Microbial Nitrogen Cycling

A special issue of Nitrogen (ISSN 2504-3129).

Deadline for manuscript submissions: 30 September 2024 | Viewed by 8239

Special Issue Editor


E-Mail Website
Guest Editor
Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, E-03080 Alicante, Spain
Interests: extremophiles; omics-based technologies; gene regulation; microbial metabolism; carotenoids; polyhydroxyalkanoates; biogeochemical cycles; system biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nitrogen (N) is an essential element in biological systems and often limits production in aquatic and terrestrial systems. Its availability at the global scale depends on several nitrogen-transforming reactions mainly carried out by microorganisms. Microbial nitrogen-transforming networks are crucial not only due to their connection to biogeochemical cycles but also because they both attenuate and exacerbate human-induced global change.

Articles (original research, commentaries, opinions and reviews) submitted for publication in this Special Issue should, through various interdisciplinary approaches, contribute to a greater understanding of the role of microorganisms in the N-cycle.

Topics of interest include, but are not limited to:

  • N-cycle pathways (biochemical, molecular biology, microbiological and ecological approaches).
  • Nitrogen assimilation, fixation and respiration;
  • Nitrogenous gasses emissions and climate change;
  • Ammonification/nitrification;
  • Dissimilatory nitrate reduction to ammonia;
  • Anammox and denitrification;
  • Microbial reactions involving nitrogen in human beings.

Prof. Dr. Rosa María Martínez-Espinosa
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nitrogen is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nitrogen cycle
  • denitrification
  • microbial consortiums
  • bioremediation
  • anammox
  • global warming
  • fertilization

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 5111 KiB  
Article
Effectiveness of Rhizobium tropici sp. Strain UD5 Peat Biofertilizer Inoculant on Growth, Yield, and Nitrogen Concentration of Common Bean
by Auges Gatabazi, Ashwell Rungano Ndhlala, Mireille Asanzi Mvondo-She and Semakaleng Mpai
Nitrogen 2024, 5(1), 79-90; https://doi.org/10.3390/nitrogen5010006 - 01 Feb 2024
Viewed by 1084
Abstract
Common bean (Phaseolus vulgaris L.) ranks among the most produced and consumed legume crops and contains essential macro- and micronutrients. Grain yield of the food crop is markedly decreased by poor management, especially a lack of additional essential nutrient elements through the [...] Read more.
Common bean (Phaseolus vulgaris L.) ranks among the most produced and consumed legume crops and contains essential macro- and micronutrients. Grain yield of the food crop is markedly decreased by poor management, especially a lack of additional essential nutrient elements through the application of fertilizers. In addition to the application of fertilizers, scholarly research and crop farmers have shown that the use of biofertilizer inoculants improves the yield of legume crops. The objective of this research study was to assess the effectiveness of peat-based Rhizobium tropici sp. UD5 on the growth, yield, and nitrogen concentration of common bean. The peat inoculant contained 6.5 × 109 viable cells/g. The experiment was conducted in two climatic zones, as described by the Koppen–Gieger climatic classification system. Treatments involved the peat-based inoculant Rhizobium tropici (T0 = 0 g without inoculation, T1 = 250 g of peat inoculant of strain UD5 for 50 kg seeds, T2 = 500 g of inoculant of strain UD5, and T3 = 200 g of comparative peat inoculant). The results indicated that common-bean-inoculated formulation of R. tropici sp. strain UD5 increased the following parameters compared to the controls: plant height (T1 = 18.22%, T2 = 20.41%, and T3 = 19.93% for bioclimatic zone 1; T1 = 16.78%, T2 = 20.71%, and T3 = 19.93% for bioclimatic zone 2), root length (T1 = 13.26%, T2 = 21.28%, and T3 = 19.38% for zone 1; T1 = 15.06%, T2 = 23.70%, and T3 = 19.20% for zone 2), number of nodules (T1 = 1162.57%, T2 = 1166.36%, and T3 = 1180.30% for zone 1; T1 = 1575%, T2 = 1616.5%, and T3 = 1608.25% for zone 2), size of nodules (T1 = 224.07%, T2 = 224.07%, and T3 = 208.33% for zone 1; T1 = 166.4%, T2 = 180%, and T3 = 140% for zone 2), and yield (T1 = 40.49%, T2 = 47.10%, and T3 = 45.45% for zone 1; T1 = 62.16%, T2 = 54.05%, and T3 = 58.55% for zone 2). R. tropici sp. UD5 peat inoculant formulation also increased the nitrogen concentration in leaves compared to the control (T1 = 3.75%, T2 = 1.12%, and T3 = 8.72%) in both bioclimatic zones. The findings of this study provide significant information on the positive effect of R. tropic UD5 strain peat inoculant application in the improvement of plant growth, development, and yield through the formation of nodules. Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
Show Figures

Figure 1

10 pages, 2396 KiB  
Article
Assessing Liquid Inoculant Formulation of Biofertilizer (Sinorhizobium meliloti) on Growth, Yield, and Nitrogen Uptake of Lucerne (Medicago sativa)
by Auges Gatabazi, Martin Botha and Mireille Asanzi Mvondo-She
Nitrogen 2023, 4(1), 125-134; https://doi.org/10.3390/nitrogen4010009 - 24 Feb 2023
Cited by 2 | Viewed by 1491
Abstract
Lucerne is regarded as the best legume crop for forage to be cultivated in South Africa. It is commonly used to produce good quality hay. It also plays an important role in soil conservation, regeneration, and crop rotation systems as it supplies substantial [...] Read more.
Lucerne is regarded as the best legume crop for forage to be cultivated in South Africa. It is commonly used to produce good quality hay. It also plays an important role in soil conservation, regeneration, and crop rotation systems as it supplies substantial amounts of nitrogen to succeeding crops through symbiotic N2 fixation, which makes it the preferable choice for intensive forage production systems. Fertilizer in liquid inoculant formulations has demonstrated to contribute growth and yield increase for leguminous crops. Therefore, the aim of this paper was to determine the effects of Sinorhizobium meliloti liquid formulation inoculation on the growth, yield, and nitrogen content in lucerne. The strain RF14 (Sinorhizobium meliloti) was collected from the Agricultural Research Council at Roodeplaat (Plant Health and Protection located (East), Pretoria (South Africa). The liquid inoculant contained 6.5 × 109 viable cells mL−1. According to the Kooen–Gieger climatic classification, the experiments were conducted on two different climatic zones. The first site was in Bronkhorspruit (Blesbokfontein farm) in the Gauteng province and the second was in Hartbeesfontein (Rietfontein Farm) in the Northwest province. The results showed that lucerne inoculation with liquid inoculant formulation of Sinorhizobium meliloti significantly increased nodule number, size, growth, and yield in both bioclimatic zones. The significantly increased were compared to the negative control. The Sinorhizobium meliloti inoculant increased nitrogen accumulation in all inoculated treatments compared to the control. The finding of this research provides important information on the impact of rhizobium microbial inoculant application in the improvement of soil fertility through nodule formation. In addition, seed vigor improvement was translated in overall growth and yield increase in lucerne plants. Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
Show Figures

Figure 1

23 pages, 4708 KiB  
Article
Ecosystem Recovery in Progress? Initial Nutrient and Phytoplankton Response to Nitrogen Reduction from Sewage Treatment Upgrade in the San Francisco Bay Delta
by Patricia M. Glibert, Frances P. Wilkerson, Richard C. Dugdale and Alexander E. Parker
Nitrogen 2022, 3(4), 569-591; https://doi.org/10.3390/nitrogen3040037 - 13 Oct 2022
Cited by 1 | Viewed by 1622
Abstract
The San Francisco Bay Delta has been an estuary of low productivity, with causes hypothesized to relate to light limitation, grazing by invasive clams, and polluting levels of NH4+ discharge from a wastewater treatment plant. Suppression of phytoplankton NO3 [...] Read more.
The San Francisco Bay Delta has been an estuary of low productivity, with causes hypothesized to relate to light limitation, grazing by invasive clams, and polluting levels of NH4+ discharge from a wastewater treatment plant. Suppression of phytoplankton NO3 uptake by NH4+ has been well documented, and thus this estuary may have experienced the counterintuitive effect of depressed productivity due to wastewater NH4+ enrichment. In 2021, a new wastewater treatment plant came online, with a ~75% reduction in nitrogen load, and within-plant nitrification, converting the discharge to NO3. The expectation was that this change in nitrogen loading would support healthier phytoplankton production, particularly of diatoms. Here, responses of the post-upgrade Bay Delta phytoplankton were compared to five years of data collected pre-upgrade during the fall season. Indeed, increased chlorophyll a accumulation in the estuary was documented after the implementation of the upgraded wastewater treatment and photophysiological responses indicated comparatively less stress. Major differences in river flow were also observed due to drought conditions during the decade covered by this study. While short-term favorable effects were observed, understanding longer-term ecological feedback interactions that may follow from this major nutrient change under variable flow conditions will require more years of observations. Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
Show Figures

Figure 1

Review

Jump to: Research

24 pages, 848 KiB  
Review
Nitrogen-Fixing Symbiotic Paraburkholderia Species: Current Knowledge and Future Perspectives
by Paula Bellés-Sancho, Chrizelle Beukes, Euan K. James and Gabriella Pessi
Nitrogen 2023, 4(1), 135-158; https://doi.org/10.3390/nitrogen4010010 - 08 Mar 2023
Cited by 3 | Viewed by 3148
Abstract
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of [...] Read more.
A century after the discovery of rhizobia, the first Beta-proteobacteria species (beta-rhizobia) were isolated from legume nodules in South Africa and South America. Since then, numerous species belonging to the Burkholderiaceae family have been isolated. The presence of a highly branching lineage of nodulation genes in beta-rhizobia suggests a long symbiotic history. In this review, we focus on the beta-rhizobial genus Paraburkholderia, which includes two main groups: the South American mimosoid-nodulating Paraburkholderia and the South African predominantly papilionoid-nodulating Paraburkholderia. Here, we discuss the latest knowledge on Paraburkholderia nitrogen-fixing symbionts in each step of the symbiosis, from their survival in the soil, through the first contact with the legumes until the formation of an efficient nitrogen-fixing symbiosis in root nodules. Special attention is given to the strain P. phymatum STM815T that exhibits extraordinary features, such as the ability to: (i) enter into symbiosis with more than 50 legume species, including the agriculturally important common bean, (ii) outcompete other rhizobial species for nodulation of several legumes, and (iii) endure stressful soil conditions (e.g., high salt concentration and low pH) and high temperatures. Full article
(This article belongs to the Special Issue Microbial Nitrogen Cycling)
Show Figures

Figure 1

Back to TopTop