Micro- and Nanostructured Biomaterials for Biomedical Applications and Regenerative Medicine

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Biology and Medicines".

Deadline for manuscript submissions: closed (20 February 2024) | Viewed by 29926

Special Issue Editors


E-Mail Website
Guest Editor
Life Science Department, University of Modena and Reggio Emilia, Modena, Italy
Interests: micro- and nanostructured biointerfaces; neural devices; organic bioelectronics; conductive polymers
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
Interests: stem cells; regenerative medicine; biomaterials; dental pulp stem cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Over the past 20 years, research on innovative nanomaterials has increased significantly in the fields of bioengineering, biomedicine, and regenerative medicine. mThis is mainly due to the unique characteristics that can be provided by multifunctional micro- and nanostructured biomaterials. Electroactive, magnetic, and antibacterial micro- and nanostructured materials, multifunctional 3D scaffolds and smart implant coatings are only part of the  partially still unexplored picture of nanomaterial-based applications.

In fact, advanced biomaterials with defined micro- and nanotopography surface chemistry, electrical, mechanical and thermal properties, can be adapted to create nanoscale environmental conditions favorable for stem cell adhesion, proliferation, and differentiation in a modulated manner to promote optimal implant or device integration and guide regeneration processes.

The goal of this Special Issue is to collect and publish articles that emphasize the effect of multifunctional properties of biomaterials at the micro- and nanoscale in order to better characterize the efficiency and functionality of novel biomaterials and devices.

Dr. Michele Bianchi
Dr. Carnevale Gianluca
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • electroactive 3D hydrogels and scaffolds
  • micro- and nanopatterned/modulated biomaterials
  • nanostructured coatings and thin films
  • antibacterial nanomaterials and devices
  • bioactive coatings, implants and prosthetic devices
  • nanomaterials/nanoparticles-cell interactions
  • nanoparticles for biomedical imaging and therapy
  • multiscale scaffolds for regenerative medicine
  • nanoporous electrospun scaffolds
  • bioinspired micro/nanomaterials and devices
  • stem cells and biomaterials
  • drug delivery
  • novel micro- and nanofabrication tools in tissue engineering
  • new approaches for characterizing the properties and safety of nanomaterials

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

17 pages, 3141 KiB  
Article
Zirconia Hybrid Dental Implants Influence the Biological Properties of Neural Crest-Derived Mesenchymal Stromal Cells
by Nadia Tagliaferri, Alessandra Pisciotta, Giulia Orlandi, Giulia Bertani, Rosanna Di Tinco, Laura Bertoni, Paola Sena, Alice Lunghi, Michele Bianchi, Federica Veneri, Pierantonio Bellini, Jessika Bertacchini, Enrico Conserva, Ugo Consolo and Gianluca Carnevale
Nanomaterials 2024, 14(5), 392; https://doi.org/10.3390/nano14050392 - 20 Feb 2024
Viewed by 774
Abstract
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, [...] Read more.
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs’ biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications. Full article
Show Figures

Figure 1

20 pages, 3438 KiB  
Article
Neuroprotective Effect of Solid Lipid Nanoparticles Loaded with Lepidium sativum (L.) Seed Bioactive Components Enhance Bioavailability and Wnt/β-Catenin/Camk-II Signaling Cascade in SH-SY5Y Neuroblastoma Cells
by Nada Al-Saran, Pandurangan Subash-Babu, Laila Naif Al-Harbi, Bahauddeen M. Alrfaei and Ali A. Alshatwi
Nanomaterials 2024, 14(2), 199; https://doi.org/10.3390/nano14020199 - 16 Jan 2024
Viewed by 964
Abstract
The primary pathological hallmark of Alzheimer’s disease (AD) is the formation and accumulation of neurofibrillary tangles and plaques, which result from the aggregation of amyloid-β (Aβ) induced by oxidative stress. The effectiveness of Alzheimer’s disease (AD) therapeutics significantly hinges on [...] Read more.
The primary pathological hallmark of Alzheimer’s disease (AD) is the formation and accumulation of neurofibrillary tangles and plaques, which result from the aggregation of amyloid-β (Aβ) induced by oxidative stress. The effectiveness of Alzheimer’s disease (AD) therapeutics significantly hinges on the drug’s bioavailability and its ability to penetrate neuronal cells. The current investigation was designed as a first attempt to examine bio-fabricated Lepidium sativum (LS) seed-extract-loaded solid lipid nanoparticles (SLNps) to increase bioavailability and bioefficacy for the prevention of undifferentiated SH-SY5Y neuronal cells from oxidative stress induced by H2O2 and amyloid-β peptide (Aβ,1-42). The SLNps were fabricated using LS extract as a water phase and hyaluronic acid and chia seed fatty acids as a lipid phase, then confirmed and characterized using UV, Zeta size, and SEM methods. The biological safety of synthesized LS-SLNps has been determined using MTT assay and PI staining (nuclear damage) in hMSCs. LS-SLNp-pretreated neuronal cells were induced with oxidative stress and 2 µM of beta-amyloid (Aβ,1-42) fibrils; furthermore, the neuroprotective potential of LS-SLNps was determined through the quenching of oxidative stress, enhancing mitochondrial oxidative capacity, and immunoregulatory potential. Observations found that cells treated with both H2O2 and beta-amyloid (Aβ,1-42) fibrils showed decreased neuronal cell growth, nuclear damage, and mitochondrial membrane potential due to oxidative stress. However, SH-SY5Y cells pretreated with LS-SLNps for 24 h showed an increase in cell proliferation with uniform morphology and increased mitochondrial membrane potential compared to cells pretreated with LS alone. Gene expression analysis found that LS-SLNps increased the expression of Wnt 3a and 5a, which stimulated the canonical, β-catenin, and non-canonical Camk-II expressions of nerve cell growth factors, confirming the molecular-level reversal of neurodegenerative diseases. Full article
Show Figures

Graphical abstract

19 pages, 8072 KiB  
Article
Effects of Temperature on the Physicochemical Properties of Bioinspired, Synthetic, and Biogenic Hydroxyapatites Calcinated under the Same Thermal Conditions
by Omar M. Gomez-Vazquez, Leon R. Bernal-Alvarez, Jesus I. Velasquez-Miranda and Mario E. Rodriguez-Garcia
Nanomaterials 2023, 13(17), 2385; https://doi.org/10.3390/nano13172385 - 22 Aug 2023
Cited by 1 | Viewed by 1071
Abstract
The paper studies the changes in physicochemical properties of three types of hydroxyapatite (HAp): HAp-HB (from bovine sources), HAp-SC (chemically synthesized), and bioinspired HAp-SE (synthesized using eggshells) calcined under identical thermally controlled conditions from room temperature to 400, 500, 600, 650, 680, 700, [...] Read more.
The paper studies the changes in physicochemical properties of three types of hydroxyapatite (HAp): HAp-HB (from bovine sources), HAp-SC (chemically synthesized), and bioinspired HAp-SE (synthesized using eggshells) calcined under identical thermally controlled conditions from room temperature to 400, 500, 600, 650, 680, 700, 720, 750, 800, and 900 °C in furnace air. The thermogravimetric analysis (TGA) indicated distinct thermal transitions and coalescence phenomena at different temperatures for these samples due to their sources and mineral composition differences. Inductively coupled plasma (ICP) showed that HAp-H (human), HAp-HB (bovine), and HAp-SE (bioinspired) have similar Ca, P, and Mg contents. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the coalescence phenomena increased in the crystallite size as the temperature increased. X-Ray diffraction (XRD) patterns revealed partial phase changes in the bioinspired sample (HAp-SE) and crystallite growth in all samples, resulting in full width at the half maximum (FWHM) and peak position alterations. Fourier-transform infrared spectroscopy (FTIR) showed that HAp-SE exhibited a partial phase change due to dehydroxylation and the presence of functional groups (PO43−, OH, and CO32−) with varying vibrational modes influenced by the obtained method and calcination temperature. Raman spectra of the HAp-SE samples exhibited fluorescence at 400 °C and revealed vibrational modes of surface P-O. It observed the bands of the internal phosphates of the crystal lattice and shifts in the band positions at higher temperatures indicated phosphorus interacting with carbon and oxygen, triggering dehydroxylation. Full article
Show Figures

Graphical abstract

14 pages, 3484 KiB  
Article
Study of Gold Nanoparticles Conjugated with SARS-CoV-2 S1 Spike Protein Fragments
by Žiga Jelen, Janez Kovač and Rebeka Rudolf
Nanomaterials 2023, 13(15), 2160; https://doi.org/10.3390/nano13152160 - 25 Jul 2023
Viewed by 1105
Abstract
This study reports on the successful conjugation of SARS-CoV-2 S1 spike protein fragments with gold nanoparticles (AuNPs) that were synthesised with Ultrasonic Spray Pyrolysis (USP). This method enables the continuous synthesis of AuNPs with a high degree of purity, round shapes, and the [...] Read more.
This study reports on the successful conjugation of SARS-CoV-2 S1 spike protein fragments with gold nanoparticles (AuNPs) that were synthesised with Ultrasonic Spray Pyrolysis (USP). This method enables the continuous synthesis of AuNPs with a high degree of purity, round shapes, and the formation of a surface that allows various modifications. The conjugation mechanism of USP synthesized AuNPs with SARS-CoV-2 S1 spike protein fragments was investigated. A gel electrophoresis experiment confirmed the successful conjugation of AuNPs with SARS-CoV-2 S1 fragments indirectly. X-ray Photoelectron Spectroscopy (XPS) analysis confirmed the presence of characteristic O1s and N1s peaks, which indicated that specific binding between AuNPs and SARS-CoV-2 S1 spike protein fragments takes place via a peptide bond formed with the citrate stabiliser. This bond is coordinated to the AuNP’s surface and the N-terminals of the protein, with the conjugate displaying the expected response within a prototype LFIA test. This study will help in better understanding the behaviour of AuNPs synthesised with USP and their potential use as sensors in colorimetric or electrochemical sensors and LFIA tests. Full article
Show Figures

Graphical abstract

24 pages, 5450 KiB  
Article
Bioinspired Hierarchical Carbon Structures as Potential Scaffolds for Wound Healing and Tissue Regeneration Applications
by Soham D. Parikh, Wenhu Wang, M. Tyler Nelson, Courtney E. W. Sulentic and Sharmila M. Mukhopadhyay
Nanomaterials 2023, 13(11), 1791; https://doi.org/10.3390/nano13111791 - 02 Jun 2023
Cited by 1 | Viewed by 3225
Abstract
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization [...] Read more.
Engineered bio-scaffolds for wound healing provide an attractive treatment option for tissue engineering and traumatic skin injuries since they can reduce dependence on donors and promote faster repair through strategic surface engineering. Current scaffolds present limitations in handling, preparation, shelf life, and sterilization options. In this study, bio-inspired hierarchical all-carbon structures comprising carbon nanotube (CNT) carpets covalently bonded to flexible carbon fabric have been investigated as a platform for cell growth and future tissue regeneration applications. CNTs are known to provide guidance for cell growth, but loose CNTs are susceptible to intracellular uptake and are suspected to cause in vitro and in vivo cytotoxicity. This risk is suppressed in these materials due to the covalent attachment of CNTs on a larger fabric, and the synergistic benefits of nanoscale and micro-macro scale architectures, as seen in natural biological materials, can be obtained. The structural durability, biocompatibility, tunable surface architecture, and ultra-high specific surface area of these materials make them attractive candidates for wound healing. In this study, investigations of cytotoxicity, skin cell proliferation, and cell migration were performed, and results indicate promise in both biocompatibility and directed cell growth. Moreover, these scaffolds provided cytoprotection against environmental stressors such as Ultraviolet B (UVB) rays. It was seen that cell growth could also be tailored through the control of CNT carpet height and surface wettability. These results support future promise in the design of hierarchical carbon scaffolds for strategic wound healing and tissue regeneration applications. Full article
Show Figures

Graphical abstract

17 pages, 34147 KiB  
Article
Bioactive Composite Methacrylated Gellan Gum for 3D-Printed Bone Tissue-Engineered Scaffolds
by Ugo D’Amora, Alfredo Ronca, Stefania Scialla, Alessandra Soriente, Paola Manini, Jun Wei Phua, Christoph Ottenheim, Alessandro Pezzella, Giovanna Calabrese, Maria Grazia Raucci and Luigi Ambrosio
Nanomaterials 2023, 13(4), 772; https://doi.org/10.3390/nano13040772 - 19 Feb 2023
Cited by 5 | Viewed by 1927
Abstract
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally [...] Read more.
Gellan gum (GG) was chemically modified with methacrylic moieties to produce a photocrosslinkable biomaterial ink, hereinafter called methacrylated GG (GGMA), with improved physico-chemical properties, mechanical behavior and stability under physiological conditions. Afterwards, GGMA was functionalized by incorporating two different bioactive compounds, a naturally derived eumelanin extracted from the black soldier fly (BSF-Eumel), or hydroxyapatite nanoparticles (HAp), synthesized by the sol–gel method. Different ink formulations based on GGMA (2 and 4% (w/v)), BSF-Eumel, at a selected concentration (0.3125 mg/mL), or HAp (10 and 30% wHAp/wGGMA) were developed and processed by three-dimensional (3D) printing. All the functionalized GGMA-based ink formulations allowed obtaining 3D-printed GGMA-based scaffolds with a well-organized structure. For both bioactive signals, the scaffolds with the highest GGMA concentration (4% (w/v)) and the highest percentage of infill (45%) showed the best performances in terms of morphological and mechanical properties. Indeed, these scaffolds showed a good structural integrity over 28 days. Given the presence of negatively charged groups along the eumelanin backbone, scaffolds consisting of GGMA/BSF-Eumel demonstrated a higher stability. From a mechanical point of view, GGMA/BSF-Eumel scaffolds exhibited values of storage modulus similar to those of GGMA ones, while the inclusion of HAp at 30% (wHAp/wGGMA) led to a storage modulus of 32.5 kPa, 3.5-fold greater than neat GGMA. In vitro studies proved the capability of the bioactivated 3D-printed scaffolds to support 7F2 osteoblast cell growth and differentiation. BSF-Eumel and HAp triggered a different time-dependent physiological response in the osteoblasts. Specifically, while the ink with BSF-Eumel acted as a stimulus towards cell proliferation, reaching the highest value at 14 days, a higher expression of alkaline phosphatase activity was detected for scaffolds consisting of GGMA and HAp. The overall findings demonstrated the possible use of these biomaterial inks for 3D-printed bone tissue-engineered scaffolds. Full article
Show Figures

Graphical abstract

22 pages, 11152 KiB  
Article
Tailoring Heat Transfer and Bactericidal Response in Multifunctional Cotton Composites
by Lilian Pérez Delgado, Adriana Paola Franco-Bacca, Fernando Cervantes-Alvarez, Elizabeth Ortiz-Vazquez, Jesús Manuel Ramon-Sierra, Victor Rejon, María Leopoldina Aguirre-Macedo, Juan José Alvarado-Gil and Geonel Rodríguez-Gattorno
Nanomaterials 2023, 13(3), 463; https://doi.org/10.3390/nano13030463 - 23 Jan 2023
Viewed by 8534
Abstract
Through the execution of scientific innovations, “smart materials” are shaping the future of technology by interacting and responding to changes in our environment. To make this a successful reality, proper component selection, synthesis procedures, and functional active agents must converge in practical and [...] Read more.
Through the execution of scientific innovations, “smart materials” are shaping the future of technology by interacting and responding to changes in our environment. To make this a successful reality, proper component selection, synthesis procedures, and functional active agents must converge in practical and resource-efficient procedures to lay the foundations for a profitable and sustainable industry. Here we show how the reaction time, temperature, and surface stabilizer concentration impact the most promising functional properties in a cotton-based fabric coated with silver nanoparticles (AgNPs@cotton), i.e., the thermal and bactericidal response. The coating quality was characterized and linked to the selected synthesis parameters and correlated by a parallel description of “proof of concept” experiments for the differential heat transfer (conversion and dissipation properties) and the bactericidal response tested against reference bacteria and natural bacterial populations (from a beach, cenote, and swamp of the Yucatan Peninsula). The quantification of functional responses allowed us to establish the relationship between (i) the size and shape of the AgNPs, (ii) the collective response of their agglomerates, and (iii) the thermal barrier role of a surface modifier as PVP. The procedures and evaluations in this work enable a spectrum of synthesis coordinates that facilitate the formulation of application-modulated fabrics, with grounded examples reflected in “smart packaging”, “smart clothing”, and “smart dressing”. Full article
Show Figures

Graphical abstract

19 pages, 4925 KiB  
Article
Conquering Cancer Multi-Drug Resistance Using Curcumin and Cisplatin Prodrug-Encapsulated Mesoporous Silica Nanoparticles for Synergistic Chemo- and Photodynamic Therapies
by Prabhakar Busa, Ranjith Kumar Kankala, Jin-Pei Deng, Chen-Lun Liu and Chia-Hung Lee
Nanomaterials 2022, 12(20), 3693; https://doi.org/10.3390/nano12203693 - 21 Oct 2022
Cited by 8 | Viewed by 1900
Abstract
Recently, the development of anti-cancer approaches using different physical or chemical pathways has shifted from monotherapy to synergistic therapy, which can enhance therapeutic effects. As a result, enormous efforts have been devoted to developing various delivery systems encapsulated with dual agents for synergistic [...] Read more.
Recently, the development of anti-cancer approaches using different physical or chemical pathways has shifted from monotherapy to synergistic therapy, which can enhance therapeutic effects. As a result, enormous efforts have been devoted to developing various delivery systems encapsulated with dual agents for synergistic effects and to combat cancer cells acquired drug resistance. In this study, we show how to make Institute of Bioengineering and Nanotechnology (IBN)-1-based mesoporous silica nanoparticles (MSNs) for multifunctional drug delivery to overcome drug resistance cancer therapy. Initially, curcumin (Cur)-embedded IBN-1 nanocomposites (IBN-1-Cur) are synthesized in a simple one-pot co-condensation and then immobilized with the prodrug of Cisplatin (CP) on the carboxylate-modified surface (IBN-1-Cur-CP) to achieve photodynamic therapy (PDT) and chemotherapy in one platform, respectively, in the fight against multidrug resistance (MDR) of MES-SA/DX5 cancer cells. The Pluronic F127 triblock copolymer, as the structure-directing agent, in nanoparticles acts as a p-glycoprotein (p-gp) inhibitor. These designed hybrid nanocomposites with excellent structural properties are efficiently internalized by the endocytosis and successfully deliver Cur and CP molecules into the cytosol. Furthermore, the presence of Cur photosensitizer in the nanochannels of MSNs resulted in increased levels of cellular reactive oxygen species (ROS) under light irradiation. Thus, IBN-1-Cur-CP showed excellent anti-cancer therapy in the face of MES-SA/DX5 resistance cancer cells, owing to the synergistic effects of chemo- and photodynamic treatment. Full article
Show Figures

Figure 1

17 pages, 4767 KiB  
Article
A Closed-Loop Autologous Erythrocyte-Mediated Delivery Platform for Diabetic Nephropathy Therapy
by Lingzi Feng, Xinzhong Huang, Jia Li, Chao Chen, Yidan Ma, Haiying Gu, Yong Hu and Donglin Xia
Nanomaterials 2022, 12(20), 3556; https://doi.org/10.3390/nano12203556 - 11 Oct 2022
Cited by 1 | Viewed by 1156
Abstract
Failure to control blood glucose level (BGL) may aggravate oxidative stress and contribute to the development of diabetic nephropathy (DN). Using erythrocytes (ERs) as the carriers, a smart self-regulatory insulin (INS) release system was constructed to release INS according to changes in BGLs [...] Read more.
Failure to control blood glucose level (BGL) may aggravate oxidative stress and contribute to the development of diabetic nephropathy (DN). Using erythrocytes (ERs) as the carriers, a smart self-regulatory insulin (INS) release system was constructed to release INS according to changes in BGLs to improve patients’ compliance and health. To overcome the limited sources of ERs and decrease the risk of transmitting infections, we developed an in vitro, closed-loop autologous ER-mediated delivery (CAER) platform, based on a commercial hemodialysis instrument modified with a glucose-responsive ER-based INS delivery system (GOx-INS@ER). After the blood was drained via a jugular vein cannula, some of the blood was pumped into the CAER platform. The INS was packed inside the autologous ERs in the INS reactor, and then their surface was modified with glucose oxidase (GOx), which acts as a glucose-activated switch. In vivo, the CAER platform showed that the BGL responsively controlled INS release in order to control hyperglycemia and maintain the BGL in the normal range for up to 3 days; plus, there was good glycemic control without the added burden of hemodialysis in DN rabbits. These results demonstrate that this closed-loop extracorporeal hemodialysis platform provides a practical approach for improving diabetes management in DN patients. Full article
Show Figures

Graphical abstract

17 pages, 5640 KiB  
Article
Silver Nanoparticles from Annona muricata Peel and Leaf Extracts as a Potential Potent, Biocompatible and Low Cost Antitumor Tool
by María G. González-Pedroza, Liliana Argueta-Figueroa, René García-Contreras, Yaiza Jiménez-Martínez, Eduardo Martínez-Martínez, Saúl A. Navarro-Marchal, Juan A. Marchal, Raúl A. Morales-Luckie and Houria Boulaiz
Nanomaterials 2021, 11(5), 1273; https://doi.org/10.3390/nano11051273 - 12 May 2021
Cited by 20 | Viewed by 4029
Abstract
Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for [...] Read more.
Cancer is one of the most prevalent diseases in the world and requires new therapies for its treatment. In this context, the biosynthesis of silver nanoparticles (AgNPs) has been developed to treat different types of tumors. The Annona muricata plant is known for having anticancer activity. Its main compounds present in the leaves, stems and skin, allowing for its use as reducing agents. In this manuscript, AgNPs with leaf extract (AgNPs-LE) and fruit peel extract (AgNPs-PE) of A. muricata were biosynthesized obtaining an average nanoparticle diameter sizes smaller than 50 nm, being 19.63 ± 3.7 nm and 16.56 ± 4.1 nm, and with a surface plasmonic resonance (SPR) at 447 and 448 nm, respectively. The lactone functional group present in the LE and PE extracts was identified by the FTIR technique. The behavior and antiproliferation activity of AgNPs-LE and AgNPs-PE were evaluated in breast, colon and melanoma cancer cell lines. Our results showed that Annona muricata fruit peel, which is a waste product, has an antitumor effect more potent than leaf extract. This difference is maintained with AgNPs where the destruction of cancer cells was, for the first time, achieved using concentrations that do not exceed 3 μg/mL with a better therapeutic index in the different tumor strains. In conclusion, we present a low-cost one-step experimental setup to generate AgNPs-PE whose in-vitro biocompatibility and powerful therapeutic effect make it a very attractive tool worth exploiting. Full article
Show Figures

Figure 1

Review

Jump to: Research, Other

15 pages, 968 KiB  
Review
Application of Zeolites and Zeolitic Imidazolate Frameworks in Dentistry—A Narrative Review
by Laura Jiaxuan Li, Chun-Hung Chu and Ollie Yiru Yu
Nanomaterials 2023, 13(22), 2973; https://doi.org/10.3390/nano13222973 - 18 Nov 2023
Viewed by 1728
Abstract
Zeolites and zeolitic imidazolate frameworks (ZIFs) are crystalline aluminosilicates with porous structure, which are closely linked with nanomaterials. They are characterized by enhanced ion exchange capacity, physical–chemical stability, thermal stability and biocompatibility, making them a promising material for dental applications. This review aimed [...] Read more.
Zeolites and zeolitic imidazolate frameworks (ZIFs) are crystalline aluminosilicates with porous structure, which are closely linked with nanomaterials. They are characterized by enhanced ion exchange capacity, physical–chemical stability, thermal stability and biocompatibility, making them a promising material for dental applications. This review aimed to provide an overview of the application of zeolites and ZIFs in dentistry. The common zeolite compounds for dental application include silver zeolite, zinc zeolite, calcium zeolite and strontium zeolite. The common ZIFs for dental application include ZIF-8 and ZIF-67. Zeolites and ZIFs have been employed in various areas of dentistry, such as restorative dentistry, endodontics, prosthodontics, implantology, periodontics, orthodontics and oral surgery. In restorative dentistry, zeolites and ZIFs are used as antimicrobial additives in dental adhesives and restorative materials. In endodontics, zeolites are used in root-end fillings, root canal irritants, root canal sealers and bone matrix scaffolds for peri-apical diseases. In prosthodontics, zeolites can be incorporated into denture bases, tissue conditioners, soft denture liners and dental prostheses. In implantology, zeolites and ZIFs are applied in dental implants, bone graft materials, bone adhesive hydrogels, drug delivery systems and electrospinning. In periodontics, zeolites can be applied as antibacterial agents for deep periodontal pockets, while ZIFs can be embedded in guided tissue regeneration membranes and guided bone regeneration membranes. In orthodontics, zeolites can be applied in orthodontic appliances. Additionally, for oral surgery, zeolites can be used in oral cancer diagnostic marker membranes, maxillofacial prosthesis silicone elastomer and tooth extraction medicines, while ZIFs can be incorporated to osteogenic glue or used as a carrier for antitumour drugs. In summary, zeolites have a broad application in dentistry and are receiving more attention from clinicians and researchers. Full article
Show Figures

Figure 1

18 pages, 2932 KiB  
Review
Recent Advances in DNA Nanomaterials
by Incherah Bekkouche, Maria N. Kuznetsova, Dovlet T. Rejepov, Alexandre A. Vetcher and Alexander Y. Shishonin
Nanomaterials 2023, 13(17), 2449; https://doi.org/10.3390/nano13172449 - 29 Aug 2023
Cited by 1 | Viewed by 1236
Abstract
Applications of DNA-containing nanomaterials (DNA-NMs) in science and technology are currently attracting increasing attention in the fields of medicine, environment, engineering, etc. Such objects have become important for various branches of science and industries due to their outstanding characteristics such as small size, [...] Read more.
Applications of DNA-containing nanomaterials (DNA-NMs) in science and technology are currently attracting increasing attention in the fields of medicine, environment, engineering, etc. Such objects have become important for various branches of science and industries due to their outstanding characteristics such as small size, high controllability, clustering actions, and strong permeability. For these reasons, DNA-NMs deserve a review with respect to their recent advancements. On the other hand, precise cluster control, targeted drug distribution in vivo, and cellular micro-nano operation remain as problems. This review summarizes the recent progress in DNA-NMs and their crossover and integration into multiple disciplines (including in vivo/in vitro, microcircles excisions, and plasmid oligomers). We hope that this review will motivate relevant practitioners to generate new research perspectives and boost the advancement of nanomanipulation. Full article
Show Figures

Figure 1

Other

Jump to: Research, Review

9 pages, 9189 KiB  
Brief Report
Chemokine-Decorated Nanoparticles Target Specific Subpopulations of Primary Blood Mononuclear Leukocytes
by Anissa Pisani, Roberto Donno, Giulio Valenti, Pier Paolo Pompa, Nicola Tirelli and Giuseppe Bardi
Nanomaterials 2022, 12(20), 3560; https://doi.org/10.3390/nano12203560 - 11 Oct 2022
Cited by 2 | Viewed by 1408
Abstract
Specific cell targeting to deliver nanoparticles can be achieved by tailored modifications of the material surface with chemical moieties. The selection of the cell targets can be optimized by covering the nanoparticle with molecules, the receptor expression of which is restricted to particular [...] Read more.
Specific cell targeting to deliver nanoparticles can be achieved by tailored modifications of the material surface with chemical moieties. The selection of the cell targets can be optimized by covering the nanoparticle with molecules, the receptor expression of which is restricted to particular cell subsets. Chemokines perform their biological action through 7-TM Gi-protein-coupled receptors differently expressed in all tissues. We decorated the surface of biocompatible polymer nanoparticles with full-length CCL5, an inflammatory chemokine that attracts leukocytes by binding CCR5, which is highly expressed in blood-circulating monocytes. Our observations showed that CCL5 functionalization does not affect the nanoparticle biocompatibility. Notably, CCL5 NPs delivered to PBMCs are selectively internalized by CCR5+ monocytes but not by CCR5- lymphocytes. The efficacy of PBMC subpopulation targeting by chemokine-decorated nanoparticles establishes an easy-to-use functionalization for specific leukocyte delivery. Full article
Show Figures

Figure 1

Back to TopTop