Advanced Nanomaterials for Adsorption Purposes

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Nanoelectronics, Nanosensors and Devices".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 12893

Special Issue Editor

Department of Mechanical Engineering, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan
Interests: nanomaterials; adsorption; porous carbon materials; proton exchange membrane fuel cells; proton exchange membrane water electrolysis
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The accumulation of the molecular species at the surface rather than in the bulk of the solid or liquid is termed adsorption. Through human activities and industrial production arise serious environment issues. Adsorption processes have been well studied in the environmental and sustainable sciences, including wastewater treatment, soil remediation, air pollution control, noise elimination and electromagnetic interference elimination, etc.

During the past few years, there has been a tremendous amount of research on the use of nanomaterials for adsorption processes thanks to their tunable synthesis routes, heterogeneous structures, and outstanding properties. Activated  carbon,  carbon  nanofibers, carbon  nanotubes, graphene, zeolites,  metal–organic frameworks,  and zeolitic  imidazolate  frameworks have been reported as advanced candidates for those purposes.

This Special Issue of Nanomaterials will aim to cover the most recent advances in nanomaterials for adsorption processes, concerning not only their synthesis and characterization, but especially their properties and functions. The format of welcomed articles includes full papers, communications, and reviews.

Prof. Dr. Yu-Chun Chiang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Adsorption
  • Nanomaterial
  • Synthesis
  • Characterization
  • Adsorption capacity
  • Adsorption kinetics
  • Adsorption breakthrough

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 12126 KiB  
Article
Preparation and Characterization of Nano-Fe3O4 and Its Application for C18-Functionalized Magnetic Nanomaterials Used as Chromatographic Packing Materials
by Wen-Xin Liu, Wei-Na Zhou, Shuang Song, Yong-Gang Zhao and Yin Lu
Nanomaterials 2023, 13(6), 1111; https://doi.org/10.3390/nano13061111 - 20 Mar 2023
Cited by 1 | Viewed by 1239
Abstract
A new type of magnetic nanomaterial with Fe3O4 as the core and organic polymer as the shell was synthesized by seed emulsion polymerization. This material not only overcomes the problem of insufficient mechanical strength of the organic polymer, it also [...] Read more.
A new type of magnetic nanomaterial with Fe3O4 as the core and organic polymer as the shell was synthesized by seed emulsion polymerization. This material not only overcomes the problem of insufficient mechanical strength of the organic polymer, it also solves the problem that Fe3O4 is prone to oxidation and agglomeration. In order to make the particle size of Fe3O4 meet the requirement of the seed, the solvothermal method was used to prepare Fe3O4. The effects of the reaction time, amount of solvent, pH value, and polyethylene glycol (PEG) on the particle size of Fe3O4 were investigated. In addition, in order to accelerate the reaction rate, the feasibility of preparing Fe3O4 by microwave was studied. The results showed that under the optimum conditions, the particle size of Fe3O4 could reach 400 nm and had good magnetic properties. After three stages of oleic acid coating, seed emulsion polymerization, and C18 modification, the obtained C18-functionalized magnetic nanomaterials were used for the preparation of the chromatographic column. Under optimal conditions, stepwise elution significantly shortened the elution time of sulfamethyldiazine, sulfamethazine, sulfamethoxypyridazine, and sulfamethoxazole while still achieving a baseline separation. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Figure 1

19 pages, 4740 KiB  
Article
Nitrogen Adsorption and Characteristics of Iron, Cobalt, and Nickel Oxides Impregnated on SBA-15 Mesoporous Silica
by Jiun-Horng Tsai, Ting-Yi Lee and Hung-Lung Chiang
Nanomaterials 2023, 13(6), 1015; https://doi.org/10.3390/nano13061015 - 11 Mar 2023
Cited by 3 | Viewed by 1527
Abstract
Hexagonal SBA-15 mesoporous material was used as a catalytic template for impregnation, with the transition metals Fe, Co, and Ni as catalysts for chemical transformation. Nitrogen adsorption/desorption isotherms, scanning electron microscopy, and transmission electron microscopy were conducted to better understand the physicochemical properties [...] Read more.
Hexagonal SBA-15 mesoporous material was used as a catalytic template for impregnation, with the transition metals Fe, Co, and Ni as catalysts for chemical transformation. Nitrogen adsorption/desorption isotherms, scanning electron microscopy, and transmission electron microscopy were conducted to better understand the physicochemical properties of the metal oxide-impregnated SBA-15. The specific surface area of the original SBA-15 was approximately 680 m2/g, and the abundances of the catalysts impregnated ranged from 2 to 8%, corresponding to specific surface areas of 560–470 m2/g for Fe-SBA-15, 440–340 m2/g for Ni-SBA-15, and 410–340 m2/g for Co-SBA-15. The increase in impregnated metal loadings filled the pores and collapsed the silica walls during the metal oxides impregnation on SBA-15 and calcination procedures, resulting in a decrease in the specific surface area and pore volume of the templates. The results showed that the order of nitrogen adsorbed was SBA-15 > Fe-SBA-15 > Ni-SBA-15 > Co-SBA-15 when the metal loading was 5%. In addition, the metal oxides on SBA-15 increased the wall thickness compared with raw SBA-15. Based on the XRD spectrum analysis, Fe2O3, Co3O4, and NiO were the stable crystals on the Fe-SBA-15, Co-SBA-15, and Ni-SBA-15, respectively. The sequence of the average grain size of metal oxides on SBA-15 was Co-SBA-15 > Fe-SBA-15 > Ni-SBA-15, according to XRD spectra and Scherrer’s equation. Isopropanol could be decomposed by metal oxide-impregnated SBA-15 to form carbon filament materials. Therefore, these materials have the potential to be employed for pollutant removal, catalytic reactions for organic solvent and bio-oil/biomass reforming, and recycling waste into high-value materials. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Figure 1

20 pages, 5060 KiB  
Article
Steam Activation of Acid-Chars for Enhanced Textural Properties and Pharmaceuticals Removal
by Tetiana S. Hubetska, Ana S. Mestre, Natalia G. Kobylinska and Ana P. Carvalho
Nanomaterials 2022, 12(19), 3480; https://doi.org/10.3390/nano12193480 - 05 Oct 2022
Cited by 1 | Viewed by 1397
Abstract
The present work aims to explore steam activation of sisal or glucose-derived acid-chars as an alternative to KOH activation to prepare superactivated carbons, and to assess the adsorption performance of acid-chars and derived activated carbons for pharmaceuticals removal. Acid-chars were prepared from two [...] Read more.
The present work aims to explore steam activation of sisal or glucose-derived acid-chars as an alternative to KOH activation to prepare superactivated carbons, and to assess the adsorption performance of acid-chars and derived activated carbons for pharmaceuticals removal. Acid-chars were prepared from two biomass precursors (sisal and glucose) using various H2SO4 concentrations (13.5 M, 12 M, and 9 M) and further steam-activated at increasing burn-off degrees. Selected materials were tested for the removal of ibuprofen and iopamidol from aqueous solution (kinetic and equilibrium assays) in single-solute conditions. Activated carbons prepared from acid-char carbonized with 13.5 M and 12 M H2SO4 are mainly microporous solids composed of compact rough particles, yielding a maximum surface area and a total pore volume of 1987 m2 g−1 and 0.96 cm3 g−1, respectively. Solid state NMR reveals that steam activation increased the aromaticity degree and amount of C=O functionalities. Steam activation improved the acid-chars adsorption capacity for ibuprofen from 20-65 mg g−1 to higher than 280 mg g−1, leading to fast adsorption kinetics (15–20 min). The maximum adsorption capacities of selected activated samples for ibuprofen and iopamidol were 323 and 1111 mg g−1, respectively. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Figure 1

14 pages, 1786 KiB  
Article
Unique Interaction between Layered Black Phosphorus and Nitrogen Dioxide
by Jingjing Zhao, Xuejiao Zhang, Qing Zhao, Xue-Feng Yu, Siyu Zhang and Baoshan Xing
Nanomaterials 2022, 12(12), 2011; https://doi.org/10.3390/nano12122011 - 10 Jun 2022
Cited by 4 | Viewed by 1490
Abstract
Air pollution caused by acid gases (NO2, SO2) or greenhouse gases (CO2) is an urgent environmental problem. Two-dimensional nanomaterials exhibit exciting application potential in air pollution control, among which layered black phosphorus (LBP) has superior performance and [...] Read more.
Air pollution caused by acid gases (NO2, SO2) or greenhouse gases (CO2) is an urgent environmental problem. Two-dimensional nanomaterials exhibit exciting application potential in air pollution control, among which layered black phosphorus (LBP) has superior performance and is environmentally friendly. However, the current interaction mechanism of LBP with hazardous gases is contradictory to experimental observations, largely impeding development of LBP-based air pollution control nanotechnologies. Here, interaction mechanisms between LBP and hazardous gases are unveiled based on density functional theory and experiments. Results show that NO2 is different from other gases, as it can react with unsaturated defects of LBP, resulting in oxidation of LBP and reduction of NO2. Computational results indicate that the redox is initiated by p orbital hybridization between one oxygen atom of NO2 and the phosphorus atom carrying a dangling single electron in a defect’s center. For NO, the interaction mechanism is chemisorption on unsaturated LBP defects, whereas for SO2, NH3, CO2 or CO, the interaction is dominated by van der Waals forces (57–82% of the total interaction). Experiments confirmed that NO2 can oxidize LBP, yet other gases such as CO2 cannot. This study provides mechanistic understanding in advance for developing novel nanotechnologies for selectively monitoring or treating gas pollutants containing NO2. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Graphical abstract

11 pages, 4071 KiB  
Article
The Effect of Agglomeration on Arsenic Adsorption Using Iron Oxide Nanoparticles
by William R. Diephuis, Anna L. Molloy, Lindsey L. Boltz, Tristan B. Porter, Anthony Aragon Orozco, Reina Duron, Destiny Crespo, Luke J. George, Andrew D. Reiffer, Gabriela Escalera, Arash Bohloul, Carolina Avendano, Vicki L. Colvin and Natalia I. Gonzalez-Pech
Nanomaterials 2022, 12(9), 1598; https://doi.org/10.3390/nano12091598 - 09 May 2022
Cited by 11 | Viewed by 2126
Abstract
The presence of arsenic in groundwater and other drinking water sources presents a notable public health concern. Although the utilization of iron oxide nanomaterials as arsenic adsorbents has shown promising results in batch experiments, few have succeeded in using nanomaterials in filter setups. [...] Read more.
The presence of arsenic in groundwater and other drinking water sources presents a notable public health concern. Although the utilization of iron oxide nanomaterials as arsenic adsorbents has shown promising results in batch experiments, few have succeeded in using nanomaterials in filter setups. In this study, the performance of nanomaterials, supported on sand, was first compared for arsenic adsorption by conducting continuous flow experiments. Iron oxide nanoparticles (IONPs) were prepared with different synthetic methodologies to control the degree of agglomeration. IONPs were prepared by thermal decomposition or coprecipitation and compared with commercially available IONPs. Electron microscopy was used to characterize the degree of agglomeration of the pristine materials after deposition onto the sand. The column experiments showed that IONPs that presented less agglomeration and were well dispersed over the sand had a tendency to be released during water treatment. To overcome this implementation challenge, we proposed the use of clusters of iron oxide nanoparticles (cIONPs), synthesized by a solvothermal methodology, which was explored. An isotherm experiment was also conducted to determine the arsenic adsorption capacities of the iron oxide nanomaterials. cIONPs showed higher adsorption capacities (121.4 mg/g) than the other IONPs (11.1, 6.6, and 0.6 mg/g for thermal decomposition, coprecipitation, and commercially available IONPs, respectively), without the implementation issues presented by IONPs. Our results show that the use of clusters of nanoparticles of other compositions opens up the possibilities for multiple water remediation applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Graphical abstract

18 pages, 4186 KiB  
Article
Preparation of Zeolitic Imidazolate Framework-8-Based Nanofiber Composites for Carbon Dioxide Adsorption
by Yu-Chun Chiang and Wei-Ting Chin
Nanomaterials 2022, 12(9), 1492; https://doi.org/10.3390/nano12091492 - 28 Apr 2022
Cited by 4 | Viewed by 2399
Abstract
In this study, polyacrylonitrile (PAN)-based activated nanofiber composites, which were embedded inside zeolitic imidazolate framework-8 (ZIF-8) crystals or ZIF-8-derived carbons (ZDC-850), were fabricated using an electrospinning process, to serve as CO2 adsorbents. The adsorbents were characterized using various techniques. The degree of [...] Read more.
In this study, polyacrylonitrile (PAN)-based activated nanofiber composites, which were embedded inside zeolitic imidazolate framework-8 (ZIF-8) crystals or ZIF-8-derived carbons (ZDC-850), were fabricated using an electrospinning process, to serve as CO2 adsorbents. The adsorbents were characterized using various techniques. The degree of crystallinity of ZDC-850 totally changed compared to that of ZIF-8. For nanofiber composites, the timing of the ligand decomposition of ZIF-8 significantly affected the material properties. The Zn metals in the ZIF-8/PAN or ZDC-850/PAN could be embedded and protected by the PAN fibers from excess volatilization in the following treatments: ZIF-8 had significant pore volumes in the range of 0.9–1.3 nm, but ZDC-850 and ZIF-8/PAN exhibited a distinct peak at approximately 0.5 nm. The CO2 adsorption capacities at 25 °C and 1 atm followed the order: ZIF-8/PAN (4.20 mmol/g) > ZDC-850 (3.50 mmol/g) > ZDC-850/PAN (3.38 mmol/g) > PAN (2.91 mmol/g) > ZIF-8 (0.88 mmol/g). The slope in the log–linear plot of isosteric heat of adsorption was highly associated with CO2 adsorption performance. Under 1 atm at 25 °C, for Zn metal active sites inside the pores, the pores at approximately 0.5 nm and in C-N (amines) groups could promote CO2 adsorption. At low CO2 pressures, for a good CO2 adsorbent, the carbon content in the adsorbent should be higher than a threshold value. Under this condition, the percentage of ultra-micropore and micropore volumes, as well as the functional groups, such as the quaternary or protonated N (amines), N=C (imines or pyridine-type N), C-OH, and -COOH groups, should be considered as significant factors for CO2 adsorption. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Figure 1

13 pages, 32146 KiB  
Article
Multicycle Performance of CaTiO3 Decorated CaO-Based CO2 Adsorbent Prepared by a Versatile Aerosol Assisted Self-Assembly Method
by Ren-Wei Chang, Chin-Jung Lin and Ya-Hsuan Liou
Nanomaterials 2021, 11(12), 3188; https://doi.org/10.3390/nano11123188 - 24 Nov 2021
Cited by 1 | Viewed by 1467
Abstract
Calcium oxide (CaO) is a promising adsorbent to separate CO2 from flue gas. However, with cycling of carbonation/decarbonation at high temperature, the serious sintering problem causes its capture capacity to decrease dramatically. A CaTiO3-decorated CaO-based CO2 adsorbent was prepared [...] Read more.
Calcium oxide (CaO) is a promising adsorbent to separate CO2 from flue gas. However, with cycling of carbonation/decarbonation at high temperature, the serious sintering problem causes its capture capacity to decrease dramatically. A CaTiO3-decorated CaO-based CO2 adsorbent was prepared by a continuous and simple aerosol-assisted self-assembly process in this work. Results indicated that CaTiO3 and CaO formed in the adsorbent, whereas CaO gradually showed a good crystalline structure with increased calcium loading. Owing to the high thermal stability of CaTiO3, it played a role in suppressing the sintering effect and maintaining repeated high-temperature carbonation and decarbonation processes. When the calcium and titanium ratio was 3, the CO2 capture capacity was as large as 7 mmol/g with fast kinetics. After 20 cycles under mild regeneration conditions (700 °C, N2), the performance of CO2 capture of CaTiO3-decorated CaO-based adsorbent nearly unchanged. Even after 10 cycles under severe regeneration conditions (920 °C, CO2), the performance of CO2 capture still remained nearly 70% compared to the first cycle. The addition of CaTiO3 induced good and firm CaO dispersion on its surface. Excellent kinetics and stability were evident. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Adsorption Purposes)
Show Figures

Graphical abstract

Back to TopTop