molecules-logo

Journal Browser

Journal Browser

Special Issue "Advances in Computational Chemistry for Drug Design, Discovery and Screening"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Computational and Theoretical Chemistry".

Deadline for manuscript submissions: 15 November 2023 | Viewed by 35356

Special Issue Editors

Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
Interests: computational drug discovery; molecular simulations; protein structure and functions
Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
Interests: computational biology and chemistry; bioinformatics; medicinal chemistry; structural biology; molecular modeling; molecular dynamics; docking; G-protein-coupled receptors; amyloids; membranes
Special Issues, Collections and Topics in MDPI journals
Department of Chemical Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
Interests: molecular simulations; nanotechnolgy; nanoparticle; nano-bio intefaces

Special Issue Information

Dear Colleagues,

This Special Issue will provide up-to-date information on computational methods and technology in modern drug discovery. Current drug discovery is a long and risky task. It takes at least ten years and one billion dollars. How to speed up drug development and save costs has become an essential topic in the pharmaceutical industry. New advances in computational biology such as molecular modeling, molecular dynamics, virtual screening, and, more recently, artificial intelligence play more and more important roles. Many tedious and time-consuming steps can be replaced or facilitated by these technologies. This could lead to noticeable savings in the costs of modern drug discovery, in terms of both time and finance.

Contributions to this Special Issue may cover all advances related to computational drug discovery, including new target identification, virtual screening, drug design, lead optimization, properties prediction by artificial intelligence, binding energy calculation, WebGL based real-time simulation and data analysis, molecular dynamics simulation, and drug re-purposing. 

Dr. Shuguang Yuan
Prof. Dr. Sławomir Filipek
Dr. Hideya Nakamura
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • computational drug design
  • molecular modeling
  • virtual screening
  • protein–ligand interactions
  • molecular dynamics simulation
  • binding energy calculation
  • artificial intelligence

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Binding Affinity and Mechanisms of Potential Antidepressants Targeting Human NMDA Receptors
Molecules 2023, 28(11), 4346; https://doi.org/10.3390/molecules28114346 - 25 May 2023
Viewed by 267
Abstract
Depression, a mental disorder that plagues the world, is a burden on many families. There is a great need for new, fast-acting antidepressants to be developed. N-methyl-D-aspartic acid (NMDA) is an ionotropic glutamate receptor that plays an important role in learning and memory [...] Read more.
Depression, a mental disorder that plagues the world, is a burden on many families. There is a great need for new, fast-acting antidepressants to be developed. N-methyl-D-aspartic acid (NMDA) is an ionotropic glutamate receptor that plays an important role in learning and memory processes and its TMD region is considered as a potential target to treat depression. However, due to the unclear binding sites and pathways, the mechanism of drug binding lacks basic explanation, which brings great complexity to the development of new drugs. In this study, we investigated the binding affinity and mechanisms of an FDA-approved antidepressant (S-ketamine) and seven potential antidepressants (R-ketamine, memantine, lanicemine, dextromethorphan, Ro 25-6981, ifenprodil, and traxoprodil) targeting the NMDA receptor by ligand–protein docking and molecular dynamics simulations. The results indicated that Ro 25-6981 has the strongest binding affinity to the TMD region of the NMDA receptor among the eight selected drugs, suggesting its potential effective inhibitory effect. We also calculated the critical binding-site residues at the active site and found that residues Leu124 and Met63 contributed the most to the binding energy by decomposing the free energy contributions on a per-residue basis. We further compared S-ketamine and its chiral molecule, R-ketamine, and found that R-ketamine had a stronger binding capacity to the NMDA receptor. This study provides a computational reference for the treatment of depression targeting NMDA receptors, and the proposed results will provide potential strategies for further antidepressant development and is a useful resource for the future discovery of fast-acting antidepressant candidates. Full article
Show Figures

Figure 1

Article
Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach
Molecules 2023, 28(7), 2977; https://doi.org/10.3390/molecules28072977 - 27 Mar 2023
Viewed by 1090
Abstract
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and [...] Read more.
An evaluation of the expression and predictive significance of the MDM2 gene in brain lower-grade glioma (LGG) cancer was carried out using onco-informatics pipelines. Several transcriptome servers were used to measure the differential expression of the targeted MDM2 gene and search mutations and copy number variations. GENT2, Gene Expression Profiling Interactive Analysis, Onco-Lnc, and PrognoScan were used to figure out the survival rate of LGG cancer patients. The protein–protein interaction networks between MDM2 gene and its co-expressed genes were constructed by Gene-MANIA tool. Identified bioactive phytochemicals were evaluated through molecular docking using Schrödinger Suite Software, with the MDM2 (PDB ID: 1RV1) target. Protein–ligand interactions were observed with key residues of the macromolecular target. A molecular dynamics simulation of the novel bioactive compounds with the targeted protein was performed. Phytochemicals targeting MDM2 protein, such as Taxifolin and (-)-Epicatechin, have been shown with more highly stable results as compared to the control drug, and hence, concluded that phytochemicals with bioactive potential might be alternative therapeutic options for the management of LGG patients. Our once informatics-based designed pipeline has indicated that the MDM2 gene may have been a predictive biomarker for LGG cancer and selected phytochemicals possessed outstanding interaction results within the macromolecular target’s active site after utilizing in silico approaches. In vitro and in vivo experiments are recommended to confirm these outcomes. Full article
Show Figures

Figure 1

Article
Identification of Potential Inhibitors for the Treatment of Alkaptonuria Using an Integrated In Silico Computational Strategy
Molecules 2023, 28(6), 2623; https://doi.org/10.3390/molecules28062623 - 14 Mar 2023
Viewed by 1153
Abstract
Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. [...] Read more.
Alkaptonuria (AKU) is a rare genetic autosomal recessive disorder characterized by elevated serum levels of homogentisic acid (HGA). In this disease, tyrosine metabolism is interrupted because of the alterations in homogentisate dioxygenase (HGD) gene. The patient suffers from ochronosis, fractures, and tendon ruptures. To date, no medicine has been approved for the treatment of AKU. However, physiotherapy and strong painkillers are administered to help mitigate the condition. Recently, nitisinone, an FDA-approved drug for type 1 tyrosinemia, has been given to AKU patients in some countries and has shown encouraging results in reducing the disease progression. However, this drug is not the targeted treatment for AKU, and causes keratopathy. Therefore, the foremost aim of this study is the identification of potent and druggable inhibitors of AKU with no or minimal side effects by targeting 4-hydroxyphenylpyruvate dioxygenase. To achieve our goal, we have performed computational modelling using BioSolveIT suit. The library of ligands for molecular docking was acquired by fragment replacement of reference molecules by ReCore. Subsequently, the hits were screened on the basis of estimated affinities, and their pharmacokinetic properties were evaluated using SwissADME. Afterward, the interactions between target and ligands were investigated using Discovery Studio. Ultimately, compounds c and f were identified as potent inhibitors of 4-hydroxyphenylpyruvate dioxygenase. Full article
Show Figures

Figure 1

Article
Rational Computational Approaches in Drug Discovery: Potential Inhibitors for Allosteric Regulation of Mutant Isocitrate Dehydrogenase-1 Enzyme in Cancers
Molecules 2023, 28(5), 2315; https://doi.org/10.3390/molecules28052315 - 02 Mar 2023
Viewed by 1294
Abstract
Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor [...] Read more.
Mutations in homodimeric isocitrate dehydrogenase (IDH) enzymes at specific arginine residues result in the abnormal activity to overproduce D-2 hydroxyglutarate (D-2HG), which is often projected as solid oncometabolite in cancers and other disorders. As a result, depicting the potential inhibitor for D-2HG formation in mutant IDH enzymes is a challenging task in cancer research. The mutation in the cytosolic IDH1 enzyme at R132H, especially, may be associated with higher frequency of all types of cancers. So, the present work specifically focuses on the design and screening of allosteric site binders to the cytosolic mutant IDH1 enzyme. The 62 reported drug molecules were screened along with biological activity to identify the small molecular inhibitors using computer-aided drug design strategies. The designed molecules proposed in this work show better binding affinity, biological activity, bioavailability, and potency toward the inhibition of D-2HG formation compare to the reported drugs in the in silico approach. Full article
Show Figures

Graphical abstract

Article
Virtual Screening of Hepatitis B Virus Pre-Genomic RNA as a Novel Therapeutic Target
Molecules 2023, 28(4), 1803; https://doi.org/10.3390/molecules28041803 - 14 Feb 2023
Viewed by 1208
Abstract
The global burden imposed by hepatitis B virus (HBV) infection necessitates the discovery and design of novel antiviral drugs to complement existing treatments. One attractive and underexploited therapeutic target is ε, an ~85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 3′- [...] Read more.
The global burden imposed by hepatitis B virus (HBV) infection necessitates the discovery and design of novel antiviral drugs to complement existing treatments. One attractive and underexploited therapeutic target is ε, an ~85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 3′- and 5′-ends of the pre-genomic RNA (pgRNA). Binding of the 5′-end ε to the viral polymerase protein (P) triggers two early events in HBV replication: pgRNA and P packaging and reverse transcription. Our recent solution nuclear magnetic resonance spectroscopy structure of ε permits structure-informed drug discovery efforts that are currently lacking for P. Here, we employ a virtual screen against ε using a Food and Drug Administration (FDA)-approved compound library, followed by in vitro binding assays. This approach revealed that the anti-hepatitis C virus drug Daclatasvir is a selective ε-targeting ligand. Additional molecular dynamics simulations demonstrated that Daclatasvir targets ε at its flexible 6-nt priming loop (PL) bulge and modulates its dynamics. Given the functional importance of the PL, our work supports the notion that targeting ε dynamics may be an effective anti-HBV therapeutic strategy. Full article
Show Figures

Figure 1

Article
Theoretical Studies of Leu-Pro-Arg-Asp-Ala Pentapeptide (LPRDA) Binding to Sortase A of Staphylococcus aureus
Molecules 2022, 27(23), 8182; https://doi.org/10.3390/molecules27238182 - 24 Nov 2022
Cited by 1 | Viewed by 776
Abstract
Sortase A (SrtA) of Staphylococcus aureus is a well-defined molecular target to combat the virulence of these clinically important bacteria. However up to now no efficient drugs or even clinical candidates are known, hence the search for such drugs is still relevant and [...] Read more.
Sortase A (SrtA) of Staphylococcus aureus is a well-defined molecular target to combat the virulence of these clinically important bacteria. However up to now no efficient drugs or even clinical candidates are known, hence the search for such drugs is still relevant and necessary. SrtA is a complex target, so many straight-forward techniques for modeling using the structure-based drug design (SBDD) fail to produce the results they used to bring for other, simpler, targets. In this work we conduct theoretical studies of the binding/activity of Leu-Pro-Arg-Asp-Ala (LPRDA) polypeptide, which was recently shown to possess antivirulence activity against S. aureus. Our investigation was aimed at establishing a framework for the estimation of the key interactions and subsequent modification of LPRDA, targeted at non-peptide molecules, with better drug-like properties than the original polypeptide. Firstly, the available PDB structures are critically analyzed and the criteria to evaluate the quality of the ligand–SrtA complex geometry are proposed. Secondly, the docking protocol was investigated to establish its applicability to the LPRDA–SrtA complex prediction. Thirdly, the molecular dynamics studies were carried out to refine the geometries and estimate the stability of the complexes, predicted by docking. The main finding is that the previously reported partially chaotic movement of the β6/β7 and β7/β8 loops of SrtA (being the intrinsically disordered parts related to the SrtA binding site) is exaggerated when SrtA is complexed with LPRDA, which in turn reveals all the signs of the flexible and structurally disordered molecule. As a result, a wealth of plausible LPRDA–SrtA complex conformations are hard to distinguish using simple modeling means, such as docking. The use of more elaborate modeling approaches may help to model the system reliably but at the cost of computational efficiency. Full article
Show Figures

Figure 1

Article
Computational Analysis of Triazole-Based Kojic Acid Analogs as Tyrosinase Inhibitors by Molecular Dynamics and Free Energy Calculations
Molecules 2022, 27(23), 8141; https://doi.org/10.3390/molecules27238141 - 23 Nov 2022
Viewed by 655
Abstract
Molecular docking, molecular dynamics (MD) simulations and the linear interaction energy (LIE) method were used here to predict binding modes and free energy for a set of 1,2,3-triazole-based KA analogs as potent inhibitors of Tyrosinase (TYR), a key metalloenzyme of the melanogenesis process. [...] Read more.
Molecular docking, molecular dynamics (MD) simulations and the linear interaction energy (LIE) method were used here to predict binding modes and free energy for a set of 1,2,3-triazole-based KA analogs as potent inhibitors of Tyrosinase (TYR), a key metalloenzyme of the melanogenesis process. Initially, molecular docking calculations satisfactorily predicted the binding mode of evaluated KA analogs, where the KA part overlays the crystal conformation of the KA inhibitor into the catalytic site of TYR. The MD simulations were followed by the LIE method, which reproduced the experimental binding free energies for KA analogs with an r2 equal to 0.97, suggesting the robustness of our theoretical model. Moreover, the van der Waals contributions performed by some residues such as Phe197, Pro201, Arg209, Met215 and Val218 are responsible for the binding recognition of 1,2,3-triazole-based KA analogs in TYR catalytic site. Finally, our calculations provide suitable validation of the combination of molecular docking, MD, and LIE approaches as a powerful tool in the structure-based drug design of new and potent TYR inhibitors. Full article
Show Figures

Graphical abstract

Article
Comparison of Intermolecular Interactions of Irreversible and Reversible Inhibitors with Bruton’s Tyrosine Kinase via Molecular Dynamics Simulations
Molecules 2022, 27(21), 7451; https://doi.org/10.3390/molecules27217451 - 02 Nov 2022
Cited by 1 | Viewed by 947
Abstract
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses [...] Read more.
Bruton’s tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors. Full article
Show Figures

Figure 1

Article
Mycobacterium Time-Series Genome Analysis Identifies AAC2′ as a Potential Drug Target with Naloxone Showing Potential Bait Drug Synergism
Molecules 2022, 27(19), 6150; https://doi.org/10.3390/molecules27196150 - 20 Sep 2022
Cited by 2 | Viewed by 1298
Abstract
The World Health Organization has put drug resistance in tuberculosis on its list of significant threats, with a critical emphasis on resolving the genetic differences in Mycobacterium tuberculosis. This provides an opportunity for a better understanding of the evolutionary progression leading to anti-microbial [...] Read more.
The World Health Organization has put drug resistance in tuberculosis on its list of significant threats, with a critical emphasis on resolving the genetic differences in Mycobacterium tuberculosis. This provides an opportunity for a better understanding of the evolutionary progression leading to anti-microbial resistance. Anti-microbial resistance has a great impact on the economic stability of the global healthcare sector. We performed a timeline genomic analysis from 2003 to 2021 of 578 mycobacterium genomes to understand the pattern underlying genomic variations. Potential drug targets based on functional annotation was subjected to pharmacophore-based screening of FDA-approved phyto-actives. Reaction search, MD simulations, and metadynamics studies were performed. A total of 4,76,063 mutations with a transition/transversion ratio of 0.448 was observed. The top 10 proteins with the least number of mutations were high-confidence drug targets. Aminoglycoside 2′-N-acetyltransferase protein (AAC2′), conferring resistance to aminoglycosides, was shortlisted as a potential drug target based on its function and role in bait drug synergism. Gentamicin-AAC2′ binding pose was used as a pharmacophore template to screen 10,570 phyto-actives. A total of 66 potential hits were docked to obtain naloxone as a lead—active with a docking score of −6.317. Naloxone is an FDA-approved drug that rapidly reverses opioid overdose. This is a classic case of a repurposed phyto-active. Naloxone consists of an amine group, but the addition of the acetyl group is unfavorable, with a reaction energy of 612.248 kcal/mol. With gentamicin as a positive control, molecular dynamic simulation studies were performed for 200 ns to check the stability of binding. Metadynamics-based studies were carried out to compare unbinding energy with gentamicin. The unbinding energies were found to be −68 and −74 kcal/mol for naloxone and gentamycin, respectively. This study identifies naloxone as a potential drug candidate for a bait drug synergistic approach against Mycobacterium tuberculosis. Full article
Show Figures

Figure 1

Article
High Throughput 3D Cell Migration Assay Using Micropillar/Microwell Chips
Molecules 2022, 27(16), 5306; https://doi.org/10.3390/molecules27165306 - 19 Aug 2022
Cited by 1 | Viewed by 1442
Abstract
The 3D cell migration assay was developed for the evaluation of drugs that inhibit cell migration using high throughput methods. Wound-healing assays have commonly been used for cell migration assays. However, these assays have limitations in mimicking the in vivo microenvironment of the [...] Read more.
The 3D cell migration assay was developed for the evaluation of drugs that inhibit cell migration using high throughput methods. Wound-healing assays have commonly been used for cell migration assays. However, these assays have limitations in mimicking the in vivo microenvironment of the tumor and measuring cell viability for evaluation of cell migration inhibition without cell toxicity. As an attempt to manage these limitations, cells were encapsulated with Matrigel on the surface of the pillar, and an analysis of the morphology of cells attached to the pillar through Matrigel was performed for the measurement of cell migration. The micropillar/microwell chips contained 532 pillars and wells, which measure the migration and viability of cells by analyzing the roundness and size of the cells, respectively. Cells seeded in Matrigel have a spherical form. Over time, cells migrate through the Matrigel and attach to the surface of the pillar. Cells that have migrated and adhered have a diffused shape that is different from the initial spherical shape. Based on our analysis of the roundness of the cells, we were able to distinguish between the diffuse and spherical shapes. Cells in Matrigel on the pillar that were treated with migration-inhibiting drugs did not move to the surface of the pillar and remained in spherical forms. During the conduct of experiments, 70 drugs were tested in single chips and migration-inhibiting drugs without cell toxicity were identified. Conventional migration assays were performed using transwell for verification of the four main migration-inhibiting drugs found on the chip. Full article
Show Figures

Figure 1

Article
Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: In Silico Molecular Docking and Dynamics Simulation Approach
Molecules 2022, 27(12), 3799; https://doi.org/10.3390/molecules27123799 - 13 Jun 2022
Cited by 3 | Viewed by 2582
Abstract
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. [...] Read more.
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED. Full article
Show Figures

Graphical abstract

Article
Accurate Physical Property Predictions via Deep Learning
Molecules 2022, 27(5), 1668; https://doi.org/10.3390/molecules27051668 - 03 Mar 2022
Cited by 4 | Viewed by 2477
Abstract
Neural networks and deep learning have been successfully applied to tackle problems in drug discovery with increasing accuracy over time. There are still many challenges and opportunities to improve molecular property predictions with satisfactory accuracy even further. Here, we proposed a deep-learning architecture [...] Read more.
Neural networks and deep learning have been successfully applied to tackle problems in drug discovery with increasing accuracy over time. There are still many challenges and opportunities to improve molecular property predictions with satisfactory accuracy even further. Here, we proposed a deep-learning architecture model, namely Bidirectional long short-term memory with Channel and Spatial Attention network (BCSA), of which the training process is fully data-driven and end to end. It is based on data augmentation and SMILES tokenization technology without relying on auxiliary knowledge, such as complex spatial structure. In addition, our model takes the advantages of the long- and short-term memory network (LSTM) in sequence processing. The embedded channel and spatial attention modules in turn specifically identify the prime factors in the SMILES sequence for predicting properties. The model was further improved by Bayesian optimization. In this work, we demonstrate that the trained BSCA model is capable of predicting aqueous solubility. Furthermore, our proposed method shows noticeable superiorities and competitiveness in predicting oil–water partition coefficient, when compared with state-of-the-art graphs models, including graph convoluted network (GCN), message-passing neural network (MPNN), and AttentiveFP. Full article
Show Figures

Figure 1

Article
Molecular Dynamic Simulations of Bromodomain and Extra-Terminal Protein 4 Bonded to Potent Inhibitors
Molecules 2022, 27(1), 118; https://doi.org/10.3390/molecules27010118 - 26 Dec 2021
Cited by 3 | Viewed by 2436
Abstract
Bromodomain and extra-terminal domain (BET) subfamily is the most studied subfamily of bromodomain-containing proteins (BCPs) family which can modulate acetylation signal transduction and produce diverse physiological functions. Thus, the BET family can be treated as an alternative strategy for targeting androgen-receptor (AR)-driven cancers. [...] Read more.
Bromodomain and extra-terminal domain (BET) subfamily is the most studied subfamily of bromodomain-containing proteins (BCPs) family which can modulate acetylation signal transduction and produce diverse physiological functions. Thus, the BET family can be treated as an alternative strategy for targeting androgen-receptor (AR)-driven cancers. In order to explore the effect of inhibitors binding to BRD4 (the most studied member of BET family), four 150 ns molecular dynamic simulations were performed (free BRD4, Cpd4-BRD4, Cpd9-BRD4 and Cpd19-BRD4). Docking studies showed that Cpd9 and Cpd19 were located at the active pocket, as well as Cpd4. Molecular dynamics (MD) simulations indicated that only Cpd19 binding to BRD4 can induce residue Trp81-Ala89 partly become α-helix during MD simulations. MM-GBSA calculations suggested that Cpd19 had the best binding effect with BRD4 followed by Cpd4 and Cpd9. Computational alanine scanning results indicated that mutations in Phe83 made the greatest effects in Cpd9-BRD4 and Cpd19-BRD4 complexes, showing that Phe83 may play crucial roles in Cpd9 and Cpd19 binding to BRD4. Our results can provide some useful clues for further BCPs family search. Full article
Show Figures

Figure 1

Communication
High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist
Molecules 2021, 26(24), 7511; https://doi.org/10.3390/molecules26247511 - 11 Dec 2021
Cited by 3 | Viewed by 1789
Abstract
Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is [...] Read more.
Relaxin/insulin-like family peptide receptor 3 (RXFP3) belongs to class A G protein-coupled receptor family. RXFP3 and its endogenous ligand relaxin-3 are mainly expressed in the brain with important roles in the regulation of appetite, energy metabolism, endocrine homeostasis and emotional processing. It is therefore implicated as a potential target for treatment of various central nervous system diseases. Since selective agonists of RXFP3 are restricted to relaxin-3 and its analogs, we conducted a high-throughput screening campaign against 32,021 synthetic and natural product-derived compounds using a cyclic adenosine monophosphate (cAMP) measurement-based method. Only one compound, WNN0109-C011, was identified following primary screening, secondary screening and dose-response studies. Although displayed agonistic effect in cells overexpressing the human RXFP3, it also showed cross-reactivity with the human RXFP4. This hit compound may provide not only a chemical probe to investigate the function of RXFP3/4, but also a novel scaffold for the development of RXFP3/4 agonists. Full article
Show Figures

Figure 1

Article
Don’t Overweight Weights: Evaluation of Weighting Strategies for Multi-Task Bioactivity Classification Models
Molecules 2021, 26(22), 6959; https://doi.org/10.3390/molecules26226959 - 18 Nov 2021
Cited by 4 | Viewed by 2531
Abstract
Machine learning models predicting the bioactivity of chemical compounds belong nowadays to the standard tools of cheminformaticians and computational medicinal chemists. Multi-task and federated learning are promising machine learning approaches that allow privacy-preserving usage of large amounts of data from diverse sources, which [...] Read more.
Machine learning models predicting the bioactivity of chemical compounds belong nowadays to the standard tools of cheminformaticians and computational medicinal chemists. Multi-task and federated learning are promising machine learning approaches that allow privacy-preserving usage of large amounts of data from diverse sources, which is crucial for achieving good generalization and high-performance results. Using large, real world data sets from six pharmaceutical companies, here we investigate different strategies for averaging weighted task loss functions to train multi-task bioactivity classification models. The weighting strategies shall be suitable for federated learning and ensure that learning efforts are well distributed even if data are diverse. Comparing several approaches using weights that depend on the number of sub-tasks per assay, task size, and class balance, respectively, we find that a simple sub-task weighting approach leads to robust model performance for all investigated data sets and is especially suited for federated learning. Full article
Show Figures

Graphical abstract

Article
Virtual Screening for Potential Phytobioactives as Therapeutic Leads to Inhibit NQO1 for Selective Anticancer Therapy
Molecules 2021, 26(22), 6863; https://doi.org/10.3390/molecules26226863 - 14 Nov 2021
Cited by 5 | Viewed by 2329
Abstract
NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 [...] Read more.
NAD(P)H:quinone acceptor oxidoreductase-1 (NQO1) is a ubiquitous flavin adenine dinucleotide-dependent flavoprotein that promotes obligatory two-electron reductions of quinones, quinonimines, nitroaromatics, and azo dyes. NQO1 is a multifunctional antioxidant enzyme whose expression and deletion are linked to reduced and increased oxidative stress susceptibilities. NQO1 acts as both a tumor suppressor and tumor promoter; thus, the inhibition of NQO1 results in less tumor burden. In addition, the high expression of NQO1 is associated with a shorter survival time of cancer patients. Inhibiting NQO1 also enables certain anticancer agents to evade the detoxification process. In this study, a series of phytobioactives were screened based on their chemical classes such as coumarins, flavonoids, and triterpenoids for their action on NQO1. The in silico evaluations were conducted using PyRx virtual screening tools, where the flavone compound, Orientin showed a better binding affinity score of −8.18 when compared with standard inhibitor Dicumarol with favorable ADME properties. An MD simulation study found that the Orientin binding to NQO1 away from the substrate-binding site induces a potential conformational change in the substrate-binding site, thereby inhibiting substrate accessibility towards the FAD-binding domain. Furthermore, with this computational approach we are offering a scope for validation of the new therapeutic components for their in vitro and in vivo efficacy against NQO1. Full article
Show Figures

Figure 1

Article
Finding the First Potential Inhibitors of Shikimate Kinase from Methicillin Resistant Staphylococcus aureus through Computer-Assisted Drug Design
Molecules 2021, 26(21), 6736; https://doi.org/10.3390/molecules26216736 - 08 Nov 2021
Cited by 2 | Viewed by 1409
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA) is an important threat as it causes serious hospital and community acquired infections with deathly outcomes oftentimes, therefore, development of new treatments against this bacterium is a priority. Shikimate kinase, an enzyme in the shikimate pathway, is considered a good target for developing antimicrobial drugs; this is given because of its pathway, which is essential in bacteria whereas it is absent in mammals. In this work, a computer-assisted drug design strategy was used to report the first potentials inhibitors for Shikimate kinase from methicillin-resistant Staphylococcus aureus (SaSK), employing approximately 5 million compounds from ZINC15 database. Diverse filtering criteria, related to druglike characteristics and virtual docking screening in the shikimate binding site, were performed to select structurally diverse potential inhibitors from SaSK. Molecular dynamics simulations were performed to elucidate the dynamic behavior of each SaSK–ligand complex. The potential inhibitors formed important interactions with residues that are crucial for enzyme catalysis, such as Asp37, Arg61, Gly82, and Arg138. Therefore, the compounds reported provide valuable information and can be seen as the first step toward developing SaSK inhibitors in the search of new drugs against MRSA. Full article
Show Figures

Figure 1

Article
Molecular Dynamics Simulations Study of the Interactions between Human Dipeptidyl-Peptidase III and Two Substrates
Molecules 2021, 26(21), 6492; https://doi.org/10.3390/molecules26216492 - 27 Oct 2021
Cited by 2 | Viewed by 1381
Abstract
Human dipeptidyl-peptidase III (hDPP III) is capable of specifically cleaving dipeptides from the N-terminal of small peptides with biological activity such as angiotensin II (Ang II, DRVYIHPF), and participates in blood pressure regulation, pain modulation, and the development of cancers in human biological [...] Read more.
Human dipeptidyl-peptidase III (hDPP III) is capable of specifically cleaving dipeptides from the N-terminal of small peptides with biological activity such as angiotensin II (Ang II, DRVYIHPF), and participates in blood pressure regulation, pain modulation, and the development of cancers in human biological activities. In this study, 500 ns molecular dynamics simulations were performed on free-hDPP III (PDB code: 5E33), hDPP III-Ang II (PDB code: 5E2Q), and hDPP III-IVYPW (PDB code: 5E3C) to explore how these two peptides affect the catalytic efficiency of enzymes in terms of the binding mode and the conformational changes. Our results indicate that in the case of the hDPP III-Ang II complex, subsite S1 became small and hydrophobic, which might be propitious for the nucleophile to attack the substrate. The structures of the most stable conformations of the three systems revealed that Arg421-Lys423 could form an α-helix with the presence of Ang II, but only part of the α-helix was produced in hDPP III-IVYPW. As the hinge structure in hDPP III, the conformational changes that took place in the Arg421-Lys423 residue could lead to the changes in the shape and space of the catalytic subsites, which might allow water to function as a nucleophile to attack the substrate. Our results may provide new clues to enable the design of new inhibitors for hDPP III in the future. Full article
Show Figures

Figure 1

Article
Insights into Conformational Dynamics and Allostery in DNMT1-H3Ub/USP7 Interactions
Molecules 2021, 26(17), 5153; https://doi.org/10.3390/molecules26175153 - 25 Aug 2021
Cited by 3 | Viewed by 2148
Abstract
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on [...] Read more.
DNA methyltransferases (DNMTs) including DNMT1 are a conserved family of cytosine methylases that play crucial roles in epigenetic regulation. The versatile functions of DNMT1 rely on allosteric networks between its different interacting partners, emerging as novel therapeutic targets. In this work, based on the modeling structures of DNMT1-ubiquitylated H3 (H3Ub)/ubiquitin specific peptidase 7 (USP7) complexes, we have used a combination of elastic network models, molecular dynamics simulations, structural residue perturbation, network modeling, and pocket pathway analysis to examine their molecular mechanisms of allosteric regulation. The comparative intrinsic and conformational dynamics analysis of three DNMT1 systems has highlighted the pivotal role of the RFTS domain as the dynamics hub in both intra- and inter-molecular interactions. The site perturbation and network modeling approaches have revealed the different and more complex allosteric interaction landscape in both DNMT1 complexes, involving the events caused by mutational hotspots and post-translation modification sites through protein-protein interactions (PPIs). Furthermore, communication pathway analysis and pocket detection have provided new mechanistic insights into molecular mechanisms underlying quaternary structures of DNMT1 complexes, suggesting potential targeting pockets for PPI-based allosteric drug design. Full article
Show Figures

Figure 1

Article
MolADI: A Web Server for Automatic Analysis of Protein–Small Molecule Dynamic Interactions
Molecules 2021, 26(15), 4625; https://doi.org/10.3390/molecules26154625 - 30 Jul 2021
Cited by 6 | Viewed by 3711
Abstract
Protein–ligand interaction analysis is important for drug discovery and rational protein design. The existing online tools adopt only a single conformation of the complex structure for calculating and displaying the interactions, whereas both protein residues and ligand molecules are flexible to some extent. [...] Read more.
Protein–ligand interaction analysis is important for drug discovery and rational protein design. The existing online tools adopt only a single conformation of the complex structure for calculating and displaying the interactions, whereas both protein residues and ligand molecules are flexible to some extent. The interactions evolved with time in the trajectories are of greater interest. MolADI is a user-friendly online tool which analyzes the protein–ligand interactions in detail for either a single structure or a trajectory. Interactions can be viewed easily with both 2D graphs and 3D representations. MolADI is available as a web application. Full article
Show Figures

Figure 1

Back to TopTop