nutrients-logo

Journal Browser

Journal Browser

Vitamins: Physiological, Pathophysiological and Pharmacological Aspects

A special issue of Nutrients (ISSN 2072-6643). This special issue belongs to the section "Micronutrients and Human Health".

Deadline for manuscript submissions: closed (31 December 2021) | Viewed by 114497

Special Issue Editors

Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovskeho 1203/8, 500 05 Hradec Králové, Czech Republic
Interests: flavonoid; phenolic; coumarin; cardiovascular; trace metals; platelet
Special Issues, Collections and Topics in MDPI journals
Research group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
Interests: bioanalysis; liquid chromatography; mass spectrometry; method validation; microsampling; sample treatment; central nervous system drugs; drugs of abuse; doping agents; natural products
Special Issues, Collections and Topics in MDPI journals
UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
Interests: P-glycoprotein; membrane transporters; toxicokinetics; bioactivation; metabolism

Special Issue Information

Dear Colleagues,

Vitamins are essential nutritional factors involved in many different processes in the human body. Although their discoveries started early in the 20th century, recent research is still bringing novel information on the physiological activity of different vitamins and in fact, we still do not know some of their functions. In addition, there is a popular but incorrect belief in the general population that vitamins are always safe and “health-promoting” compounds. Hence, papers reporting nutritional aspects related to both positive and negative effects of vitamin administration are welcome for submission. More concretely, we kindly invite all interested researchers to submit quality papers on different aspects of vitamins, including their physiological role and pathological conditions, encompassing both their excess and deficiency, to this Special Issue. The article must adhere to the general scope of the journal of Nutrients (https://www.mdpi.com/journal/nutrients/about) .

Original articles, review papers, and short communications with significant novelty are welcome.

Prof. Dr. Přemysl Mladěnka
Dr. Laura Mercolini
Dr. Fernando Remião
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nutrients is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vitamin
  • physiological role
  • toxicity
  • vitamin overdose
  • vitamin deficiency
  • administration
  • pharmacological effect
  • human health

Published Papers (16 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2958 KiB  
Article
A Combination of Nicotinamide and D-Ribose (RiaGev) Is Safe and Effective to Increase NAD+ Metabolome in Healthy Middle-Aged Adults: A Randomized, Triple-Blind, Placebo-Controlled, Cross-Over Pilot Clinical Trial
by Yongquan Xue, Trisha Shamp, G. A. Nagana Gowda, Michael Crabtree, Debasis Bagchi and Daniel Raftery
Nutrients 2022, 14(11), 2219; https://doi.org/10.3390/nu14112219 - 26 May 2022
Cited by 7 | Viewed by 4986
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor required for proper functioning of all cells and its decline is correlated with advancing age and disease. This randomized, triple-blind, placebo-controlled, crossover pilot study assessed the efficacy and safety of a combination of [...] Read more.
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor required for proper functioning of all cells and its decline is correlated with advancing age and disease. This randomized, triple-blind, placebo-controlled, crossover pilot study assessed the efficacy and safety of a combination of nicotinamide with D-ribose (RiaGev) for NAD metabolome enhancement and related benefits in healthy middle-aged adults. Supplementing with 1520 mg RiaGev twice daily for 7 days significantly increased the NAD+ metabolome in blood, especially NADP+ by 27% compared to the placebo group (p = 0.033) and over the baseline (p = 0.007). Increases in glutathione and high energy phosphates were also observed in the blood. Seven-day supplementation with RiaGev significantly (p = 0.013) reduced overall blood glucose without significant changes in insulin secretion (p = 0.796), suggesting an improved insulin sensitivity and glucose tolerance. The waking salivary cortisol of the subjects steadily and significantly decreased (p = 0.026) in the RiaGev group in contrast to the placebo. Subjects in the RiaGev group showed less fatigue, improved mental concentration and motivation over the baseline (p = 0.015, 0.018, and 0.012, respectively) as observed through the Checklist Individual Strength (CIS) questionnaire. There were no clinically relevant adverse events, or alterations in hematology, electrolytes, liver, and kidney markers pre- and post-supplementation. RiaGev appears to be safe and efficacious in increasing NAD+ metabolome in healthy middle-aged adults, as shown by this study. Full article
Show Figures

Figure 1

14 pages, 4127 KiB  
Article
Influences of Vitamin B12 Supplementation on Cognition and Homocysteine in Patients with Vitamin B12 Deficiency and Cognitive Impairment
by Asako Ueno, Tadanori Hamano, Soichi Enomoto, Norimichi Shirafuji, Miwako Nagata, Hirohiko Kimura, Masamichi Ikawa, Osamu Yamamura, Daiki Yamanaka, Tatsuhiko Ito, Yohei Kimura, Masaru Kuriyama and Yasunari Nakamoto
Nutrients 2022, 14(7), 1494; https://doi.org/10.3390/nu14071494 - 02 Apr 2022
Cited by 8 | Viewed by 7987
Abstract
Vitamin B12 deficiency is associated with cognitive impairment, hyperhomocysteinemia, and hippocampal atrophy. However, the recovery of cognition with vitamin B12 supplementation remains controversial. Of the 1716 patients who visited our outpatient clinic for dementia, 83 had vitamin B12 deficiency. Among [...] Read more.
Vitamin B12 deficiency is associated with cognitive impairment, hyperhomocysteinemia, and hippocampal atrophy. However, the recovery of cognition with vitamin B12 supplementation remains controversial. Of the 1716 patients who visited our outpatient clinic for dementia, 83 had vitamin B12 deficiency. Among these, 39 patients (mean age, 80.1 ± 8.2 years) had undergone Mini-Mental State Examination (MMSE) and laboratory tests for vitamin B12, homocysteine (Hcy), and folic acid levels. The hippocampal volume was estimated using the z-score of the MRI-voxel-based specific regional analysis system for Alzheimer’s disease. This is multi-center, open-label, single-arm study. All the 39 patients were administered vitamin B12 and underwent reassessment to measure the retested for MMSE and Hcy after 21−133 days (median = 56 days, interquartile range (IQR) = 43–79 days). After vitamin B12 supplementation, the mean MMSE score improved significantly from 20.5 ± 6.4 to 22.9 ± 5.5 (p < 0.001). Hcy level decreased significantly from 22.9 ± 16.9 nmol/mL to 11.5 ± 3.9 nmol/mL (p < 0.001). Significant correlation was detected between the extent of change in MMSE scores and baseline Hcy values. The degree of MMSE score was not correlated with hippocampal atrophy assessed by the z-score. While several other factors should be considered, vitamin B12 supplementation resulted in improved cognitive function, at least in the short term, in patients with vitamin B12 deficiency. Full article
Show Figures

Figure 1

14 pages, 2372 KiB  
Article
Ascorbic Acid Reduces Neurotransmission, Synaptic Plasticity, and Spontaneous Hippocampal Rhythms in In Vitro Slices
by Segewkal H. Heruye, Ted J. Warren, Joseph A. Kostansek IV, Samantha B. Draves, Stephanie A. Matthews, Peter J. West, Kristina A. Simeone and Timothy A. Simeone
Nutrients 2022, 14(3), 613; https://doi.org/10.3390/nu14030613 - 30 Jan 2022
Cited by 5 | Viewed by 3630
Abstract
Ascorbic acid (AA; a.k.a. vitamin C) is well known for its cellular protection in environments of high oxidative stress. Even though physiological concentrations of AA in the brain are significant (0.2–10 mM), surprisingly little is known concerning the role of AA in synaptic [...] Read more.
Ascorbic acid (AA; a.k.a. vitamin C) is well known for its cellular protection in environments of high oxidative stress. Even though physiological concentrations of AA in the brain are significant (0.2–10 mM), surprisingly little is known concerning the role of AA in synaptic neurotransmission under normal, non-disease state conditions. Here, we examined AA effects on neurotransmission, plasticity and spontaneous network activity (i.e., sharp waves and high frequency oscillations; SPW-HFOs), at the synapse between area 3 and 1 of the hippocampal cornu ammonis region (CA3 and CA1) using an extracellular multi-electrode array in in vitro mouse hippocampal slices. We found that AA decreased evoked field potentials (fEPSPs, IC50 = 0.64 mM) without affecting V50s or paired pulse facilitation indicating normal neurotransmitter release mechanisms. AA decreased presynaptic fiber volleys but did not change fiber volley-to-fEPSP coupling, suggesting reduced fEPSPs resulted from decreased fiber volleys. Inhibitory effects were also observed in CA1 stratum pyramidale where greater fEPSPs were required for population spikes in the presence of AA suggesting an impact on the intrinsic excitability of neurons. Other forms of synaptic plasticity and correlates of memory (i.e., short- and long-term potentiation) were also significantly reduced by AA as was the incidence of spontaneous SPW-HFOs. AA decreased SPW amplitude with a similar IC50 as fEPSPs (0.65 mM). Overall, these results indicate that under normal conditions AA significantly regulates neurotransmission, plasticity, and network activity by limiting excitability. Thus, AA may participate in refinement of signal processing and memory formation, as well as protecting against pathologic excitability. Full article
Show Figures

Figure 1

12 pages, 724 KiB  
Article
Vitamin D Deficiency Is Associated with Glycometabolic Changes in Nondiabetic Patients with Arterial Hypertension
by Gabriele Brosolo, Andrea Da Porto, Luca Bulfone, Laura Scandolin, Antonio Vacca, Nicole Bertin, Cinzia Vivarelli, Leonardo A. Sechi and Cristiana Catena
Nutrients 2022, 14(2), 311; https://doi.org/10.3390/nu14020311 - 12 Jan 2022
Cited by 4 | Viewed by 1817
Abstract
Recent evidence indicates that mildly increased fasting and post-oral load blood glucose concentrations contribute to development of organ damage in nondiabetic patients with hypertension. In previous studies, vitamin D deficiency was associated with decreased glucose tolerance. The aim of this study was to [...] Read more.
Recent evidence indicates that mildly increased fasting and post-oral load blood glucose concentrations contribute to development of organ damage in nondiabetic patients with hypertension. In previous studies, vitamin D deficiency was associated with decreased glucose tolerance. The aim of this study was to examine the relationships between serum 25(OH)D levels and glucose tolerance and insulin sensitivity in hypertension. In 187 nondiabetic essential hypertensive patients free of cardiovascular or renal complications, we measured serum 25-hydroxyvitamin D (25(OH)D) and parathyroid hormone (PTH) and performed a standard oral glucose tolerance test (OGTT). Patients with 25(OH)D deficiency/insufficiency were older and had significantly higher blood pressure, fasting and post-OGTT (G-AUC) glucose levels, post-OGTT insulin (I-AUC), PTH levels, and prevalence of metabolic syndrome than patients with normal serum 25(OH)D. 25(OH)D levels were inversely correlated with age, blood pressure, fasting glucose, G-AUC, triglycerides, and serum calcium and PTH, while no significant relationships were found with body mass index (BMI), fasting insulin, I-AUC, HOMA index, and renal function. In a multivariate regression model, greater G-AUC was associated with lower 25(OH)D levels independently of BMI and seasonal vitamin D variations. Thus, in nondiabetic hypertensive patients, 25(OH)D deficiency/insufficiency could contribute to impaired glucose tolerance without directly affecting insulin sensitivity. Full article
Show Figures

Graphical abstract

13 pages, 1571 KiB  
Article
Priming with Retinoic Acid, an Active Metabolite of Vitamin A, Increases Vitamin A Uptake in the Small Intestine of Neonatal Rats
by Yaqi Li, Cheng-Hsin Wei, J. Kalina Hodges, Michael H. Green and A. Catharine Ross
Nutrients 2021, 13(12), 4275; https://doi.org/10.3390/nu13124275 - 27 Nov 2021
Cited by 2 | Viewed by 1496
Abstract
Given that combined vitamin A (VA) and retinoic acid (RA) supplementation stimulated the intestinal uptake of plasma retinyl esters in neonatal rats, we administrated an RA dose as a pretreatment before VA supplementation to investigate the distinct effect of RA on intestinal VA [...] Read more.
Given that combined vitamin A (VA) and retinoic acid (RA) supplementation stimulated the intestinal uptake of plasma retinyl esters in neonatal rats, we administrated an RA dose as a pretreatment before VA supplementation to investigate the distinct effect of RA on intestinal VA kinetics. On postnatal days (P) 2 and 3, half of the pups received an oral dose of RA (RA group), while the remaining received canola oil as the control (CN). On P4, after receiving an oral dose of 3H-labeled VA, pups were euthanized at selected times (n = 4–6/treatment/time) and intestine was collected. In both CN and RA groups, intestinal VA mass increased dramatically after VA supplementation; however, RA-pretreated pups had relatively higher VA levels from 10 h and accumulated 30% more VA over the 30-h study. Labeled VA rapidly peaked in the intestine of CN pups and then declined from 13 h, while a continuous increase was observed in the RA group, with a second peak at 10 h and nearly twice the accumulation of 3H-labeled VA compared to CN. Our findings indicate that RA pretreatment may stimulate the influx of supplemental VA into the intestine, and the increased VA accumulation suggests a potential VA storage capacity in neonatal intestine. Full article
Show Figures

Figure 1

9 pages, 454 KiB  
Article
Vitamin D as Modulator of Drug Concentrations: A Study on Two Italian Cohorts of People Living with HIV Administered with Efavirenz
by Jessica Cusato, Massimo Tempestilli, Andrea Calcagno, Alessandra Vergori, Pierluca Piselli, Miriam Antonucci, Valeria Avataneo, Alice Palermiti, Stefania Notari, Andrea Antinori, Giovanni Di Perri, Chiara Agrati and Antonio D’Avolio
Nutrients 2021, 13(10), 3571; https://doi.org/10.3390/nu13103571 - 12 Oct 2021
Cited by 2 | Viewed by 1897
Abstract
To date, vitamin D seems to have a significant role in affecting the prevention and immunomodulation in COVID-19 disease. Nevertheless, it is important to highlight that this pro-hormone has other several activities, such as affecting drug concentrations, since it regulates the expression of [...] Read more.
To date, vitamin D seems to have a significant role in affecting the prevention and immunomodulation in COVID-19 disease. Nevertheless, it is important to highlight that this pro-hormone has other several activities, such as affecting drug concentrations, since it regulates the expression of cytochrome P450 (CYP) genes. Efavirenz (EFV) pharmacokinetics is influenced by CYPs, but no data are available in the literature concerning the association among vitamin D levels, seasonality (which affects vitamin D concentrations) and EFV plasma levels. For this reason, the aim of this study was to evaluate the effect of 25-hydroxy vitamin D (25(OH)D3) levels on EFV plasma concentrations in different seasons. We quantified 25(OH)D3 by using chemiluminescence immunoassay, whereas EFV plasma concentrations were quantified with the HPLC–PDA method. A total of 316 patients were enrolled in Turin and Rome. Overall, 25(OH)D3levels resulted in being inversely correlated with EFV concentrations. Some patients with EFV levels higher than 4000 ng/mL showed a deficient 25(OH)D3 concentration in Turin and Rome cohorts and together. EFV concentrations were different in patients without vitamin D supplementation, whereas, for vitamin D-administered individuals, no difference in EFV exposure was present. Concerning seasonality, EFV concentrations were associated with 25(OH)D3 deficiency only in winter and in spring, whereas a significant influence was highlighted for 25(OH)D3 stratification for deficient, insufficient and sufficient values in winter, spring and summer. A strong and inverse association between 25(OH)D3and EFV plasma concentrations was suggested. These data suggest that vitamin D is able to affect drug exposure in different seasons; thus, the achievement of the clinical outcome could be improved by also considering this pro-hormone. Full article
Show Figures

Figure 1

9 pages, 1842 KiB  
Article
Metabolic Effects of Vitamin B1 Therapy under Overnutrition and Undernutrition Conditions in Sheep
by Mugagga Kalyesubula, Ramgopal Mopuri, Alexander Rosov, Guy Van Bommel and Hay Dvir
Nutrients 2021, 13(10), 3463; https://doi.org/10.3390/nu13103463 - 29 Sep 2021
Cited by 1 | Viewed by 2521
Abstract
As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, [...] Read more.
As a precursor for a universal metabolic coenzyme, vitamin B1, also known as thiamine, is a vital nutrient in all living organisms. We previously found that high-dose thiamine therapy prevents overnutrition-induced hepatic steatosis in sheep by enhancing oxidative catabolism. Based on this capacity, we hypothesized that thiamine might also reduce whole-body fat and weight. To test it, we investigated the effects of high-dose thiamine treatment in sheep under overnutrition and calorie-restricted undernutrition to respectively induce positive energy balance (PEB) and negative energy balance (NEB). Eighteen mature ewes were randomly assigned to three treatment groups (n = 6 each). The control group (CG) was administered daily with subcutaneous saline, whereas the T5 and T10 groups were administered daily with equivoque of saline containing 5 mg/kg and 10 mg/kg of thiamine, respectively. Bodyweight and blood biochemistry were measured twice a week for a period of 22 days under PEB and for a consecutive 30 days under NEB. Surprisingly, despite the strong effect of thiamine on liver fat, no effect on body weight or blood glucose was detectable. Thiamine did, however, increase plasma concentration of non-esterified fatty acids (NEFA) during NEB (575.5 ± 26.7, 657.6 ± 29.9 and 704.9 ± 26.1 µEqL−1 for CG, T5, and T10, respectively: p < 0.05), thereby favoring utilization of fatty acids versus carbohydrates as a source of energy. Thiamine increased serum creatinine concentrations (p < 0.05), which paralleled a trending increase in urea (p = 0.09). This may indicate an increase in muscle metabolism by thiamine. Reduction of fat content by thiamine appears more specific to the liver than to adipose tissue. Additional studies are needed to evaluate the potential implications of high-dose vitamin B1 therapy in muscle metabolism. Full article
Show Figures

Figure 1

17 pages, 840 KiB  
Article
Vitamin D Receptor Gene Polymorphism and Vitamin D Status in Population of Patients with Cardiovascular Disease—A Preliminary Study
by Mohamed Abouzid, Marlena Kruszyna, Paweł Burchardt, Łukasz Kruszyna, Franciszek K. Główka and Marta Karaźniewicz-Łada
Nutrients 2021, 13(9), 3117; https://doi.org/10.3390/nu13093117 - 06 Sep 2021
Cited by 18 | Viewed by 3469
Abstract
The association between vitamin D receptor (VDR) polymorphism and the risk of cardiovascular diseases (CVD) remains unclear. This study aimed to assess a relationship between the VDR genotypes, plasma concentrations of vitamin D metabolites, and the occurrence of cardiovascular and metabolic disorders. Fifty-eight [...] Read more.
The association between vitamin D receptor (VDR) polymorphism and the risk of cardiovascular diseases (CVD) remains unclear. This study aimed to assess a relationship between the VDR genotypes, plasma concentrations of vitamin D metabolites, and the occurrence of cardiovascular and metabolic disorders. Fifty-eight patients treated for various cardiological afflictions were included. Identification of VDR polymorphisms: ApaI, TaqI, BsmI, and FokI were carried out using the PCR-RFLP method. Plasma concentrations of 25-hydroxyvitamin-D2, 25-hydroxyvitamin-D3, and 3-epi-25-hydroxyvitamin D3 were assessed by the UPLC-MS/MS method. Lower incidence of BsmI AA genotype in the studied patients was observed compared with healthy controls, but the difference was insignificant. Among patients with the TT genotype, frequency of hypertension was higher than among carriers of other ApaI genotypes (p < 0.01). In addition, carriers of the TT ApaI, TC TaqI, and GA BsmI genotypes had an increased risk of obesity, while the presence of the FokI TT genotype was associated with a higher incidence of heart failure and hypertension. In conclusion, the BsmI AA genotype can be protective against CVD, but this observation needs study on a larger group of patients. Particular VDR genotypes were associated with 25-hydroxyvitamin-D levels, and the mechanism of this association should be further investigated. Full article
Show Figures

Figure 1

12 pages, 976 KiB  
Article
Differences in the Concentration of Vitamin D Metabolites in Plasma Due to the Low-Carbohydrate-High-Fat Diet and the Eastern European Diet—A Pilot Study
by Izabela Bolesławska, Magdalena Kowalówka, Małgorzata Dobrzyńska, Marta Karaźniewicz-Łada and Juliusz Przysławski
Nutrients 2021, 13(8), 2774; https://doi.org/10.3390/nu13082774 - 13 Aug 2021
Cited by 5 | Viewed by 3292
Abstract
Vitamin D deficiency is a global problem with many health consequences, and it is currently recommended to supplement vitamin D. Change of diet should also be considered to ensure adequate vitamin D in the human body. The aim of this study was to [...] Read more.
Vitamin D deficiency is a global problem with many health consequences, and it is currently recommended to supplement vitamin D. Change of diet should also be considered to ensure adequate vitamin D in the human body. The aim of this study was to assess the concentration of vitamin D metabolites in two different groups: one group on the low-carbohydrate-high-fat (LCHF) diet and the other group on the Eastern European (EE) diet. In the first stage, 817 participants declaring traditional EE diet or LCHF diet were investigated. Nutrition (self-reported 3-day estimated food record) and basic anthropometric parameters were assessed. After extra screening, 67 participants on the EE diet and 41 on the LCHF diet were qualified for the second stage. Plasma 25-hydroxycholecalciferol (25(OH)D3) and (25(OH)D2) concentration was measured by the validated HPLC—MS/MS method. Plasma 25(OH)D3 concentration was significantly higher in the group on the LCHF diet (34.9 ± 15.9 ng/mL) than in the group on the EE diet (22.6 ± 12.1 ng/mL). No statistical differences were observed in plasma 25(OH)D2 concentration between the study groups (p > 0.05). Women had a higher plasma 25(OH)D2 concentration than men regardless of diet type. The LCHF diet had a positive influence on plasma vitamin D concentration. However, long-term use of the LCHF diet remains contentious due to the high risk of cardiovascular disease. This study confirmed that the type of diet influences the concentration of vitamin D metabolites in the plasma. Full article
Show Figures

Figure 1

16 pages, 2153 KiB  
Article
Ex Vivo Evaluation of the Sepsis Triple Therapy High-Dose Vitamin C in Combination with Vitamin B1 and Hydrocortisone in a Human Peripheral Blood Mononuclear Cells (PBMCs) Model
by Annie Lauer, Markus Burkard, Heike Niessner, Christian Leischner, Olga Renner, Claudia Vollbracht, Holger Michels, Christian Busch, Tobias Sinnberg and Sascha Venturelli
Nutrients 2021, 13(7), 2366; https://doi.org/10.3390/nu13072366 - 10 Jul 2021
Cited by 9 | Viewed by 2892
Abstract
Sepsis is an extremely complex clinical syndrome, usually involving an excessive inflammatory response including an overshooting cytokine release that damages tissue and organs of the patient. Due to the severity of this condition, it is estimated that over 11 million people die from [...] Read more.
Sepsis is an extremely complex clinical syndrome, usually involving an excessive inflammatory response including an overshooting cytokine release that damages tissue and organs of the patient. Due to the severity of this condition, it is estimated that over 11 million people die from sepsis each year. Despite intensive research in the field, there is still no specific therapy for sepsis. Many sepsis patients show a marked deficiency of vitamin C. 9 out of 10 sepsis patients have a hypovitaminosis C, and every third patient even shows a clinical deficiency in the scurvy range. In addition, low vitamin C levels of intensive care sepsis patients correlate with a higher need for vasopressors, higher Sequential Organ Failure Assessment (SOFA) scores, and increased mortality. Based on this observation and the conducted clinical trials using vitamin C as sepsis therapy in intensive care patients, the aim of the present ex vivo study was to evaluate the effects of high-dose vitamin C alone and in a triple combination supplemented with vitamin B1 (thiamine) and hydrocortisone on the lipopolysaccharide (LPS)-induced cytokine response in peripheral blood mononuclear cells (PBMCs) from healthy human donors. We found that all corticosteroid combinations strongly reduced the cytokine response on RNA- and protein levels, while high-dose vitamin C alone significantly diminished the PBMC mediated secretion of the cytokines interleukin (IL)-10, IL-23, and monocyte chemo-attractant protein (MCP-1), which mediate the inflammatory response. However, vitamin C showed no enhancing effect on the secretion of further cytokines studied. This data provides important insights into the possible immunomodulatory function of vitamin C in an ex vivo setting of human PBMCs and the modulation of their cytokine profile in the context of sepsis. Since vitamin C is a vital micronutrient, the restoration of physiologically adequate concentrations should be integrated into routine sepsis therapy, and the therapeutic effects of supraphysiological concentrations of vitamin C in sepsis patients should be further investigated in clinical trials. Full article
Show Figures

Figure 1

12 pages, 4158 KiB  
Article
The Role of Inflammatory Diet and Vitamin D on the Link between Periodontitis and Cognitive Function: A Mediation Analysis in Older Adults
by João Botelho, Yago Leira, João Viana, Vanessa Machado, Patrícia Lyra, José Manuel Aldrey, Juan Manuel Pías-Peleteiro, Juan Blanco, Tomás Sobrino and José João Mendes
Nutrients 2021, 13(3), 924; https://doi.org/10.3390/nu13030924 - 12 Mar 2021
Cited by 19 | Viewed by 5276
Abstract
Patients suffering from periodontitis are at a higher risk of developing cognitive dysfunction. However, the mediation effect of an inflammatory diet and serum vitamin D levels in this link is unclear. In total, 2062 participants aged 60 years or older with complete periodontal [...] Read more.
Patients suffering from periodontitis are at a higher risk of developing cognitive dysfunction. However, the mediation effect of an inflammatory diet and serum vitamin D levels in this link is unclear. In total, 2062 participants aged 60 years or older with complete periodontal diagnosis and cognitive tests from the National Health and Nutrition Examination Survey (NHANES) 2011–2012 and 2013–2014 were enrolled. The Consortium to Establish a Registry for Alzheimer’s disease (CERAD) word learning subtest (WLT) and CERAD delayed recall test (DRT), the animal fluency test (AFT) and the digit symbol substitution test (DSST) was used. Dietary inflammatory index (DII) was computed via nutrition datasets. Mediation analysis tested the effects of DII and vitamin D levels in the association of mean probing depth (PD) and attachment loss (AL) in all four cognitive tests. Periodontitis patients obtained worse cognitive test scores than periodontally healthy individuals. DII was negatively associated with CERAD-WLT, CERAD-DRT, AFT and DSST, and was estimated to mediate between 9.2% and 36.4% of the total association between periodontitis with cognitive dysfunction (p < 0.05). Vitamin D showed a weak association between CERAD-DRT, AFT and DSST and was estimated to between 8.1% and 73.2% of the association between periodontitis and cognitive dysfunction (p < 0.05). The association between periodontitis and impaired cognitive function seems to be mediated both by a proinflammatory dietary load and vitamin D deficiency. Future studies should further explore these mediators in the periodontitis-cognitive decline link. Full article
Show Figures

Figure 1

Review

Jump to: Research

84 pages, 5722 KiB  
Review
Biological Properties of Vitamins of the B-Complex, Part 1: Vitamins B1, B2, B3, and B5
by Marcel Hrubša, Tomáš Siatka, Iveta Nejmanová, Marie Vopršalová, Lenka Kujovská Krčmová, Kateřina Matoušová, Lenka Javorská, Kateřina Macáková, Laura Mercolini, Fernando Remião, Marek Máťuš, Přemysl Mladěnka and on behalf of the OEMONOM
Nutrients 2022, 14(3), 484; https://doi.org/10.3390/nu14030484 - 22 Jan 2022
Cited by 56 | Viewed by 18765
Abstract
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized [...] Read more.
This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function. Full article
Show Figures

Figure 1

17 pages, 782 KiB  
Review
Biological Role of Vitamin K—With Particular Emphasis on Cardiovascular and Renal Aspects
by Anna Stępień, Małgorzata Koziarska-Rościszewska, Jacek Rysz and Mariusz Stępień
Nutrients 2022, 14(2), 262; https://doi.org/10.3390/nu14020262 - 08 Jan 2022
Cited by 8 | Viewed by 4214
Abstract
Vitamin K (VK) plays many important functions in the body. The most important of them include the contribution in calcium homeostasis and anticoagulation. Vascular calcification (VC) is one of the most important mechanisms of renal pathology. The most potent inhibitor of this process—matrix [...] Read more.
Vitamin K (VK) plays many important functions in the body. The most important of them include the contribution in calcium homeostasis and anticoagulation. Vascular calcification (VC) is one of the most important mechanisms of renal pathology. The most potent inhibitor of this process—matrix Gla protein (MGP) is VK-dependent. Chronic kidney disease (CKD) patients, both non-dialysed and hemodialysed, often have VK deficiency. Elevated uncarboxylated matrix Gla protein (ucMGP) levels indirectly reflected VK deficiency and are associated with a higher risk of cardiovascular events in these patients. It has been suggested that VK intake may reduce the VC and related cardiovascular risk. Vitamin K intake has been suggested to reduce VC and the associated cardiovascular risk. The role and possibility of VK supplementation as well as the impact of anticoagulation therapy on VK deficiency in CKD patients is discussed. Full article
Show Figures

Figure 1

36 pages, 2541 KiB  
Review
Vitamin A Update: Forms, Sources, Kinetics, Detection, Function, Deficiency, Therapeutic Use and Toxicity
by Alejandro Carazo, Kateřina Macáková, Kateřina Matoušová, Lenka Kujovská Krčmová, Michele Protti and Přemysl Mladěnka
Nutrients 2021, 13(5), 1703; https://doi.org/10.3390/nu13051703 - 18 May 2021
Cited by 99 | Viewed by 20354
Abstract
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays [...] Read more.
Vitamin A is a group of vital micronutrients widely present in the human diet. Animal-based products are a rich source of the retinyl ester form of the vitamin, while vegetables and fruits contain carotenoids, most of which are provitamin A. Vitamin A plays a key role in the correct functioning of multiple physiological functions. The human organism can metabolize natural forms of vitamin A and provitamin A into biologically active forms (retinol, retinal, retinoic acid), which interact with multiple molecular targets, including nuclear receptors, opsin in the retina and, according to the latest research, also some enzymes. In this review, we aim to provide a complex view on the present knowledge about vitamin A ranging from its sources through its physiological functions to consequences of its deficiency and metabolic fate up to possible pharmacological administration and potential toxicity. Current analytical methods used for its detection in real samples are included as well. Full article
Show Figures

Figure 1

10 pages, 293 KiB  
Review
Vitamins in Human and Donkey Milk: Functional and Nutritional Role
by Silvia Vincenzetti, Giuseppe Santini, Valeria Polzonetti, Stefania Pucciarelli, Yulia Klimanova and Paolo Polidori
Nutrients 2021, 13(5), 1509; https://doi.org/10.3390/nu13051509 - 29 Apr 2021
Cited by 18 | Viewed by 4923
Abstract
Background: Whole milk is a good source of all the nutrients, and it also contains a sufficient number of vitamins to permit regular the growth of the neonate. Dairy cow milk can create allergy in infants less than 12 months old because of [...] Read more.
Background: Whole milk is a good source of all the nutrients, and it also contains a sufficient number of vitamins to permit regular the growth of the neonate. Dairy cow milk can create allergy in infants less than 12 months old because of the high caseins and β-lactoglobulin content. In these circumstances, donkey milk can represent a good replacement for dairy cows’ milk in children affected by Cow Milk Protein Allergy (CMPA) because of its close chemical composition with human milk, mainly due to its low protein and low mineral content. Milk vitamin content is highly variable among mammalian species and it is strictly correlated with the vitamin status and the diet administered to the mother. Fat-soluble vitamins content in donkey milk is, on average, lower compared to ruminants’ milk, while vitamin C content determined in donkey milk is higher compared to dairy cows’ milk, showing a great similarity with human milk. In donkey milk, the content of vitamins of the B-complex such as thiamine, riboflavin, niacin, pyridoxine, and folic acid is higher compared to human milk. The use of donkey milk as a new functional food must be further evaluated in interdisciplinary clinical trials in which pediatricians, dietitians, and food scientists must be involved to deepen the knowledge about the positive health impact of donkey milk in different sensitive people, especially children and the elderly. Full article
Show Figures

Graphical abstract

36 pages, 4124 KiB  
Review
Vitamin C—Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination
by Martin Doseděl, Eduard Jirkovský, Kateřina Macáková, Lenka Kujovská Krčmová, Lenka Javorská, Jana Pourová, Laura Mercolini, Fernando Remião, Lucie Nováková, Přemysl Mladěnka and on behalf of The OEMONOM
Nutrients 2021, 13(2), 615; https://doi.org/10.3390/nu13020615 - 13 Feb 2021
Cited by 131 | Viewed by 24858
Abstract
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic [...] Read more.
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro-oxidant than an anti-oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence—scurvy. The only clinically well-documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review. Full article
Show Figures

Graphical abstract

Back to TopTop