semen collection from four boars after intramuscular inoculation with ASFV strain ‘Estonia 2014’ resulted in the detection of ASFV genomes in the semen as early as 2 dpi, in blood at 1 dpi while semen quality remained largely unaffected. Ultimately, after insemination with extended semen, 7 of 14 gilts were ASFV positive by 7 days post insemination, and all gilts were ASFV positive by 35 days post insemination. Twelve out of 13 pregnant gilts aborted or resorbed at the onset of fever. A proportion of fetuses originating from the remaining gilt showed both abnormalities and replication of ASFV in fetal tissues. Thus, we present evidence for the efficient transmission of ASFV to gilts via AI and also to implanted embryos. These results underline the critical role that boar semen could play in ASFV transmission. Full article
(This article belongs to the Special Issue An Update on African Swine Fever)
Show Figures

Graphical abstract

Article
Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk
Pathogens 2022, 11(12), 1534; https://doi.org/10.3390/pathogens11121534 - 14 Dec 2022
Cited by 1 | Viewed by 2237
Abstract
Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and [...] Read more.
Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects—potentially contaminated with HPAIv or other pathogens—can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended. Full article
Show Figures

Figure 1

Review
Therapeutic Approaches for Chronic Obstructive Pulmonary Disease (COPD) Exacerbations
Pathogens 2022, 11(12), 1513; https://doi.org/10.3390/pathogens11121513 - 10 Dec 2022
Cited by 2 | Viewed by 1426
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but [...] Read more.
Chronic Obstructive Pulmonary Disease (COPD) is a progressive pulmonary disorder underpinned by poorly reversible airflow resulting from chronic bronchitis or emphysema. The prevalence and mortality of COPD continue to increase. Pharmacotherapy for patients with COPD has included antibiotics, bronchodilators, and anti-inflammatory corticosteroids (but with little success). Oral diseases have long been established as clinical risk factors for developing respiratory diseases. The establishment of a very similar microbiome in the mouth and the lung confirms the oral-lung connection. The aspiration of pathogenic microbes from the oral cavity has been implicated in several respiratory diseases, including pneumonia and chronic obstructive pulmonary disease (COPD). This review focuses on current and future pharmacotherapeutic approaches for COPD exacerbation including antimicrobials, mucoregulators, the use of bronchodilators and anti-inflammatory drugs, modifying epigenetic marks, and modulating dysbiosis of the microbiome. Full article
(This article belongs to the Special Issue Oral Microbiome)
Article
Characteristics of Staphylococcus aureus Isolated from Patients in Busia County Referral Hospital, Kenya
Pathogens 2022, 11(12), 1504; https://doi.org/10.3390/pathogens11121504 - 09 Dec 2022
Cited by 1 | Viewed by 1161
Abstract
Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. [...] Read more.
Staphylococcus aureus is an important pathogen associated with hospital, community, and livestock-acquired infections, with the ability to develop resistance to antibiotics. Nasal carriage by hospital inpatients is a risk for opportunistic infections. Antibiotic susceptibility patterns, virulence genes and genetic population structure of S. aureus nasal isolates, from inpatients at Busia County Referral Hospital (BCRH) were analyzed. A total of 263 inpatients were randomly sampled, from May to July 2015. The majority of inpatients (85.9%) were treated empirically with antimicrobials, including ceftriaxone (65.8%) and metronidazole (49.8%). Thirty S. aureus isolates were cultured from 29 inpatients with a prevalence of 11% (10.3% methicillin-susceptible S. aureus (MSSA), 0.8% methicillin resistant S. aureus (MRSA)). Phenotypic and genotypic resistance was highest to penicillin-G (96.8%), trimethoprim (73.3%), and tetracycline (13.3%) with 20% of isolates classified as multidrug resistant. Virulence genes, Panton-Valentine leukocidin (pvl), toxic shock syndrome toxin-1 (tsst-1), and sasX gene were detected in 16.7%, 23.3% and 3.3% of isolates. Phylogenetic analysis showed 4 predominant clonal complexes CC152, CC8, CC80, and CC508. This study has identified that inpatients of BCRH were carriers of S. aureus harbouring virulence genes and resistance to a range of antibiotics. This may indicate a public health risk to other patients and the community. Full article
Show Figures

Figure 1

Article
Whole-Genome Sequencing of Six Neglected Arboviruses Circulating in Africa Using Sequence-Independent Single Primer Amplification (SISPA) and MinION Nanopore Technologies
Pathogens 2022, 11(12), 1502; https://doi.org/10.3390/pathogens11121502 - 08 Dec 2022
Cited by 1 | Viewed by 1059
Abstract
On the African continent, a large number of arthropod-borne viruses (arboviruses) with zoonotic potential have been described, and yet little is known of most of these pathogens, including their actual distribution or genetic diversity. In this study, we evaluated as a proof-of-concept the [...] Read more.
On the African continent, a large number of arthropod-borne viruses (arboviruses) with zoonotic potential have been described, and yet little is known of most of these pathogens, including their actual distribution or genetic diversity. In this study, we evaluated as a proof-of-concept the effectiveness of the nonspecific sequencing technique sequence-independent single primer amplification (SISPA) on third-generation sequencing techniques (MinION sequencing, Oxford Nanopore Technologies, Oxford, UK) by comparing the sequencing results from six different samples of arboviruses known to be circulating in Africa (Crimean–Congo hemorrhagic fever virus (CCHFV), Rift Valley fever virus (RVFV), Dugbe virus (DUGV), Nairobi sheep disease virus (NSDV), Middleburg virus (MIDV) and Wesselsbron virus (WSLV)). All sequenced samples were derived either from previous field studies or animal infection trials. Using this approach, we were able to generate complete genomes for all six viruses without the need for virus-specific whole-genome PCRs. Higher Cq values in diagnostic RT-qPCRs and the origin of the samples (from cell culture or animal origin) along with their quality were found to be factors affecting the success of the sequencing run. The results of this study may stimulate the use of metagenomic sequencing approaches, contributing to a better understanding of the genetic diversity of neglected arboviruses. Full article
(This article belongs to the Special Issue Molecular Diagnostics of Emerging Pathogens)
Show Figures

Figure 1

Review
Listeria monocytogenes—How This Pathogen Uses Its Virulence Mechanisms to Infect the Hosts
Pathogens 2022, 11(12), 1491; https://doi.org/10.3390/pathogens11121491 - 07 Dec 2022
Cited by 2 | Viewed by 1509
Abstract
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on [...] Read more.
Listeriosis is a serious food-borne illness, especially in susceptible populations, including children, pregnant women, and elderlies. The disease can occur in two forms: non-invasive febrile gastroenteritis and severe invasive listeriosis with septicemia, meningoencephalitis, perinatal infections, and abortion. Expression of each symptom depends on various bacterial virulence factors, immunological status of the infected person, and the number of ingested bacteria. Internalins, mainly InlA and InlB, invasins (invasin A, LAP), and other surface adhesion proteins (InlP1, InlP4) are responsible for epithelial cell binding, whereas internalin C (InlC) and actin assembly-inducing protein (ActA) are involved in cell-to-cell bacterial spread. L. monocytogenes is able to disseminate through the blood and invade diverse host organs. In persons with impaired immunity, the elderly, and pregnant women, the pathogen can also cross the blood–brain and placental barriers, which results in the invasion of the central nervous system and fetus infection, respectively. The aim of this comprehensive review is to summarize the current knowledge on the epidemiology of listeriosis and L. monocytogenes virulence mechanisms that are involved in host infection, with a special focus on their molecular and cellular aspects. We believe that all this information is crucial for a better understanding of the pathogenesis of L. monocytogenes infection. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

Review
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application
Pathogens 2022, 11(12), 1453; https://doi.org/10.3390/pathogens11121453 - 01 Dec 2022
Cited by 1 | Viewed by 1414
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry [...] Read more.
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application. Full article
(This article belongs to the Special Issue Viruses of Microbes: From Basics to Biotechnological Application)
Show Figures

Figure 1

Back to TopTop