molecules-logo

Journal Browser

Journal Browser

Extraction, Identification and Isolation of Chemical Compounds in Natural Matrices

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (15 July 2023) | Viewed by 17936

Special Issue Editor

Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
Interests: food technologies; bioactive compounds; bio-waste recovery; food innovation; sustainable research
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Natural matrices are rich sources of bioactive compounds that have been extensively explored. Several studies have been carried out to explore their focused bioactive potential for various applications aiming at the commitment to improve health and wellbeing. However, for the full exploitation of the potential of these sources, it is necessary that complete studies of extraction, identification, and isolation of chemical compounds from natural matrices are carried out. Although there is currently a wide range of natural compounds on the market, there is a need to identify and isolate bioactive molecules from different natural matrices. In addition, it is necessary to define the best conditions that guarantee greater extractability of these compounds, identifying the most sustainable and innovative technological strategies. In this sense, this Special Issue aims to identify and gather works on the most recent natural matrices explored, optimizations of extraction of chemical compounds of interest, their identification and isolation, as well as the exploration of their bioactive potential as an interest of application as promoters of health and wellbeing.

Dr. Cristina Caleja
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • extraction
  • health applications
  • natural sources
  • sustainable technology

Related Special Issue

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2943 KiB  
Article
Comparison of Bioactive Compounds and Antioxidant Activities in Differentially Pigmented Cerasus humilis Fruits
by Rui Yang, Yan Yang, Yang Hu, Lu Yin, Pengyan Qu, Pengfei Wang, Xiaopeng Mu, Shuai Zhang, Peng Xie, Chunzhen Cheng and Jiancheng Zhang
Molecules 2023, 28(17), 6272; https://doi.org/10.3390/molecules28176272 - 27 Aug 2023
Cited by 1 | Viewed by 746
Abstract
Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the [...] Read more.
Chinese dwarf cherry (Cerasus humilis) is a wild fruit tree and medicinal plant endemic to China. Its fruits are rich in various bioactive compounds, such as flavonoids and carotenoids, which contribute greatly to their high antioxidant capacity. In this study, the contents of bioactive substances (chlorophyll, carotenoids, ascorbic acid, anthocyanin, total flavonoids, and total phenols), antioxidant capacities, 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonicacid) (ABTS+) scavenging ability, and ferric-reducing antioxidant power (FRAP)) in differentially pigmented C. humilis fruits of four varieties were determined and compared. The results revealed that anthocyanin, total flavonoids and total phenols were the three main components responsible for the antioxidant activity of C. humilis fruits. ‘Jinou No.1’ fruits with dark red peel and red flesh had the highest contents of anthocyanin, total flavonoids, and total phenols, as well as the highest antioxidant capacities; ‘Nongda No.5’ fruits with yellow-green peel and yellow flesh had the highest contents of carotenoids and chlorophyll, while ‘Nongda No.6’ fruit had the highest ascorbic acid content. To further reveal the molecular mechanism underlying differences in the accumulation of carotenoids and flavonoids among differentially pigmented C. humilis fruits, the expression patterns of structural genes involved in the biosynthesis of the two compounds were investigated. Correlation analysis results revealed that the content of carotenoids in C. humilis fruits was very significantly positively correlated with the expression of the ChCHYB, ChZEP, ChVDE, ChNSY, ChCCD1, ChCCD4, ChNCED1, and ChNCED5 genes (p < 0.01) and significantly negatively correlated with the expression of ChZDS (p < 0.05). The anthocyanin content was very significantly positively correlated with ChCHS, ChFLS, and ChUFGT expression (p < 0.01). The total flavonoid content was very significantly positively correlated with the expression of ChCHS, ChUFGT, and ChC4H (p < 0.01) and significantly positively correlated with ChFLS expression (p < 0.05). This study can provide a basis for understanding the differences in the accumulation of bioactive substances, and is helpful for clarifying the mechanisms underlying the accumulation of various carotenoids and flavonoids among differentially pigmented C. humilis fruits. Full article
Show Figures

Graphical abstract

17 pages, 1534 KiB  
Article
Carotenoids and Fatty Acids Obtained from Paprika Capsicum annuum by Supercritical Carbon Dioxide and Ethanol as Co-Extractant
by Dorota Kostrzewa, Barbara Mazurek, Marcin Kostrzewa and Emilia Jóźwik
Molecules 2023, 28(14), 5438; https://doi.org/10.3390/molecules28145438 - 16 Jul 2023
Cited by 1 | Viewed by 1200
Abstract
Paprika Capsicum annuum L. contains useful molecules such as carotenoids and polyunsaturated fatty acids, which are considered high-value functional and health ingredients. To obtain these compounds, paprika was extracted using different methods (Soxhlet, SC-CO2, and SC-CO2 with co-extractant) and at different [...] Read more.
Paprika Capsicum annuum L. contains useful molecules such as carotenoids and polyunsaturated fatty acids, which are considered high-value functional and health ingredients. To obtain these compounds, paprika was extracted using different methods (Soxhlet, SC-CO2, and SC-CO2 with co-extractant) and at different parameters. The results showed that the carotenoid content decreased with the addition of the co-extractant while the fatty acid content and yield increased. It was found that the highest carotenoid content (capsanthin > β-carotene > capsorubin > zeaxanthin > β-cryptoxanthin > violaxanthin) was obtained at 50 °C/45 MPa for SC-CO2 extraction. Paprika extract rich in polyunsaturated fatty acids (linoleic, oleic, and α-linolenic acid) was obtained at 40 °C/25 MPa for SC-CO2 with co-extractant. The PUFA/SFA ratios for paprika extract were in agreement with the recommendations of nutritional guidelines. The use of SC-CO2 for the extraction of Capsicum annuum allowed us to obtain a high-quality, rich in carotenoids and polyunsaturated fatty acids, extract that can be used as a substrate in the industry. Full article
Show Figures

Graphical abstract

10 pages, 1742 KiB  
Article
Delving into the Mechanisms of Sponge-Associated Enterobacter against Staphylococcal Biofilms
by Anna Luiza Bauer Canellas, Bruno Francesco Rodrigues de Oliveira, Suzanne de Oliveira Nunes, Camila Adão Malafaia, Ana Claudia F. Amaral, Daniel Luiz Reis Simas, Ivana Correa Ramos Leal and Marinella Silva Laport
Molecules 2023, 28(12), 4843; https://doi.org/10.3390/molecules28124843 - 19 Jun 2023
Viewed by 1008
Abstract
Staphylococci are one of the most common causes of biofilm-related infections. Such infections are hard to treat with conventional antimicrobials, which often lead to bacterial resistance, thus being associated with higher mortality rates while imposing a heavy economic burden on the healthcare system. [...] Read more.
Staphylococci are one of the most common causes of biofilm-related infections. Such infections are hard to treat with conventional antimicrobials, which often lead to bacterial resistance, thus being associated with higher mortality rates while imposing a heavy economic burden on the healthcare system. Investigating antibiofilm strategies is an area of interest in the fight against biofilm-associated infections. Previously, a cell-free supernatant from marine-sponge-associated Enterobacter sp. inhibited staphylococcal biofilm formation and dissociated the mature biofilm. This study aimed to identify the chemical components responsible for the antibiofilm activity of Enterobacter sp. Scanning electron microscopy confirmed that the aqueous extract at the concentration of 32 μg/mL could dissociate the mature biofilm. Liquid chromatography coupled with high-resolution mass spectrometry revealed seven potential compounds in the aqueous extract, including alkaloids, macrolides, steroids, and triterpenes. This study also suggests a possible mode of action on staphylococcal biofilms and supports the potential of sponge-derived Enterobacter as a source of antibiofilm compounds. Full article
Show Figures

Graphical abstract

16 pages, 1002 KiB  
Article
Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils
by Rabab Ez-Zriouli, Houda ElYacoubi, Hamada Imtara, Abdelhalim Mesfioui, Aboubaker ElHessni, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, Fahd A. Nasr, Zineb Benziane Ouaritini and Atmane Rochdi
Molecules 2023, 28(7), 2974; https://doi.org/10.3390/molecules28072974 - 27 Mar 2023
Cited by 9 | Viewed by 1794
Abstract
The essential oils yield of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis was different. C. ambrosioides gave a relatively higher yield (2.1 ± 0.1%), while that of C. atlantica was low (1.0 ± 0.1%) and that of E. camaldulensis was lower (0.75 ± 0.1% [...] Read more.
The essential oils yield of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis was different. C. ambrosioides gave a relatively higher yield (2.1 ± 0.1%), while that of C. atlantica was low (1.0 ± 0.1%) and that of E. camaldulensis was lower (0.75 ± 0.1% of dry matter). The active ingredients of the essential oils and some of their biological effects were also determined. The characterization of their chemical compositions showed that the three essences have different chemical profiles: C. atlantica was richer in sesquiterpenes (β-Himachalene (54.21%) and γ -Himachalene (15.54%)), C. ambrosioides was very rich in monoterpene peroxides and monoterpenes (α-Terpinene (53.4%), ascaridole (17.7%) and ρ-Cymene (12.1%)) and E. camaldulensis was very rich in monoterpene compounds and monoterpenols (p-cymene (35.11%), γ-Eudesmol (11.9%), L-linalool (11.51%) and piperitone (10.28%)). The in vitro measurement of antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) reduction assay showed a significant performance of the eucalyptus oil and average performance of the other two (C. atlantica and C. ambrosioides). The in vitro bio-test for their antimicrobial effects showed that the antibacterial activity differed depending on the essential oil and the concentration used, and that their bactericidal efficacy was similar or superior to that of synthetic antibiotics. The toxicity test on rats revealed that the LD50 of the three essential oils was 500 mg/kg body weight, which classifies them as category four cytotoxic natural products at high doses. Full article
Show Figures

Figure 1

21 pages, 4853 KiB  
Article
Elucidation of Natural Components of Gardenia thunbergia Thunb. Leaves: Effect of Methanol Extract and Rutin on Non-Alcoholic Fatty Liver Disease
by Eman M. EL-Shial, Amal Kabbash, Mona El-Aasr, Ola A. El-Feky and Suzy A. El-Sherbeni
Molecules 2023, 28(2), 879; https://doi.org/10.3390/molecules28020879 - 16 Jan 2023
Cited by 2 | Viewed by 2037
Abstract
The rising prevalence of non-alcoholic fatty liver disease NAFLD has strained the healthcare system. Natural products could solve this problem, so the current study focused on the impact of G. thunbergia Thunb. against this ailment. LC–ESI–MS/MS revealed the phytochemical profile of the methanol [...] Read more.
The rising prevalence of non-alcoholic fatty liver disease NAFLD has strained the healthcare system. Natural products could solve this problem, so the current study focused on the impact of G. thunbergia Thunb. against this ailment. LC–ESI–MS/MS revealed the phytochemical profile of the methanol extract from Gardenia thunbergia leaves (GME). Forty-eight compounds were tentatively identified, and stigmasterol, fucosterol, ursolic acid, and rutin were isolated. The separation of the last three compounds from this plant had not before been achieved. The anti-NAFLD effect of the methanol extract of the leaves of G. thunbergia, and its major metabolite, rutin, was assessed in mice against high-fructose diet (HFD)-induced obesity. Male mice were allocated into nine groups: (1) saline (control), (2) 30% fructose (diseased group), (3) HFD, and 10 mg/kg of simvastatin. Groups 4–6 were administered HFD and rutin 50, 75, and 100 mg/kg. Groups (7–9) were administered HFD and methanol extract of leaves 100, 200, and 300 mg/kg. Methanol extract of G. thunbergia leaves at 200 mg/kg, and rutin at 75 mg/kg significantly reduced HFD-induced increments in mice weight and hepatic damage indicators (AST and ALT), steatosis, and hypertrophy. The levels of total cholesterol, LDL–C, and triglycerides in the blood decreased. In addition, the expressions of CYP2E1, JNK1, and iNOS in the diseased mice were downregulated. This study found that GME and rutin could ameliorate NAFLD in HFD-fed mice, with results comparable to simvastatin, validating G. thunbergia’s hepatoprotective effects. Full article
Show Figures

Figure 1

13 pages, 2904 KiB  
Article
Comparison of the Content of Extractives in the Bark of the Trunk and the Bark of the Branches of Silver Fir (Abies alba Mill.)
by Viljem Vek, Tjaša Šmidovnik, Miha Humar, Ida Poljanšek and Primož Oven
Molecules 2023, 28(1), 225; https://doi.org/10.3390/molecules28010225 - 27 Dec 2022
Cited by 5 | Viewed by 1286
Abstract
The main objective of our study was to investigate the possible differences in the chemical composition of extractives from the bark of silver fir (Abies alba) with respect to the location of the bark sample on the tree, viz. differences in [...] Read more.
The main objective of our study was to investigate the possible differences in the chemical composition of extractives from the bark of silver fir (Abies alba) with respect to the location of the bark sample on the tree, viz. differences in extract composition between stem bark and branch bark samples. Extractives in the bark samples from branches, depending on the distance of the sample from the trunk, were also analysed, and the stem bark samples were analysed with respect to their inner and outer parts. The results of the chemical analysis of extractives were supported by information about their antifungal and antioxidant effects. After felling and sampling silver fir trees, the collected bark samples were ground and freeze-dried. Extraction of bark samples was followed by a system of accelerated extraction using only water as a solvent. The extracts were analysed chemically using gravimetry, spectrophotometry and chromatography. Free-radical-scavenging activity was measured using the DPPH method, and the antifungal effect towards three moulds and three wood-decaying fungi was investigated with antifungal assay using the agar well diffusion method. It was found that the moisture content in bark samples decreased intensively just after the bark samples were peeled off the stem. Detailed chromatographic analysis showed that the bark extracts contained 14 compounds, among which phenolic acids, flavonoids and lignans were found to be the characteristic ones. The content of hydrophilic extractives in the branch bark samples decreased with increasing distance of the sample location from the tree stem. The largest amounts of phenolic extractives were measured in stem bark, followed by branch bark sampled at the point at which the branch entered the tree. Analysis of the separated parts of the bark showed that the outer layers of stem bark contained larger amounts of phenolic extractives, as well catechin and epicatechin, compared to the inner layers. Concentrated extracts of branch bark showed the largest free-radical-scavenging activity among the investigated samples, while strong antifungal effects of the bark extract were not found. Full article
Show Figures

Figure 1

18 pages, 4458 KiB  
Article
Phytochemical Characterization, Antioxidant and Anti-Inflammatory Effects of Cleome arabica L. Fruits Extract against Formalin Induced Chronic Inflammation in Female Wistar Rat: Biochemical, Histological, and In Silico Studies
by Ikram Allagui, Mabrouk Horchani, Nourhene Zammel, Maroua Jalouli, Abdelfatteh Elfeki, Choumous Kallel, Lamjed Mansour, Salah Alwasel, Abdel Halim Harrath, Hichem Ben Jannet, Mohamed Salah Allagui and Kheiria Hcini
Molecules 2023, 28(1), 26; https://doi.org/10.3390/molecules28010026 - 21 Dec 2022
Cited by 6 | Viewed by 2047
Abstract
In recent decades, the use of herbs and plants has been of great interest, as they have been the sources of natural products, commonly named as bioactive compounds. In specific, the natural compounds from the Capparaceae family which has been proved to have [...] Read more.
In recent decades, the use of herbs and plants has been of great interest, as they have been the sources of natural products, commonly named as bioactive compounds. In specific, the natural compounds from the Capparaceae family which has been proved to have antioxidant, anti-inflammatory, antimicrobial and anti-carcinogenic activities, by several studies. Cleome arabica L. (CA) specie is the most used medicinal plants in Tunisia and elsewhere in North African countries for treatment of various diseases including diabetes, rheumatism, inflammation, cancer, and digestive disorders. The current work was undertaken to estimate the total phenolic, flavonoid and condensed tannin contents, to identify and quantify the polyphenolic compounds, and to evaluate the antioxidant and the anti-inflammatory proprieties of CA fruits extract against formalin induced chronic inflammation in Female Wistar rats. In fact, the antioxidant activity was tested by Diphenyl-1-Picrylhydrazyl free radical scavenging (DPPH), Ferric reducing antioxidant power (FRAP) and Nitric Oxide radical (NO·). Anti-inflammatory effect of fruits extract was examined using formalin (2%) induced paw edema in rats. Molecular docking tools were used to investigate the interaction of some compounds from CA fruits extract with the cyclooxygenase-2 (COX-2) target protein. Our results showed that, the total phenolic, flavonoid and tannins contents, which were assessed by the Folin-Ciocalteu, Quercetin, and Catechin methods, respectively, were 230.22 mg gallic acid equivalent/g dry weight (mg GAE/g DW), 55.08 mg quercetin equivalent/g dry weight (QE/g DW) and 15.17 mg catechin equivalents/g dry weight (CatE/g DW), respectively. HPLC analysis revealed the presence of five polyphenolic compounds whose catechin was found to be the most abundant compounds. The antioxidant activity of extract was quantified by DPPH, FRAP and NO· tests and IC50 reached the values of 3.346 mg/mL, 2.306 and 0.023 mg/mL, respectively. Cleome fruits ameliorated the histological integrity of the skin and alleviated the disruptions in hematological parameters (WBC, LYM, RBC, and HGB), inflammatory cytokines (IL-1β, IL-6, TNF-α), C-reactive protein, and some oxidative stress markers (TBARS (−49%) and AOPP (−42%) levels, SOD (+33%) and GPx (+75%) activities, and GSH (+49%) content) induced by formalin injection. Moreover, the in-silico investigation had shown that CA fruits extract compounds have a stronger interaction with COX-2 active site, more than the reference drug “indomethacin” (two H-bonds). Our research gives pharmacological backing to the healthcare utilization of Cleome plant in the treatment of inflammatory diseases and oxidative harm. Full article
Show Figures

Figure 1

21 pages, 5878 KiB  
Article
Bioactivity Guided Study for the Isolation and Identification of Antidiabetic Compounds from Edible Seaweed—Ulva reticulata
by Pullikaparambil Sasidharan Unnikrishnan, Andhere Animish, Gunabalan Madhumitha, Krishnamurthy Suthindhiran and Mangalam Achuthananthan Jayasri
Molecules 2022, 27(24), 8827; https://doi.org/10.3390/molecules27248827 - 12 Dec 2022
Cited by 5 | Viewed by 1909
Abstract
Managing diabetes is challenging due to the complex physiology of the disease and the numerous complications associated with it. As part of the ongoing search for antidiabetic chemicals, marine algae have been demonstrated to be an excellent source due to their medicinal properties. [...] Read more.
Managing diabetes is challenging due to the complex physiology of the disease and the numerous complications associated with it. As part of the ongoing search for antidiabetic chemicals, marine algae have been demonstrated to be an excellent source due to their medicinal properties. In this study, Ulva reticulata extracts were investigated for their anti-diabetic effect by examining its inhibitory effects on α-amylase, α-glucosidase, and DPP-IV and antioxidant (DPPH) potential in vitro and its purified fraction using animal models. Among the various solvents used, the Methanolic extract of Ulva reticulata (MEUR) displayed the highest antidiabetic activity in both in vitro and in vivo; it showed no cytotoxicity and hence was subjected to bioassay-guided chromatographic separation. Among the seven isolated fractions (F1 to F7), the F4 (chloroform) fraction exhibited substantial total phenolic content (65.19 μg mL−1) and total flavonoid content (20.33 μg mL−1), which showed the promising inhibition against α-amylase (71.67%) and α-glucosidase (38.01%). Active fraction (F4) was further purified using column chromatography, subjected to thin-layer chromatography (TLC), and characterized by spectroscopy techniques. Upon structural elucidation, five distinct compounds, namely, Nonane, Hexadecanoic acid, 1-dodecanol, Cyclodecane methyl, and phenol, phenol, 3,5-bis(1,1-dimethylethyl) were identified. The antidiabetic mechanism of active fraction (F4) was further investigated using various in vitro and in vivo models. The results displayed that in in vitro both 1 and 24 h in vitro cultures, the active fraction (F4) at a concentration of 100 μg mL−1 demonstrated maximum glucose-induced insulin secretion at 4 mM (0.357 and 0.582 μg mL−1) and 20 mM (0.848 and 1.032 μg mL−1). The active fraction (F4) reduces blood glucose levels in normoglycaemic animals and produces effects similar to that of standard acarbose. Active fraction (F4) also demonstrated outstanding hypoglycaemic activity in hyperglycemic animals at a dose of 10 mg/kg B.wt. In the STZ-induced diabetic rat model, the active fraction (F4) showed a (61%) reduction in blood glucose level when compared to the standard drug glibenclamide (68%). The results indicate that the marine algae Ulva reticulata is a promising candidate for managing diabetes by inhibiting carbohydrate metabolizing enzymes and promoting insulin secretion. Full article
Show Figures

Figure 1

52 pages, 117715 KiB  
Article
Methods for Rapid Screening of Biologically Active Compounds Present in Plant-Based Extracts
by Katarzyna Godlewska, Paweł Pacyga, Antoni Szumny, Anna Szymczycha-Madeja, Maja Wełna and Izabela Michalak
Molecules 2022, 27(20), 7094; https://doi.org/10.3390/molecules27207094 - 20 Oct 2022
Cited by 3 | Viewed by 2606
Abstract
In recent years, there has been an increased interest in products of natural origin. The extraction procedure of bioactive compounds from plant matrices is a crucial step in the development of useful new bioproducts for everyday life. The utilisation of analyses enabling the [...] Read more.
In recent years, there has been an increased interest in products of natural origin. The extraction procedure of bioactive compounds from plant matrices is a crucial step in the development of useful new bioproducts for everyday life. The utilisation of analyses enabling the rapid identification of the presence of a given group of compounds can be helpful in the early stages of the development of new products in order to save time and reduce costs. Within this article, we have presented a comparison of different, accessible methods for the identification of various bioactive compounds, e.g., saponins, carboxylic acids, oils and fats, proteins and amino acids, steroids, and alkaloids in plant-based extracts. Additionally, the multielemental composition of extracts was also examined. The applied methods allowed for confirmation of the presence of biologically active compounds in bio-products obtained by ultrasound-assisted extraction. At a later stage, these procedures should be supplemented by advanced analytical techniques in order to determine the plant chemicals’ content qualitatively and quantitatively. Full article
24 pages, 826 KiB  
Article
From Tradition to Health: Chemical and Bioactive Characterization of Five Traditional Plants
by Paula Garcia-Oliveira, Anxo Carreira-Casais, Eliana Pereira, Maria Inês Dias, Carla Pereira, Ricardo C. Calhelha, Dejan Stojković, Marina Sokovic, Jesus Simal-Gandara, Miguel A. Prieto, Cristina Caleja and Lillian Barros
Molecules 2022, 27(19), 6495; https://doi.org/10.3390/molecules27196495 - 01 Oct 2022
Cited by 8 | Viewed by 1809
Abstract
Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in [...] Read more.
Several scientific studies have been proving the bioactive effects of many aromatic and medicinal plants associated with the presence of a high number of bioactive compounds, namely phenolic compounds. The antioxidant, anti-inflammatory, and antimicrobial capacities of these molecules have aroused high interest in some industrial sectors, including food, pharmaceuticals, and cosmetics. This work aimed to determine the phenolic profiles of the infusions and hydroethanolic extracts of five plants (Carpobrotus edulis, Genista tridentata, Verbascum sinuatum, Cytisus multiflorus, and Calluna vulgaris) that have been employed in many traditional preparations. In addition, the antioxidant, antimicrobial, anti-inflammatory, and anti-tumoral activity of each different preparation was evaluated using in vitro assays. The HPLC-DAD-ESI/MS profile revealed the presence of eighty phenolic compounds, belonging to seven different families of compounds. Regarding antioxidant properties, the hydroethanolic extract of C. edulis showed a potent effect in the TBARS assay (IC50 = 1.20 µg/mL), while G. tridentata hydroethanolic extract achieved better results in the OxHLIA test (IC50 = 76 µg/mL). For cytotoxic and anti-inflammatory results, V. sinuatum infusions stood out significantly, with GI50 = 59.1–92.1 µg/mL and IC50 = 121.1 µg/mL, respectively. Finally, C. edulis hydroethanolic extract displayed the most relevant antibacterial activity, showing MBC values of 0.25–1 mg/mL, while G. tridentata hydroethanolic extract exerted the greatest antifungal effects (MFC of 0.5–1 mg/mL). The results of this study deepen the knowledge of the phenolic profiles and also provide evidence on the bioactive properties of the species selected, which could be considered highly valuable options for research and application in several sectors, namely food, cosmetics, and pharmaceuticals. Full article
Show Figures

Graphical abstract

Back to TopTop