molecules-logo

Journal Browser

Journal Browser

Plant Bioactive Compounds: Extraction, Identification and Biological Activities

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 May 2023) | Viewed by 62350

Special Issue Editors


E-Mail Website
Guest Editor
MED— Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Interests: plant bioactive compounds; bioactivity; essential oils; phenolic compounds; secondary metabolites; plant tissue culture; extraction; green solvents
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
MED – Mediterranean Institute for Agriculture, Environment and Development, Faculdade de Ciências e Tenologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
Interests: plant secondary metabolites; the influence of stress factors on plant secondary metabolites; plant tissue culture; production of biocompounds in in vitro cultures
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In the last several years there has been an increasing interest in bioactive compounds from natural sources due to the great diversity of chemical structures in natural sources and their recognized benefits and advantages. Among natural products plants are one of the most valuable sources of bioactive compounds that are useful in many industrial sectors, including pharmacology, cosmetics, agrochemicals, food, etc. In this Special Issue, we invite researchers to contribute original research or review articles on topics related to the extraction, chemical characterization and biological activities of plant bioactive compounds and plant extracts. At present, the use of bioactive compounds from natural sources cannot be separated from the application of green extraction approaches involving advanced and environmentally friendly extraction techniques and green solvents, which follow the Green Chemistry principles. Thus, contributions involving green extraction and zero-waste technological approaches are welcome. Moreover, contributions about the applications of plant compounds/extracts including the development of formulations and the use of encapsulation systems are also within the scope of this Special Issue.

Dr. Sandra Gonçalves
Prof. Dr. Anabela Romano
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • extraction of plant compounds
  • purification of plant compounds
  • characterization of plant extracts
  • identification of bioactive compounds
  • biological properties of plant compounds/extracts
  • applications of plant bioactive compounds

Related Special Issue

Published Papers (30 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 5380 KiB  
Article
Phytochemical Profile, Antioxidant Potential, Antimicrobial Activity, and Cytotoxicity of Dry Extract from Rosa damascena Mill
by Antoaneta Trendafilova, Plamena Staleva, Zhanina Petkova, Viktoria Ivanova, Yana Evstatieva, Dilyana Nikolova, Iliyana Rasheva, Nikola Atanasov, Tanya Topouzova-Hristova, Ralitsa Veleva, Veselina Moskova-Doumanova, Vladimir Dimitrov and Svetlana Simova
Molecules 2023, 28(22), 7666; https://doi.org/10.3390/molecules28227666 - 19 Nov 2023
Cited by 3 | Viewed by 1408
Abstract
Dry rose extract (DRE) obtained industrially by aqueous ethanol extraction from R. damascena flowers and its phenolic-enriched fraction, obtained by re-extraction with ethyl acetate (EAE) were the subject of this study. 1H NMR of DRE allowed the identification and quantitation of fructose [...] Read more.
Dry rose extract (DRE) obtained industrially by aqueous ethanol extraction from R. damascena flowers and its phenolic-enriched fraction, obtained by re-extraction with ethyl acetate (EAE) were the subject of this study. 1H NMR of DRE allowed the identification and quantitation of fructose and glucose, while the combined use of HPLC-DAD-ESIMS and HPLC-HRMS showed the presence of 14 kaempferol glycosides, 12 quercetin glycosides, 4 phenolic acids and their esters, 4 galloyl glycosides, 7 ellagitannins, and quinic acid. In addition, the structures of 13 of the flavonoid glycosides were further confirmed by NMR. EAE was found to be richer in TPC and TFC and showed better antioxidant activity (DPPH, ABTS, and FRAP) compared to DRE. Both extracts displayed significant activity against Propionibacterium acnes, Staphylococcus aureus, and S. epidermidis, but showed no activity against Candida albicans. Toxicity tests on normal human skin fibroblasts revealed low toxicity for both extracts with stronger effects observed at 24 hours of treatment that were compensated for over the following two days. Human hepatocarcinoma (HepG2) cells exhibited an opposite response after treatment with a concentration above 350 µg/mL for EAE and 500 µg/mL for DRE, showing increased toxicity after the third day of treatment. Lower concentrations were non-toxic and did not significantly affect the cell cycle parameters of either of the cell lines. Full article
Show Figures

Graphical abstract

12 pages, 685 KiB  
Article
Isolation and Identification of Phytocompounds from Maytenus dhofarensis and Their Biological Potentials
by Fatma Al-Rubaiai, Zakiya Zahran Al-Shariqi, Khalsa S. Al-Shabibi, John Husband, Asmaa M. Al-Hattali, Marcia Goettert, Stefan Laufer, Younis Baqi, Syed Imran Hassan and Majekodunmi O. Fatope
Molecules 2023, 28(16), 6077; https://doi.org/10.3390/molecules28166077 - 15 Aug 2023
Viewed by 970
Abstract
Maytenus dhofarensis Sebsebe (Celestraceae) is a naturally growing shrub in Oman. It is not a reputed medicinal plant in Oman, but it is regionally endemic and causes shivering attacks on goats that graze on it. The chemical investigation of the hexane and chloroform [...] Read more.
Maytenus dhofarensis Sebsebe (Celestraceae) is a naturally growing shrub in Oman. It is not a reputed medicinal plant in Oman, but it is regionally endemic and causes shivering attacks on goats that graze on it. The chemical investigation of the hexane and chloroform extracts of the fruits and stems of M. dhofarensis afforded dihydro-β-agarofuran-type sesquiterpene pyridine alkaloid (1), lupanyl myristoate (2) and lignanolactone (3). Compounds (13) are new isolates from M. dhofarensis. The structures of these compounds were assigned through comprehensive IR, NMR, and ESI-MS analyses, and the relative configurations of compounds 1 and 3 were deduced from density function theory (DFT) calculations and NMR experiments. Compound 1 was assayed against the kinase enzyme and showed no inhibition activity for p38 alpha and delta at a 10 µM test concentration. Compound 3 inhibited the 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) by 69.5%, compared to 70.9% and 78.0% for gallic acid and butylated hydroxyanisole, respectively, which were used as positive controls. Full article
Show Figures

Figure 1

12 pages, 2318 KiB  
Article
Modulatory Effect of Rosmarinic Acid on H2O2-Induced Adaptive Glycolytic Response in Dermal Fibroblasts
by Suphachai Charoensin and Suwatsak Dansakda
Molecules 2023, 28(14), 5599; https://doi.org/10.3390/molecules28145599 - 24 Jul 2023
Viewed by 979
Abstract
Oxidative stress induces the adaptive response and alteration of energy metabolism across human cell types. Dermal fibroblasts shift their energy system to overload anaerobic glycolysis when exposed to sub-lethal hydrogen peroxide (H2O2). However, oxidative stress levels in the cells [...] Read more.
Oxidative stress induces the adaptive response and alteration of energy metabolism across human cell types. Dermal fibroblasts shift their energy system to overload anaerobic glycolysis when exposed to sub-lethal hydrogen peroxide (H2O2). However, oxidative stress levels in the cells can be depleted by antioxidants, and such cellular changes can therefore be modulated. The present study aimed to investigate the modulatory effect of rosmarinic acid (a polyphenol antioxidant) against H2O2-induced reactive oxygen species (ROS) and the glycolytic adaptive response in fibroblasts. The results showed that H2O2 caused a significant ROS increase in the cells, and pre-treatment with rosmarinic acid (5–50 µM) decreased ROS significantly in the presence of glutathione. Rosmarinic acid modulated the adaptive response in H2O2-treated cells by decreasing glucose consumption and lactate production. The rosmarinic acid also recovered intracellular ATP and decreased NADPH production via the pentose phosphate pathway. Several glycolytic enzymes, including hexokinase-2 (HK-2), phosphofructokinase-2 (PFK-2), and lactate dehydrogenase A (LDHA), were downregulated in cells treated with rosmarinic acid. Furthermore, the key antioxidant enzymes: glutathione-disulfide reductase (GSR), glutathione peroxidase-1 (GPx-1), and peroxiredoxin-1 (Prx-1) and redox protein thioredoxin-1 (Trx-1) were upregulated in treated cells compared to control cells. To sum up, the rosmarinic acid could be used as an antioxidant against H2O2-induced adaptive responses in fibroblasts by modulating glucose metabolism, glycolytic genes, and GSH production. The present work indicates that rosmarinic acid holds promise in cell-based research applications for combating ROS and enhancing dermal fibroblast health. Full article
Show Figures

Figure 1

14 pages, 1629 KiB  
Article
Bioaccessibility of Tocols in Commercial Maize Hybrids Determined by an In Vitro Digestion Model for Poultry
by Veronika Gunjević, Dora Zurak, Darko Grbeša, Goran Kiš, Tatjana Međimurec, Vasil Pirgozliev and Kristina Kljak
Molecules 2023, 28(13), 5015; https://doi.org/10.3390/molecules28135015 - 27 Jun 2023
Cited by 3 | Viewed by 689
Abstract
Despite the high proportion of maize grain in animal diets, the contribution made by maize phytochemicals is neglected. Tocols and their contribution to the vitamin E content of animal diets are one example, exacerbated by sparse information on the tocol bioaccessibility of commercial [...] Read more.
Despite the high proportion of maize grain in animal diets, the contribution made by maize phytochemicals is neglected. Tocols and their contribution to the vitamin E content of animal diets are one example, exacerbated by sparse information on the tocol bioaccessibility of commercial hybrids. In this study, the contents of individual and total tocols and their bioaccessibility were determined in the grain samples of 103 commercial hybrids using a standardized INFOGEST digestion procedure. In the studied hybrids, total tocol content ranged from 19.24 to 54.44 µg/g of dry matter. The contents of micellar α-, γ-, δ-tocopherols, γ-tocotrienol, and total tocols correlated positively with the corresponding contents in the grain samples of the studied hybrids. In contrast, a negative correlation was observed between the bioaccessibility of γ- tocopherol, α- and γ-tocotrienol, and total tocols, along with the corresponding contents in the grain of studied hybrids. The highest bioaccessibility was exhibited by γ-tocotrienol (532.77 g/kg), followed by δ-tocopherol (529.88 g/kg), γ-tocopherol (461.76 g/kg), α-tocopherol (406.49 g/kg), and α-tocotrienol (359.07 g/kg). Overall, there are significant differences in the content and bioaccessibility of total and individual tocols among commercial maize hybrids, allowing the selection of hybrids for animal production based not only on crude chemical composition but also on the content of phytochemicals. Full article
Show Figures

Figure 1

16 pages, 1390 KiB  
Article
Characterization of Antioxidant and Antimicrobial Activity and Phenolic Compound Profile of Extracts from Seeds of Different Vitis Species
by Luisa Pozzo, Teresa Grande, Andrea Raffaelli, Vincenzo Longo, Stanisław Weidner, Ryszard Amarowicz and Magdalena Karamać
Molecules 2023, 28(13), 4924; https://doi.org/10.3390/molecules28134924 - 22 Jun 2023
Cited by 2 | Viewed by 1708
Abstract
Seeds of Vitis vinifera L. with a high content of bioactive compounds are valuable by-products from grape processing. However, little is known about the bioactivity of seeds from other Vitis species. The aim of this study has been to compare the phenolic composition, [...] Read more.
Seeds of Vitis vinifera L. with a high content of bioactive compounds are valuable by-products from grape processing. However, little is known about the bioactivity of seeds from other Vitis species. The aim of this study has been to compare the phenolic composition, antimicrobial activity, and antioxidant activity of extracts from seeds of four Vitis species (V. riparia Michx., V. californica Benth., V. amurensis Rupr., and V. vinifera L.). Antioxidant activities were assessed as ferric-reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) scavenging activity, and oxygen radical absorbance capacity (ORAC). The antimicrobial activity was determined using the microdilution method against some Gram-negative (Escherichia coli, Salmonella enterica ser. Typhimurium, and Enterobacter aerogenes) and Gram-positive (Enterococcus faecalis and Staphylococcus aureus) bacteria. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to evaluate the phenolic profile of extracts. Flavan-3-ols, procyanidins, phenolic acids, flavonols, anthocyanins, and stilbenoids were detected. (+)-Catechin and (−)-epicatechin turned out to be the most abundant in the phenolic profile of V. amurensis seed extract. Phenolic acids prevailed in the extract from V. vinifera seeds. The V. riparia and V. californica seed extracts had higher contents of most individual phenolics compared to the other Vitis species. They also showed a higher total phenolic content, DPPH scavenging activity, ORAC, and overall antibacterial activity. Total phenolic content significantly correlated with antioxidant activity and antimicrobial activity against E. coli. The principal component analysis (PCA) showed discrimination between V. vinifera, V. amurensis, and clustered V. riparia and V. californica with respect to variables. To recapitulate, this research demonstrates that seeds of different Vitis species, especially V. riparia and V. californica, are sources of molecules with antioxidant and antimicrobial activities that can be used in different sectors, such as in the food, cosmetic, and pharmaceutical industries. Full article
Show Figures

Graphical abstract

10 pages, 479 KiB  
Article
Cannabinoid and Opioid Receptor Affinity and Modulation of Cancer-Related Signaling Pathways of Machaeriols and Machaeridiols from Machaerium Pers.
by Ilias Muhammad, Mohammad A. Ibrahim, Mallika Kumarihamy, Janet A. Lambert, Jin Zhang, Marwa H. Mohammad, Shabana I. Khan, David S. Pasco and Premalatha Balachandran
Molecules 2023, 28(10), 4162; https://doi.org/10.3390/molecules28104162 - 18 May 2023
Cited by 1 | Viewed by 1768
Abstract
Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of [...] Read more.
Machaeriols and machaeridiols are unique hexahydrodibenzopyran-type aralkyl phytocannabinoids isolated from Machaerium Pers. Earlier studies of machaeriol A (1) and B (2) did not show any affinity for cannabinoid receptor 1 (CB1 or CNR1), although they are structural analogs of psychoactive hexahydrocannabinol. This study comprehensively reports on the affinities of isolated Machaerium Pers. compounds, namely machaeriol A–D (14) and machaeridiol A–C (57), against cannabinoid (CB1 and CB2) and opioid (κ, δ and µ) receptors. Among the isolated compounds, machaeriol D (4) and machaeridiol A–C (57) showed some selective binding affinity for the CB2 receptor, using a radioligand binding assay, with Ki values of >1.3, >1.77, >2.18 and >1.1 μM, respectively. On the other hand, none of the compounds showed any binding to the CB1 receptor. Due to recent reports on the anticancer potential of the endocannabinoid system, compounds 17 were tested against a battery of luciferase reporter gene vectors that assess the activity of many cancer-related signaling pathways, including Stat3, Smad2/3, AP-1, NF-κB, E2F, Myc, Ets, Notch, FoxO, Wnt, Hedgehog and pTK in HeLa and T98G glioblastoma cells. Complete dose–response curves have been determined for each compound in both of these cell lines, which revealed that machaeridiol 6 displayed activities (IC50 in µM in HeLa and T98G cells) towards Stat3 (4.7, 1.4), Smad2/3 (1.2, 3.0), AP-1 (5.9, 4.2), NF-κB (0.5, 4.0), E2F (5.7, 0.7), Myc (5.3, 2.0), ETS (inactive, 5.9), Notch (5.3, 4.6), Wnt (4.2, inactive) and Hedgehog (inactive, 5.0). Furthermore, a combination study between machaeriol C (3) and machaeridiol B (6) displayed additive effects for E2F, ETS, Wnt and Hedgehog pathways, where these compounds individually were either minimally active or inactive. None of the compounds inhibited luciferase expression driven by the minimal thymidine kinase promoter (pTK), indicating the lack of general cytotoxicity for luciferase enzyme inhibition at the 50 µM concentration in both of these cell lines. The significance of the inhibition of these signaling pathways via machaeridiol 57 and their cross-talk potential has been discussed. Full article
Show Figures

Graphical abstract

12 pages, 1483 KiB  
Article
Phytochemical Characterization and Antimicrobial Activity of Several Allium Extracts
by Ioana Andreea Barbu, Alexandra Ciorîță, Rahela Carpa, Augustin Catalin Moț, Anca Butiuc-Keul and Marcel Pârvu
Molecules 2023, 28(10), 3980; https://doi.org/10.3390/molecules28103980 - 09 May 2023
Cited by 1 | Viewed by 1883
Abstract
Microbial infections affect both the human population and animals. The appearance of more and more microbial strains resistant to classical treatments led to the need to develop new treatments. Allium plants are known for their antimicrobial properties due to their high content of [...] Read more.
Microbial infections affect both the human population and animals. The appearance of more and more microbial strains resistant to classical treatments led to the need to develop new treatments. Allium plants are known for their antimicrobial properties due to their high content of thiosulfinates, especially allicin, polyphenols or flavonoids. The hydroalcoholic extracts of six Allium species obtained by cold percolation were analyzed regarding their phytochemical compounds and antimicrobial activity. Among the six extracts, Allium sativum L. and Allium ursinum L. have similar contents of thiosulfinates (approx. 300 μg allicin equivalents/g), and the contents of polyphenols and flavonoids were different between the tested species. The HPLC-DAD method was used to detail the phytochemical composition of species rich in thiosulfinates. A. sativum is richer in allicin (280 μg/g) than A. ursinum (130 μg/g). The antimicrobial activity of A. sativum and A. ursinum extracts against Escherichia coli, Staphylococcus aureus, Candida albicans and Candida parapsilosis can be correlated with the presence of large amounts of thiosulfinates. Both extracts have shown results against Candida species (inhibition zones of 20–35 mm) and against Gram-positive bacteria, Staphylococcus aureus (inhibition zones of 15–25 mm). These results demonstrate the antimicrobial effect of the extracts and suggest their use as an adjuvant treatment for microbial infections. Full article
Show Figures

Figure 1

10 pages, 3140 KiB  
Communication
Qualitative and Quantitative Analysis of the Major Bioactive Components of Juniperus chinensis L. Using LC-QTOF-MS and LC-MSMS and Investigation of Antibacterial Activity against Pathogenic Bacteria
by Da Jung Lim, Jeong-Sup Song, Byoung-Hee Lee, Youn Kyoung Son and Yangseon Kim
Molecules 2023, 28(9), 3937; https://doi.org/10.3390/molecules28093937 - 07 May 2023
Cited by 2 | Viewed by 1474
Abstract
Plants in the genus Juniperus have been reported to produce a variety of chemical components, such as coumarins, flavonoids, lignans, sterols, and terpenoids. Here, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were applied [...] Read more.
Plants in the genus Juniperus have been reported to produce a variety of chemical components, such as coumarins, flavonoids, lignans, sterols, and terpenoids. Here, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) and ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) were applied to qualitatively and quantitatively analyze the major bioactive components in an ethanolic crude extract from the leaves of Juniperus chinensis L., which grows naturally in Korea. In addition, the antibacterial activity of the crude extract against pathogenic bacteria was investigated. Using LC-QTOF-MS analysis, we identified ten compounds, of which six were confirmed to be flavonoid and lignan-based components as the major bioactive components, i.e., isoquercetin, quercetin-3-O-α-l-rhamnoside, hinokiflavone, amentoflavone, podocarpusflavone A, and matairesinoside. Among them, a quantitative analysis performed using LC-MS/MS revealed that the levels of quercetin-3-O-α-l-rhamnoside and amentoflavone in the crude extract were 203.78 and 69.84 mg/g, respectively. Furthermore, the crude extract exhibited potential antibacterial activity against 10 pathogenic bacteria, with the highest antibacterial activity detected against Bordetella pertussis. Thus, further studies of the leaf extract of J. chinensis L. must be carried out to correlate the compounds present in the extract with the antibacterial activity and elucidate the mechanisms of action of this extract against bacteria. Full article
Show Figures

Figure 1

16 pages, 3213 KiB  
Article
Ultrasound–Microwave Combined Extraction of Novel Polysaccharide Fractions from Lycium barbarum Leaves and Their In Vitro Hypoglycemic and Antioxidant Activities
by Na Quan, Yi-Dan Wang, Guo-Rong Li, Zi-Qi Liu, Jing Feng, Chun-Lei Qiao and Hua-Feng Zhang
Molecules 2023, 28(9), 3880; https://doi.org/10.3390/molecules28093880 - 04 May 2023
Cited by 6 | Viewed by 1385
Abstract
Ultrasound–microwave combined extraction (UMCE), gradient ethanol precipitation, chemical characterization, and antioxidant and hypoglycemic activities of Lycium barbarum leaf polysaccharides (LLP) were systematically studied. The optimal conditions for UMCE of LLP achieved by response surface method (RSM) were as follows: microwave time of 16 [...] Read more.
Ultrasound–microwave combined extraction (UMCE), gradient ethanol precipitation, chemical characterization, and antioxidant and hypoglycemic activities of Lycium barbarum leaf polysaccharides (LLP) were systematically studied. The optimal conditions for UMCE of LLP achieved by response surface method (RSM) were as follows: microwave time of 16 min, ultrasonic time of 20 min, particle size of 100 mesh, and ratio of liquid to solid of 55:1. Three novel polysaccharide fractions (LLP30, LLP50, LLP70) with different molecular weights were obtained by gradient ethanol precipitation. Polysaccharide samples exhibited scavenging capacities against ABTS and DPPH radicals and inhibitory activities against α-glucosidase and α-amylase. Among the three fractions, LLP30 possessed relatively high antioxidant and hypoglycemic activities in vitro, which showed a potential for becoming a nutraceutical or a phytopharmaceutical for prevention and treatment of hyperglycemia or diabetes. Full article
Show Figures

Figure 1

14 pages, 3691 KiB  
Article
Separation and Identification of an Antimicrobial Substance from Schisandra chinensis Extract against Streptococcus mutans KCCM 40105 Strain
by Jae-Hee Jeong, Su-Hwan Kim and Chang-Ki Huh
Molecules 2023, 28(8), 3417; https://doi.org/10.3390/molecules28083417 - 13 Apr 2023
Viewed by 1345
Abstract
This study aimed to isolate and identify antibacterial compounds from Schisandra chinensis (S. chinensis) that are effective against the Streptococcus mutans KCCM 40105 strain. First, S. chinensis was extracted using varying concentrations of ethanol, and the resulting antibacterial activity was evaluated. [...] Read more.
This study aimed to isolate and identify antibacterial compounds from Schisandra chinensis (S. chinensis) that are effective against the Streptococcus mutans KCCM 40105 strain. First, S. chinensis was extracted using varying concentrations of ethanol, and the resulting antibacterial activity was evaluated. The 30% ethanol extract of S. chinensis showed high activity. The fractionation and antibacterial activity of a 30% ethanol extract from S. chinensis were examined using five different solvents. Upon investigation of the antibacterial activity of the solvent fraction, the water and butanol fractions showed high activity, and no significant difference was found. Therefore, the butanol fraction was chosen for material exploration using silica gel column chromatography. A total of 24 fractions were obtained from the butanol portion using silica gel chromatography. The fraction with the highest antibacterial activity was Fr 7. From Fr 7, thirty-three sub-fractions were isolated, and sub-fraction 17 showed the highest level of antibacterial activity. A total of five peaks were obtained through the pure separation of sub-fraction 17 using HPLC. Peak 2 was identified as a substance exhibiting a high level of antibacterial activity. Based on the results of UV spectrometry, 13C-NMR, 1H-NMR, LC-MS, and HPLC analyses, the compound corresponding to peak number 2 was identified as tartaric acid. Full article
Show Figures

Figure 1

22 pages, 5012 KiB  
Article
Naturally Occurring Chalcones with Aggregation-Induced Emission Enhancement Characteristics
by Iwona Budziak-Wieczorek, Daniel Kamiński, Alicja Skrzypek, Anna Ciołek, Tomasz Skrzypek, Ewa Janik-Zabrotowicz and Marta Arczewska
Molecules 2023, 28(8), 3412; https://doi.org/10.3390/molecules28083412 - 12 Apr 2023
Cited by 2 | Viewed by 1470
Abstract
In this paper, the natural chalcones: 2′-hydroxy-4,4′,6′-trimethoxychalcone (HCH), cardamonin (CA), xanthohumol (XN), isobavachalcone (IBC) and licochalcone A (LIC) are studied using spectroscopic techniques such as UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and single-crystal X-ray diffraction (XRD). For the first time, the spectroscopic [...] Read more.
In this paper, the natural chalcones: 2′-hydroxy-4,4′,6′-trimethoxychalcone (HCH), cardamonin (CA), xanthohumol (XN), isobavachalcone (IBC) and licochalcone A (LIC) are studied using spectroscopic techniques such as UV–vis, fluorescence spectroscopy, scanning electron microscopy (SEM) and single-crystal X-ray diffraction (XRD). For the first time, the spectroscopic and structural features of naturally occurring chalcones with varying numbers and positions of hydroxyl groups in rings A and B were investigated to prove the presence of the aggregation-induced emission enhancement (AIEE) effect. The fluorescence studies were carried out in the aggregate form in a solution and in a solid state. As to the results of spectroscopic analyses conducted in the solvent media, the selected mixtures (CH3OH:H2O and CH3OH:ethylene glycol), as well as the fluorescence quantum yield (ϕF) and SEM, confirmed that two of the tested chalcones (CA and HCH) exhibited effective AIEE behaviour. On the other hand, LIC showed a large fluorescence quantum yield and Stokes shift in the polar solvents and in the solid state. Moreover, all studied compounds were tested for their promising antioxidant activities via the utilisation of 1,1- diphenyl-2-picrylhydrazyl as a free-radical scavenging reagent as well as potential anti-neurodegenerative agents via their ability to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitors. Finally, the results demonstrated that licochalcone A, with the most desirable emission properties, showed the most effective antioxidant (DPPH IC50 29%) and neuroprotective properties (AChE IC50 23.41 ± 0.02 μM, BuChE IC50 42.28 ± 0.06 μM). The substitution pattern and the biological assay findings establish some relation between photophysical properties and biological activity that might apply in designing AIEE molecules with the specified characteristics for biological application. Full article
Show Figures

Graphical abstract

13 pages, 1947 KiB  
Article
Isolation of Two New Phenolic Glycosides from Castanopsis chinensis Hance by Combined Multistep CC and HSCCC Separation and Evaluation of Their Antioxidant Activity
by Ya-Feng Wang, Ping Lin, Yong-Lin Huang, Rui-Jie He, Bing-Yuan Yang and Zhang-Bin Liu
Molecules 2023, 28(8), 3331; https://doi.org/10.3390/molecules28083331 - 10 Apr 2023
Cited by 2 | Viewed by 1398
Abstract
The characteristics of high polarity and susceptibility to oxidation in phenolic glycosides increase the difficulty of their separation from natural products. In the present study, two new phenolic glycosides with similar structures were isolated from Castanopsis chinensis Hance using a combination of multistep [...] Read more.
The characteristics of high polarity and susceptibility to oxidation in phenolic glycosides increase the difficulty of their separation from natural products. In the present study, two new phenolic glycosides with similar structures were isolated from Castanopsis chinensis Hance using a combination of multistep CC and high-speed countercurrent chromatography. Preliminary separation of the target fractions was carried out by Sephadex LH-20 chromatography (100–0% EtOH in H2O). High-speed countercurrent chromatography with an optimized solvent system of N-Hexane/Ethyl acetate/Methanol/Water (1:6:3:4, v/v/v/v) with a satisfactory stationary phase retention and separation factor was used for further separation and purification of the phenolic glycosides. Consequently, two new phenolic glycoside compounds were obtained with purities of 93.0% and 95.7%. 1D-NMR and 2D-NMR spectroscopy, mass spectrometry, and optical rotation were employed to identify their structures, which were assigned as chinensin D and chinensin E. The antioxidant and α-glucosidase inhibitory activities of these two compounds were evaluated using a DPPH antioxidant assay and a α-glucosidase inhibitory assay. Both compounds showed good antioxidant activity with IC50 values of 54.5 ± 0.82 µg/mL and 52.5 ± 0.47 µg/mL. The α-glucosidase inhibitory activity of the compounds was poor. The successful isolation and structure identification of the two new compounds provides materials not only for a systematic isolation method of phenolic glycosides with similar structures, but also for the screening of antioxidants and enzyme inhibitors. Full article
Show Figures

Figure 1

15 pages, 1893 KiB  
Article
Effect of Immunomodulating Extract and Some Isolates from Etlingera rubroloba A.D. Poulsen Fruits on Diabetic Patients with Tuberculosis
by Muhammad Ilyas Y., Idin Sahidin, Asriullah Jabbar, Agung W. M. Yodha, Ajeng Diantini, Ivan Surya Pradipta, Riezki Amalia, Raden Maya Febrianti, Yuni Elsa Hadisaputri, Mohammad Ghozali and Euis Julaeha
Molecules 2023, 28(5), 2401; https://doi.org/10.3390/molecules28052401 - 06 Mar 2023
Viewed by 1315
Abstract
Diabetes mellitus (DM) is a disease easily complicated by tuberculosis (TB) due to impaired function of the innate immune response. The successes of the discovery of immunomodulatory compounds needs to be continued to introduce new insights into the innate immune response. In previous [...] Read more.
Diabetes mellitus (DM) is a disease easily complicated by tuberculosis (TB) due to impaired function of the innate immune response. The successes of the discovery of immunomodulatory compounds needs to be continued to introduce new insights into the innate immune response. In previous studies, plant compounds of Etlingera rubroloba A.D. Poulsen (E.rubroloba) were demonstrated to have potential as an immunomodulators. This study aims to isolate and identify the structure of the compounds of E.rubroloba fruit that could effectively improve the function of the innate immune response in individuals with DM infected with TB. The isolation and purification of the compounds of the E.rubroloba extract were carried out by radial chromatography (RC) and thin-layer chromatography (TLC). Identification of the isolated compound structures was determined by measuring the proton (1H) and carbon (13C) nuclear magnetic resonance (NMR). In vitro testing was performed on the immunomodulating activity of the extracts and isolated compounds on DM model macrophages infected with TB antigens. This study succeeded at isolating and identifying the structures of two isolate compounds, namely Sinaphyl alcohol diacetat (BER-1), and Ergosterol peroxide (BER-6). The two isolates were more effective as immunomodulators than the positive controls were, which differed significantly (* p < 0.05) at the reducing interleukin-12 (IL-12) levels and Toll-like receptor-2 (TLR-2) protein expression and increasing the human leucocyte antigen-DR (HLA-DR) protein expression in DM infected with TB. The isolated compound was discovered in E. rubroloba fruits, which has been reported to have the potential to be developed as an immunomodulatory agent. Follow-up testing to determine the mechanism and effectiveness of these compounds as immunomodulators for DM patients is required so that they are not susceptible to TB infection. Full article
Show Figures

Figure 1

11 pages, 1910 KiB  
Article
Glucosinolates in Wild-Growing Reseda spp. from Croatia
by Azra Đulović, Josip Tomaš and Ivica Blažević
Molecules 2023, 28(4), 1753; https://doi.org/10.3390/molecules28041753 - 12 Feb 2023
Cited by 1 | Viewed by 1651
Abstract
Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL [...] Read more.
Glucosinolates (GSLs) are a unique class of thioglucosides that evolved as defense mechanisms in the 16 families of the Brassicales order and present molecular tags which can be placed in a robust phylogenetic framework through investigations into their evolution and diversity. The GSL profiles of three Resedaceae species, Reseda alba, R. lutea, and R. phyteuma, were examined qualitatively and quantitatively with respect to their desulfo-counterparts utilizing UHPLC-DAD-MS/MS. In addition, NMR analysis of isolated 2-hydroxy-2-methylpropyl desulfoGSL (d31) was performed. Three Phe-derived GSLs were found in R. lutea, including glucotropaeolin (11) (0.6–106.69 mol g−1 DW), 2-(α-L-ramnopyranosyloxy)benzyl GSL (109) (8.10–57.89 μmol g−1 DW), glucolepigramin (22) (8.66 μmol g−1 DW in flower), and Trp-derived glucobrassicin (43) (0.76–5.92 μmol g−1 DW). The Phe-derived GSLs 109 (50.79–164.37 μmol g−1 DW), gluconasturtiin (105) (1.97 μmol g−1 DW), and 11 (tr), as well as the Trp-derived GSL glucobrassicin (43) (3.13–11.26 μmol g−1 DW), were all present in R. phyteuma. R. alba also contained Phe-derived 105 (0.10–107.77 μmol g−1 DW), followed by Trp-derived 43 (0.85–3.50 μmol g−1 DW) and neoglucobrassicin (47) (0.23–2.74 μmol g−1 DW). However, regarding the GSLs in R. alba, which originated from Leu biosynthesis, 31 was the major GSL (6.48 to 52.72 μmol g−1 DW) and isobutyl GSL (62) was the minor GSL (0.13 to 1.13 μmol g−1 DW). The discovered Reseda profiles, along with new evidence provided by GSL characterizations, were studied in the context of the current knowledge on GLSs in the Resedaceae family. With the exception of R. alba, the aliphatic GSLs of which were outliers among the Resedaceae species studied, this family typically contains GSLs derived primarily from Trp and Phe biosynthesis, which modifications resulted in GSLs unique to this family, implying presence of the specific genes. responsible for this diversification. Full article
Show Figures

Figure 1

11 pages, 1501 KiB  
Article
Evaluation of Cryogen-Free Thermal Modulation-Based Enantioselective Comprehensive Two-Dimensional Gas Chromatography for Stereo-Differentiation of Monoterpenes in Citrus spp. Leaf Oils
by Haneen Ibrahim Al Othman, Atiqah Zaid, Francesco Cacciola, Zhijun Zhao, Xiaosheng Guan, Jalal T. Althakafy and Yong Foo Wong
Molecules 2023, 28(3), 1381; https://doi.org/10.3390/molecules28031381 - 01 Feb 2023
Cited by 1 | Viewed by 1387
Abstract
This study evaluates the applicability of enantioselective gas chromatography (eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC) coupled with flame ionization detection for the stereospecific analysis of designated chiral monoterpenes within essential oils distilled from the leaves of Citrus [...] Read more.
This study evaluates the applicability of enantioselective gas chromatography (eGC) and enantioselective comprehensive two-dimensional gas chromatography (eGC×GC) coupled with flame ionization detection for the stereospecific analysis of designated chiral monoterpenes within essential oils distilled from the leaves of Citrus hystrix (CH), C. limon (CL), C. pyriformis (CP), and C. microcarpa (CM). A cryogen-free solid-state modulator with a combination of enantioselective first-dimension and polar second-dimension column arrangements was used to resolve potential interferences in Citrus spp. leaf oils that can complicate the accurate determination of enantiomeric compositions. Interestingly, considerable variations were observed for the enantiomeric fractions (EFs) of the chiral terpenes. (+)-limonene was identified as the predominant enantiomer (60.3–98.9%) in all Citrus oils, (+)-linalool was the major enantiomer in CM (95.9%), (−)-terpenin-4-ol was the major isomer in CM (66.4%) and CP (61.1%), (−)-α-pinene was the dominant antipode in CL (55.5%) and CM (92.1%). CH contained (−)-citronellal (100%) as the pure enantiomer, while CL and CP have lower proportions (9.0–34.6%), and citronellal is absent in CM. The obtained enantiomeric compositions were compared and discussed with results from eGC using the same enantioselective column. To our knowledge, this work encapsulates the first report that details the EFs of these chiral monoterpenes in Citrus spp. leaf oil. Full article
Show Figures

Figure 1

20 pages, 646 KiB  
Article
Fractionation and Extraction Optimization of Potentially Valuable Compounds and Their Profiling in Six Varieties of Two Nicotiana Species
by Csaba Laszlo, Kacper Kaminski, Haifeng Guan, Maria Fatarova, Jianbing Wei, Alexandre Bergounioux, Walter K. Schlage, Sandra Schorderet-Weber, Philippe A. Guy, Nikolai V. Ivanov, Kai Lamottke and Julia Hoeng
Molecules 2022, 27(22), 8105; https://doi.org/10.3390/molecules27228105 - 21 Nov 2022
Cited by 3 | Viewed by 3041
Abstract
There is an increasingly urgent call to shift industrial processes from fossil fuel feedstock to sustainable bio-based resources. This change becomes of high importance considering new budget requirements for a carbon-neutral economy. Such a transformation can be driven by traditionally used plants that [...] Read more.
There is an increasingly urgent call to shift industrial processes from fossil fuel feedstock to sustainable bio-based resources. This change becomes of high importance considering new budget requirements for a carbon-neutral economy. Such a transformation can be driven by traditionally used plants that are able to produce large amounts of valuable biologically relevant secondary metabolites. Tobacco plants can play a leading role in providing value-added products in remote areas of the world. In this study, we propose a non-exhaustive list of compounds with potential economic interest that can be sourced from the tobacco plant. In order to optimize extraction methodologies, we first analyzed their physico-chemical properties using rapid solubility tests and high-resolution microfractionation techniques. Next, to identify an optimal extraction for a selected list of compounds, we compared 13 different extraction method–solvent combinations. We proceeded with profiling some of these compounds in a total of six varieties from Nicotiana tabacum and Nicotiana rustica species, identifying the optimal variety for each. The estimated expected yields for each of these compounds demonstrate that tobacco plants can be a superior source of valuable compounds with diverse applications beyond nicotine. Among the most interesting results, we found high variability of anatabine content between species and varieties, ranging from 287 to 1699 µg/g. In addition, we found that CGA (1305 µg/g) and rutin (7910 µg/g) content are orders of magnitude lower in the Burley variety as compared to all others. Full article
Show Figures

Figure 1

22 pages, 4151 KiB  
Article
Chemical Profiling and Biological Activity of Extracts from Nine Norwegian Medicinal and Aromatic Plants
by Rune Slimestad, Amritha Johny, Mette Goul Thomsen, Christian Renè Karlsen and Jan Thomas Rosnes
Molecules 2022, 27(21), 7335; https://doi.org/10.3390/molecules27217335 - 28 Oct 2022
Cited by 5 | Viewed by 2517
Abstract
There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can [...] Read more.
There is an increased interest in identifying beneficial compounds of plant origin that can be added to animal diets to improve animal performance and have a health-promoting effect. In the present study, nine herb species of the Norwegian wild flora or which can be cultivated in Norway were selected for phytogenic evaluation (hops, maral root, mint, oregano, purslane, rosemary, roseroot, sweet wormwood, yarrow). Dried herbs were sequentially extracted with dichloromethane (DCM), ethanol (EtOH) and finally water (H2O) by ultrasound-assisted extraction (UAE). The UAE protocol was found to be more rational than conventional Soxhlet with respect to DCM extraction. Total extraction yield was found to be highest for oregano (Origanum vulgare) with 34.4 g 100−1 g dry matter (DM). H2O-extracts gave the highest yields of the three solvents, with up to 25 g 100−1 g DM for purslane (Portulaca oleracea ssp. sativa) and mint (Mentha piperita). EtOH- and H2O-extracts were the most efficient extracts with respect to free radical scavenging capacity (ABTS (=2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), and oregano, mint, hops (Humulus lupulus) and maral root-leaves (Leuzea carthamoides) were found to be the most efficient antioxidant sources. Hops (EtOH-extract) contained α- and β-acids, xanthohumols, chlorogenic acid and the hitherto unreported 3-O-glucosides of kaempferol and quercetin. Maral root-leaves contained among other compounds hexosides of the 6-hydroxy- and 6-methoxy-kaempferol and -quercetin, whereas roseroot (Rosea rhodiola) revealed contents of rosavin, rhodiosin and rhodionin. Sweet wormwood (Artemisia annua) contained chlorogenic acid and several derivatives thereof, scopoletin and poly-methylated flavones (eupatin, casticin, chrysoplenetin). Antimicrobial potential of different plant extracts was demonstrated against Gram-positive and Gram-negative bacteria using the indicator organisms Staphylococcus aureus, and Escherichia coli, and the Atlantic salmon bacterial pathogens Moritella viscosa, Tenacibaculum finnmarkense and Aliivibrio wodanis. DCM extracts possessed the highest activities. Data demonstrate the potential ability of herb extracts as natural antimicrobials. However, future safety studies should be performed to elucidate any compromising effect on fish health. Full article
Show Figures

Figure 1

22 pages, 6985 KiB  
Article
Identification of Gedunin from a Phytochemical Depository as a Novel Multidrug Resistance-Bypassing Tubulin Inhibitor of Cancer Cells
by Sami A. Khalid, Mona Dawood, Joelle C. Boulos, Monica Wasfi, Assia Drif, Faranak Bahramimehr, Nasim Shahhamzehei, Letian Shan and Thomas Efferth
Molecules 2022, 27(18), 5858; https://doi.org/10.3390/molecules27185858 - 09 Sep 2022
Cited by 6 | Viewed by 1757
Abstract
The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes [...] Read more.
The chemotherapy of tumors is frequently limited by the development of resistance and severe side effects. Phytochemicals may offer promising candidates to meet the urgent requirement for new anticancer drugs. We screened 69 phytochemicals, and focused on gedunin to analyze its molecular modes of action. Pearson test-base correlation analyses of the log10IC50 values of 55 tumor cell lines of the National Cancer Institute (NCI), USA, for gedunin with those of 91 standard anticancer agents revealed statistically significant relationships to all 10 tested microtubule inhibitors. Thus, we hypothesized that gedunin may be a novel microtubule inhibitor. Confocal microscopy, cell cycle measurements, and molecular docking in silico substantiated our assumption. Agglomerative cluster analyses and the heat map generation of proteomic data revealed a subset of 40 out of 3171 proteins, the expression of which significantly correlated with sensitivity or resistance for the NCI cell line panel to gedunin. This indicates the complexity of gedunin’s activity against cancer cells, underscoring the value of network pharmacological techniques for the investigation of the molecular modes of drug action. Finally, we correlated the transcriptome-wide mRNA expression of known drug resistance mechanism (ABC transporter, oncogenes, tumor suppressors) log10IC50 values for gedunin. We did not find significant correlations, indicating that gedunin’s anticancer activity might not be hampered by classical drug resistance mechanisms. In conclusion, gedunin is a novel microtubule-inhibiting drug candidate which is not involved in multidrug resistance mechanisms such as other clinically established mitotic spindle poisons. Full article
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
The Identification of APOBEC3G as a Potential Prognostic Biomarker in Acute Myeloid Leukemia and a Possible Drug Target for Crotonoside
by Chenchen Ma, Peng Liu, Siyuan Cui, Chang Gao, Xing Tan, Zhaopeng Liu and Ruirong Xu
Molecules 2022, 27(18), 5804; https://doi.org/10.3390/molecules27185804 - 07 Sep 2022
Cited by 2 | Viewed by 1548
Abstract
The apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G) converts cytosine to uracil in DNA/RNA. Its role in resisting viral invasion has been well documented. However, its expression pattern and potential function in AML remain unclear. In this study, we carried out [...] Read more.
The apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G) converts cytosine to uracil in DNA/RNA. Its role in resisting viral invasion has been well documented. However, its expression pattern and potential function in AML remain unclear. In this study, we carried out a bioinformatics analysis and revealed that the expression of APOBEC3G was significantly upregulated in AML, and high expression of APOBEC3G was significantly associated with short overall survival (OS). APOBEC3G expression was especially increased in non-M3AML, and correlated with the unfavorable cytogenetic risks. Additionally, Cox regression analyses indicated APOBEC3G is a hazard factor that cannot be ignored for OS of AML patients. In molecular docking simulations, the natural product crotonoside was found to interact well with APOBEC3G. The expression of APOBEC3G is the highest in KG-1 cells, and the treatment with crotonoside can reduce the expression of APOBEC3G. Crotonoside can inhibit the viability of different AML cells in vitro, arrest KG-1 and MV-4-11 cells in the S phase of the cell cycle and affect the expression of cycle-related proteins, and induce cell apoptosis. Therefore, APOBEC3G could be a potential drug target of crotonoside, and crotonoside can be considered as a lead compound for APOBEC3G inhibition in non-M3 AML. Full article
Show Figures

Figure 1

12 pages, 1220 KiB  
Article
Modulatory Effect of Diosmin and Diosmetin on Metalloproteinase Activity and Inflammatory Mediators in Human Skin Fibroblasts Treated with Lipopolysaccharide
by Marcin Feldo, Magdalena Wójciak, Aleksandra Ziemlewska, Sławomir Dresler and Ireneusz Sowa
Molecules 2022, 27(13), 4264; https://doi.org/10.3390/molecules27134264 - 01 Jul 2022
Cited by 12 | Viewed by 2204
Abstract
Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing [...] Read more.
Diosmin is widely used as a venoactive drug in the pharmacological treatment of chronic venous disorders. It exerts a strong protective effect on blood vessels via an increase in the elasticity of vessel walls and reduces the permeability of capillary walls, thereby producing an anti-edematous effect. In this paper, we investigated the effectiveness of diosmin and diosmetin in modulating the level of proinflammatory factors in human skin fibroblasts treated with lipopolysaccharide (LPS). Two variants of the experiments were performed: the flavonoid was added 2 h prior to or 24 h after LPS stimulation. Our study revealed that both flavonoids reduced the levels of IL-6 and Il-1β as well as COX-2 and PGE2 but had no impact on IL-10. However, the addition of the compounds prior to the LPS addition was more effective. Moreover, diosmetin modulated the proinflammatory factors more strongly than diosmin. Our investigations also showed that both flavonoids were potent inhibitors of elastase and collagenase activity, and no differences between the glycoside and aglycone forms were observed. Full article
Show Figures

Figure 1

24 pages, 2082 KiB  
Article
Efficacy of Phytochemicals Derived from Roots of Rondeletia odorata as Antioxidant, Antiulcer, Diuretic, Skin Brightening and Hemolytic Agents—A Comprehensive Biochemical and In Silico Study
by Anjum Khursheed, Saeed Ahmad, Kashif-ur-Rehman Khan, Muhammad Imran Tousif, Hanan Y. Aati, Chitchamai Ovatlarnporn, Huma Rao, Umair Khurshid, Bilal Ahmad Ghalloo, Sobia Tabassum and Abdul Basit
Molecules 2022, 27(13), 4204; https://doi.org/10.3390/molecules27134204 - 30 Jun 2022
Cited by 12 | Viewed by 2456
Abstract
Roots of Rondeletia odorata are a rich source of phytochemicals with high antioxidant potential and thus may possess health benefits. This study used the LC-MS technique to identify phytoconstituents in R. odorata roots extract/fractions. Results revealed that n-butanol fraction and ethanolic extract [...] Read more.
Roots of Rondeletia odorata are a rich source of phytochemicals with high antioxidant potential and thus may possess health benefits. This study used the LC-MS technique to identify phytoconstituents in R. odorata roots extract/fractions. Results revealed that n-butanol fraction and ethanolic extract contained total phenolic and flavonoid contents with values of 155.64 ± 0.66 mgGAE/g DE and 194.94 ± 0.98 mgQE/g DE, respectively. Significant potential of antioxidants was observed by DPPH, CUPRAC and FRAP methods while the ABTS method showed moderate antioxidant potential. Maximum % inhibition for urease, tyrosinase and carbonic anhydrase was shown by ethanolic extract (73.39 ± 1.11%), n-butanol soluble fraction (80.26 ± 1.59%) and ethyl acetate soluble fraction (76.50 ± 0.67%) which were comparable with thiourea (standard) (98.07 ± 0.74%), kojic acid (standard) (98.59 ± 0.92%) and acetazolamide (standard) (95.51 ± 1.29%), respectively, while all other extract/fractions showed moderate inhibition activity against these three enzymes. Hemolytic activity was also observed to range from 18.80 ± 0.42 to 3.48 ± 0.69% using the standard (triton X-100) method. In total, 28 and 20 compounds were identified tentatively by LC-MS analysis of ethanolic extract and n-butanol soluble fraction, respectively. Furthermore, molecular docking was undertaken for major compounds identified by LC-MS for determining binding affinity between enzymes (urease, tyrosinase and carbonic anhydrase) and ligands. It was concluded that active phytochemicals were present in roots of R. odorata with potential for multiple pharmacological applications and as a latent source of pharmaceutically important compounds. This should be further explored to isolate important constituents that could be used in treating different diseases. Full article
Show Figures

Figure 1

12 pages, 4691 KiB  
Article
Poria Acid, Triterpenoids Extracted from Poria cocos, Inhibits the Invasion and Metastasis of Gastric Cancer Cells
by Haibo Wang, Yuanyuan Luo, Zewen Chu, Tengyang Ni, Shiya Ou, Xiaojun Dai, Xiaochun Zhang and Yanqing Liu
Molecules 2022, 27(11), 3629; https://doi.org/10.3390/molecules27113629 - 06 Jun 2022
Cited by 13 | Viewed by 2332
Abstract
Background: Poria cocos (P. cocos) is an important medicinal fungus in traditional Chinese medicine. Poria acid (PA), a triterpenoid compound, is an effective component of traditional Chinese medicine P. cocos. This experiment investigated the anti-gastric cancer biological activity of PA in vitro. [...] Read more.
Background: Poria cocos (P. cocos) is an important medicinal fungus in traditional Chinese medicine. Poria acid (PA), a triterpenoid compound, is an effective component of traditional Chinese medicine P. cocos. This experiment investigated the anti-gastric cancer biological activity of PA in vitro. Methods: The effect of PA on the viability of gastric cancer cells was detected by the thiazolyl blue (MTT) assay. Cell adhesion assays were used to detect changes in the adhesion of cells treated after PA (0, 20, 40, and 80 µmol/L). The ability of cell invasion and migration were detected by Transwell assays and wound healing assays. A high-content imaging system was used to dynamically record the motility of the gastric cancer cells after PA (0, 20, 40, and 80 µmol/L) treatment. Western blotting was used to detect the expression of epithelial–mesenchymal transformation (EMT), invasion and migration related proteins. Results: The MTT assay showed that the proliferation of gastric cancer cells was significantly inhibited after PA treatment. Cell adhesion experiments showed that the adhesion of gastric cancer cells was significantly decreased after PA treatment. Compared with the control group, the wound healing area of the gastric cancer cells treated with different concentrations of PA decreased. The Transwell assay showed that the number of gastric cancer cells passing through the cell membrane were significantly reduced after PA treatment. In addition, after PA treatment, the cells’ movement distance and average movement speed were significantly lower than those of the control group. Finally, PA can significantly alter the expression of EMT-related proteins E-cadherin, N-cadherin, and Vimentin and decreased the expressions of metastasis-related proteins matrix metalloproteinase (MMP) 2, MMP-9 and tissue inhibition of matrix metalloproteinase (TIMP)1 in the gastric cancer cells. Conclusions: Triterpenoids from P. cocos have significant biological activity against gastric cancer, and the mechanism may be involved in the process of epithelial–mesenchymal transformation. Full article
Show Figures

Figure 1

23 pages, 3587 KiB  
Article
Study on the Chemical Composition and the Biological Activities of Vitis vinifera Stem Extracts
by Talel Ben Khadher, Samir Aydi, Mohamed Mars and Jalloul Bouajila
Molecules 2022, 27(10), 3109; https://doi.org/10.3390/molecules27103109 - 12 May 2022
Cited by 10 | Viewed by 2838
Abstract
Vitis vinifera (V. vinifera) is a herbaceous plant, cultivated worldwide and known for its biological benefits. The aim of this study is the investigation of the chemical composition as well as the determination of the biological potential of different grape stem [...] Read more.
Vitis vinifera (V. vinifera) is a herbaceous plant, cultivated worldwide and known for its biological benefits. The aim of this study is the investigation of the chemical composition as well as the determination of the biological potential of different grape stem extracts obtained by maceration and accelerated solvent extraction (ASE). The HPLC analysis of the tested extracts led to the identification of 28 compounds of which 17 were identified for the first time in grape plants, in addition to seven revealed in the stem part for the first time. Twenty-nine volatile molecules have been detected by GC-MS in the grape stem part; among them seven were identified for the first time in the grape plant. For the biological analysis, the ethyl acetate extract (EtOAc) obtained by maceration showed a significant potential regarding antioxidant activity (IC50 = 42.5 µg/mL), anti-Alzheimer (IC50 = 14.1 µg/mL), antidiabetic (IC50 = 13.4 µg/mL), cytotoxic with HCT-116 (IC50 = 12.5 µg/mL), and anti-inflammatory (IC50 = 26.6 µg/mL) activities, as well as showing the highest polyphenol content (207.9 mg GAE/g DW). Full article
Show Figures

Graphical abstract

15 pages, 2352 KiB  
Article
Identification and Optimization of a Novel Taxanes Extraction Process from Taxus cuspidata Needles by High-Intensity Pulsed Electric Field
by Zirui Zhao, Yajing Zhang, Huiwen Meng, Wenlong Li and Shujie Wang
Molecules 2022, 27(9), 3010; https://doi.org/10.3390/molecules27093010 - 07 May 2022
Cited by 5 | Viewed by 1900
Abstract
Taxanes are a series of natural compounds with great application potential in antitumor therapy, whereas the lack of efficient taxanes extraction methods significantly hinders the development of taxanes. The high-intensity pulsed electric field (PEF) is a novel technology used to extract bioactive ingredients [...] Read more.
Taxanes are a series of natural compounds with great application potential in antitumor therapy, whereas the lack of efficient taxanes extraction methods significantly hinders the development of taxanes. The high-intensity pulsed electric field (PEF) is a novel technology used to extract bioactive ingredients from food and other natural products. However, the prospect of using PEF for taxanes extraction remains to be elucidated. Herein, we extracted taxanes from Taxus cuspidata via PEF and explored the effects of seven extraction conditions on the yields of target compounds. The Placket–Burman design (PBD) assay revealed that electric field strength, pulse number, and particle size are key factors for taxanes extraction. The response surface methodology (RSM) and back-propagation neural network conjugated with genetic algorithm (GA-BP) were further used to model and predict the optimal extraction conditions, and GA-BP exerted higher reliability, leading to a maximum extraction yield of 672.13 μg/g under electric field strength of 16 kV/cm, pulse number of 8, particle size of 160 meshes, solid–liquid ratio of 1:60, a single extraction, centrifugal speed of 8000 r/min, and flow rate of 7 mL/min, which was 1.07–1.84 folds that of control, solid–liquid extraction (SL), and ultrasonic extraction (US) groups. Additionally, the scanning electron microscopy (SEM) results indicated that the sample particles extracted by PEF method exhibited a coarser surface morphology. Thus, we present for the first time that PEF is feasible for the extraction of taxanes from Taxus cuspidata and highlight the application value of the PBD, RSM, and GA-BP models in parameters optimization during extraction process. Full article
Show Figures

Figure 1

18 pages, 2137 KiB  
Article
Chemometric Investigation and Antimicrobial Activity of Salvia rosmarinus Spenn Essential Oils
by Saoussan Annemer, Abdellah Farah, Hamide Stambouli, Amine Assouguem, Mikhlid H. Almutairi, Amany A. Sayed, Ilaria Peluso, Taoufik Bouayoun, Nehal Ahmed Talaat Nouh, Abdelhakim El Ouali Lalami and Yassine Ez zoubi
Molecules 2022, 27(9), 2914; https://doi.org/10.3390/molecules27092914 - 03 May 2022
Cited by 11 | Viewed by 2242
Abstract
To ensure the better production and sustainable management of natural resources, a chemometric investigation was conducted to examine the effect of cooperative and harvesting periods on the crop yields and chemical compositions of Salvia rosmarinus Spenn essential oils in the Oriental region of [...] Read more.
To ensure the better production and sustainable management of natural resources, a chemometric investigation was conducted to examine the effect of cooperative and harvesting periods on the crop yields and chemical compositions of Salvia rosmarinus Spenn essential oils in the Oriental region of Morocco. The samples were collected from three cooperatives over nine time periods from January 2018 to April 2019. The chemical composition of Salvia rosmarinus Spenn essential oils was analyzed by gas chromatography coupled with mass spectrometry. The data from this study were processed by multivariate analyses, including principal component analysis (PCA) and hierarchical cluster analysis (HCA). The disc diffusion technique and a determination of the minimal inhibitory concentration were performed to study the antibacterial properties of the oils. Statistical analysis showed that the cooperative and harvest period have a significant effect on yields. The highest yield of essential oil was recorded in April 2019 at cooperative C1. The PCA and the HCA results were divided into two groups: Group A for the summer season and group B for the winter season. The samples collected during summer were characterized by a high amount of 1,8-cineole component and a high yield of essential oil, whereas the samples collected during winter were qualified by a high amount of α-pinene component and a low yield of essential oil. The antibacterial activity of Salvia rosmarinus Spenn essential oils showed that Mycobacterium smegmatis ATCC23857 and Bacillus subtilis ATCC 23857 are the most susceptible strains, stopping growth at 1/500 (v/v). The least susceptible strain is Escherichia coli ATCC25922, with an MIC value corresponding to 1/250 (v/v). The findings of this study could have a positive economic impact on the exploitation of rosemary in the Oriental region, especially during the best harvest periods, as they indicate how to obtain the best yields of oils richest in 1,8-cineole and α-pinene chemotypes. Full article
Show Figures

Figure 1

18 pages, 6562 KiB  
Article
Secretory Products in Petals of Centaurea cyanus L. Flowers: A Histochemistry, Ultrastructure, and Phytochemical Study of Volatile Compounds
by Aneta Sulborska-Różycka, Elżbieta Weryszko-Chmielewska, Beata Polak, Beata Stefańczyk, Anna Matysik-Woźniak and Robert Rejdak
Molecules 2022, 27(4), 1371; https://doi.org/10.3390/molecules27041371 - 17 Feb 2022
Cited by 3 | Viewed by 2274
Abstract
(1) Background: Centaurea cyanus L. is a medicinal plant whose flowers are widely used in herbal medicine. The aim of the study was to localise flower tissues that are responsible for the production of secretory products in petals and to analyse the volatile [...] Read more.
(1) Background: Centaurea cyanus L. is a medicinal plant whose flowers are widely used in herbal medicine. The aim of the study was to localise flower tissues that are responsible for the production of secretory products in petals and to analyse the volatile compounds. The volatile compounds of the flowers of this species have not been investigated to date. (2) Methods: Light, fluorescence, scanning and transmission electron microscopy techniques were used in the study. Lipophilic compounds were localised in the tissues using histochemical assays. Volatile compounds were determined with the use of solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). (3) Results: The study showed production of secretion in the petal parenchyma, whose ultrastructure has features of a secretory tissue. The lipophilic secretion was localised in the cells and intercellular spaces of the parenchyma and in the walls and surface of epidermal cells, where it accumulated after release through cuticle microchannels. Sesquiterpenes were found to constitute the main group of volatile compounds, with the highest content of β-caryophyllene (26.17%) and α-humulene (9.77%). (4) Conclusions: Given the presence of some volatile components that are often found in resins (caryophyllene, delta-cadinene) and the abundant secretion residues on the epidermal surface, we suppose that the C. cyanus secretion released by the flowers is a resinaceous mixture (oleoresin), which is frequently found in plants, as shown by literature data. This secretion may play an important role in the therapeutic effects of C. cyanus flowers. Full article
Show Figures

Graphical abstract

13 pages, 5844 KiB  
Article
Betulonic Acid, as One of the Active Components of the Celastrus orbiculatus Extract, Inhibits the Invasion and Metastasis of Gastric Cancer Cells by Mediating Cytoskeleton Rearrangement In Vitro
by Zewen Chu, Yuanyuan Luo, Tengyang Ni, Miao Zhu, Xinyi Feng, Yanqing Liu and Haibo Wang
Molecules 2022, 27(3), 1025; https://doi.org/10.3390/molecules27031025 - 02 Feb 2022
Cited by 2 | Viewed by 1825
Abstract
Gastric cancer is a type of malignant tumor that seriously threatens human life and health. Invasion and metastasis present difficulties in the treatment of gastric cancer, and the remodeling of the tumor cytoskeleton plays an important role in mediating the ability of tumor [...] Read more.
Gastric cancer is a type of malignant tumor that seriously threatens human life and health. Invasion and metastasis present difficulties in the treatment of gastric cancer, and the remodeling of the tumor cytoskeleton plays an important role in mediating the ability of tumor cells to achieve invasion and metastasis. Previous experimental results suggest that Celastrus orbiculatus extract can regulate cytoskeletal remodeling in gastric cancer, but the active component has not been determined. Betulonic acid, as an effective component of COE, inhibits the invasion and metastasis of gastric cancer cells by regulating cytoskeletal remodeling in vitro; its specific mechanisms have been studied here. After betulonic acid was dissolved, it was diluted to various working concentrations in RPMI-1640 medium and added to AGS, HGC-27 and GES-1 cell lines. Cell viability was assessed by CCK-8 and colony formation assays. Cytoskeleton staining was used to detect changes in cytoskeleton morphology. Functional assays including wound healing assays and transwell assays were used to detect the invasion and migration of cells. The effect of betulonic acid on cell invasion and migration was clearly and precisely observed by high-content imaging technology. Western blotting was used to detect the regulation of matrix metalloproteinase-related proteins and epithelial–mesenchymal transformation-related proteins. We found that betulonic acid inhibited the migration and invasion of gastric cancer cells. Therefore, betulonic acid inhibits the invasion and metastasis of gastric cancer cells by mediating cytoskeletal remodeling and regulating epithelial mesenchymal transformation. Full article
Show Figures

Figure 1

Review

Jump to: Research

45 pages, 7050 KiB  
Review
Advances and Challenges in Plant Sterol Research: Fundamentals, Analysis, Applications and Production
by Dmitry D. Evtyugin, Dmitry V. Evtuguin, Susana Casal and Maria Rosário Domingues
Molecules 2023, 28(18), 6526; https://doi.org/10.3390/molecules28186526 - 08 Sep 2023
Cited by 1 | Viewed by 1269
Abstract
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. [...] Read more.
Plant sterols (PS) are cholesterol-like terpenoids widely spread in the kingdom Plantae. Being the target of extensive research for more than a century, PS have topped with evidence of having beneficial effects in healthy subjects and applications in food, cosmetic and pharmaceutical industries. However, many gaps in several fields of PS’s research still hinder their widespread practical applications. In fact, many of the mechanisms associated with PS supplementation and their health benefits are still not fully elucidated. Furthermore, compared to cholesterol data, many complex PS chemical structures still need to be fully characterized, especially in oxidized PS. On the other hand, PS molecules have also been the focus of structural modifications for applications in diverse areas, including not only the above-mentioned but also in e.g., drug delivery systems or alternative matrixes for functional foods and fats. All the identified drawbacks are also superimposed by the need of new PS sources and technologies for their isolation and purification, taking into account increased environmental and sustainability concerns. Accordingly, current and future trends in PS research warrant discussion. Full article
Show Figures

Figure 1

19 pages, 1553 KiB  
Review
Value-Added Products from Coffee Waste: A Review
by Yoon-Gyo Lee, Eun-Jin Cho, Shila Maskey, Dinh-Truong Nguyen and Hyeun-Jong Bae
Molecules 2023, 28(8), 3562; https://doi.org/10.3390/molecules28083562 - 18 Apr 2023
Cited by 15 | Viewed by 8193
Abstract
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can [...] Read more.
Coffee waste is often viewed as a problem, but it can be converted into value-added products if managed with clean technologies and long-term waste management strategies. Several compounds, including lipids, lignin, cellulose and hemicelluloses, tannins, antioxidants, caffeine, polyphenols, carotenoids, flavonoids, and biofuel can be extracted or produced through recycling, recovery, or energy valorization. In this review, we will discuss the potential uses of by-products generated from the waste derived from coffee production, including coffee leaves and flowers from cultivation; coffee pulps, husks, and silverskin from coffee processing; and spent coffee grounds (SCGs) from post-consumption. The full utilization of these coffee by-products can be achieved by establishing suitable infrastructure and building networks between scientists, business organizations, and policymakers, thus reducing the economic and environmental burdens of coffee processing in a sustainable manner. Full article
Show Figures

Graphical abstract

18 pages, 344 KiB  
Review
In Vitro Cytotoxic Activity of African Plants: A Review
by Isabel Canga, Pedro Vita, Ana Isabel Oliveira, María Ángeles Castro and Cláudia Pinho
Molecules 2022, 27(15), 4989; https://doi.org/10.3390/molecules27154989 - 05 Aug 2022
Cited by 13 | Viewed by 2309
Abstract
In African countries, cancer not only is a growing problem, but also a challenge because available funding and resources are limited. Therefore, African medicinal plants play a significant role in folk medicine and some of them are traditionally used for the treatment of [...] Read more.
In African countries, cancer not only is a growing problem, but also a challenge because available funding and resources are limited. Therefore, African medicinal plants play a significant role in folk medicine and some of them are traditionally used for the treatment of cancer. The high mortality rate and adverse effects associated with cancer treatments have encouraged the search for novel plant-based drugs, thus, some African plants have been studied in recent years as a source of molecules with proven cytotoxicity. This review aims to discuss the cytotoxic activity, in vitro, of African plant crude extracts against cancer cell lines. For the period covered by this review (2017–2021) twenty-three articles were found and analyzed, which included a total of 105 plants, where the main cell lines used were those of breast cancer (MCF-7 and MDA-MBA-231) and colorectal cancer (HCT-116 and Caco-2), which are among the most prevalent cancers in Africa. In these studies, the plant crude extracts were obtained using different solvents, such as ethanol, methanol, or water, with variable results and IC50 values ranging from <20 µg/mL to >200 µg/mL. Water is the preferred solvent for most healers in African countries, however, in some studies, the aqueous extracts were the least potent. Apoptosis and the induction of cell cycle arrest may explain the cytotoxic activity seen in many of the plant extracts studied. Considering that the criteria of cytotoxicity activity for the crude extracts, as established by the American National Cancer Institute (NCI), is an IC50 < 30 μg/mL, we conclude that many extracts from the African flora could be a promising source of cytotoxic agents. Full article
Show Figures

Graphical abstract

Back to TopTop