molecules-logo

Journal Browser

Journal Browser

Bioactive Compounds on Health and Disease

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (20 March 2022) | Viewed by 156284

Special Issue Editors


E-Mail Website
Guest Editor
1. Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona (UB), Barcelona, Spain
2. Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
Interests: immunonutrition; probiotics; prebiotics; postbiotics; breast milk; adipokines; early life nutrition; prematurity; gut; rotavirus; microbiota; epithelial barrier; skin; skin inflammatory disorders

E-Mail Website
Guest Editor
1. Section of Physiology, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain
2. Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
Interests: flavonoids; polyphenols; cocoa; hesperidin; methylxanthines; antioxidants; allergy; immunonutrition; immunomodulation; immune system; microbiota; antibody; sport; rotavirus; prebiotic; probiotic; postbiotics; 2’FL; GOS/FOS
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Bioactive compounds are found in small quantities in foods of vegetable origin such as fruits, vegetables, and whole grains. Their consumption provides health benefits beyond the basic nutritional value of the product. Particularly, it has been demonstrated that these compounds have beneficial physiological and immunological effects. Moreover, they can play an important role in the prevention of multiple pathologies. In this regard, some bioactive compounds can diminish the risk of numerous diseases, such as cancer, cardiovascular diseases, Alzheimer’s, diabetes, and age-related dementia due to their antioxidant activity, whereas others stimulate defense mechanisms, thus, enhancing the response to oxidative stress, preventing widespread damage or enhancing repair. Overall, these bioactive compounds represent a promising preventive or therapeutic strategy against a number of pathological processes. 

This Special Issue of Molecules will focus on relevant knowledge of bioactive compounds and their impact on health and disease to provide the most recent perspectives of this area. Papers in the form of original in vitro, preclinical, and clinical studies, as well as review articles are welcome.

Dr. Maria José Rodríguez-Lagunas
Dr. Malen Massot-Cladera
Guest Editors


Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Immune system
  • Health
  • Disease
  • Microbiota crosstalk
  • Dietary fiber
  • Prebiotics
  • Antioxidants
  • Vitamins
  • Phenolic compounds
  • Saponins
  • PUFA
  • Breast milk bioactive compounds
  • Antimicrobial compounds
  • Bioactive compounds from animal sources

Published Papers (31 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 4512 KiB  
Article
The Protective Effects of Sour Orange (Citrus aurantium L.) Polymethoxyflavones on Mice Irradiation-Induced Intestinal Injury
by Zixiao Jiang, Zhenqing Li, Fengchao Wang and Zhiqin Zhou
Molecules 2022, 27(6), 1934; https://doi.org/10.3390/molecules27061934 - 16 Mar 2022
Cited by 3 | Viewed by 2112
Abstract
Sour orange (Citrus aurantium L.) is one of the biological sources of polymethoxyflavones (PMFs), which are often used to deal with gastrointestinal diseases. The intestine is highly sensitive to irradiation damage. However, limited certain cures have been released for irradiation-induced gastrointestinal injury, [...] Read more.
Sour orange (Citrus aurantium L.) is one of the biological sources of polymethoxyflavones (PMFs), which are often used to deal with gastrointestinal diseases. The intestine is highly sensitive to irradiation damage. However, limited certain cures have been released for irradiation-induced gastrointestinal injury, and the potentials of sour orange PMFs as radio-resistance agents have not been fully discussed yet. The present study aims to (1) investigate the PMF components in 12 sour orange cultivars, (2) determine the protective effects of PMFs on irradiation-induced intestinal injury by treating mice that received 12 Gy abdominal irradiation with different doses of PMFs and observing the changes in organ indexes and pathological sections and (3) test cytotoxicity of PMFs by CCK-8 method. The results showed that sour orange PMFs appeared to have high intraspecies similarity. Besides, PMFs protected mice from irradiation-induced injury by alleviating body weight loss, reliving organ index changing and maintaining the intestinal structure. Finally, IC50 concentrations to cell line CCD 841 CoN of PMFs and nobiletin were calculated as 42.23 μg/mL and 51.58 μg/mL, respectively. Our study uncovered PMF contents in 12 sour orange materials and determined the protective effects on irradiation-induced intestinal injuries, providing guidance for the utilization of sour orange resources. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

12 pages, 6213 KiB  
Article
Protective Effects of Carnosic Acid on Lipopolysaccharide-Induced Acute Kidney Injury in Mice
by Jung-Yeon Kim, Hyo-Lim Hong, Gyun Moo Kim, Jaechan Leem and Hyun Hee Kwon
Molecules 2021, 26(24), 7589; https://doi.org/10.3390/molecules26247589 - 14 Dec 2021
Cited by 17 | Viewed by 2703
Abstract
Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, [...] Read more.
Septic acute kidney injury (AKI) is an important medical problem worldwide, but current treatments are limited. During sepsis, lipopolysaccharide (LPS) activates various signaling pathways involved in multiorgan failure. Carnosic acid is a natural phenolic diterpene and has multiple bioactivities, such as anti-tumor, anti-inflammatory, and anti-oxidative effects. However, the effect of carnosic acid on septic AKI has not been explored. Therefore, this study aimed to determine whether carnosic acid has a therapeutic effect on LPS-induced kidney injury. Administration of carnosic acid after LPS injection ameliorated histological abnormalities and renal dysfunction. Cytokine production, immune cell infiltration, and nuclear factor-κB activation after LPS injection were also alleviated by carnosic acid. The compound suppressed oxidative stress with the modulation of pro-oxidant and antioxidant enzymes. Tubular cell apoptosis and caspase-3 activation were also inhibited by carnosic acid. These data suggest that carnosic acid ameliorates LPS-induced AKI via inhibition of inflammation, oxidative stress, and apoptosis and could serve as a useful treatment agent for septic AKI. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

14 pages, 2576 KiB  
Article
Phytochemical Analysis, Antispasmodic, Myorelaxant, and Antioxidant Effect of Dysphania ambrosioides (L.) Mosyakin and Clemants Flower Hydroethanolic Extracts and Its Chloroform and Ethyl Acetate Fractions
by Fahd Kandsi, Raffaele Conte, Mohamed Marghich, Fatima Zahra Lafdil, Mohamed F. Alajmi, Mohamed Bouhrim, Hamza Mechchate, Christophe Hano, Mohammed Aziz and Nadia Gseyra
Molecules 2021, 26(23), 7300; https://doi.org/10.3390/molecules26237300 - 01 Dec 2021
Cited by 11 | Viewed by 2556
Abstract
Dysphania ambrosioides (L.) Mosyakin and Clemants is an annual or ephemeral perennial herb used traditionally in the Mediterranean region in folk medicine to treat various illnesses, including those related to the digestive system. This study aims to assess the antispasmodic, myorelaxant, and antioxidant [...] Read more.
Dysphania ambrosioides (L.) Mosyakin and Clemants is an annual or ephemeral perennial herb used traditionally in the Mediterranean region in folk medicine to treat various illnesses, including those related to the digestive system. This study aims to assess the antispasmodic, myorelaxant, and antioxidant effects of D. ambrosioides flower hydroethanolic extract and its chloroform and ethyl acetate fractions in a comparative study to evaluate the result of the extraction type on the potential activity of the extract. Both rat and rabbit jejunum were used to evaluate the antispasmodic and myorelaxant effect, while the antioxidant effect was evaluated using DPPH, a ferric reducing power assay, and a beta-carotene bleaching test. LC/MS-MS analysis was carried out to reveal the composition of the different types of extract. Following the results, the hydroethanolic extract showed a significant myorelaxant effect (IC50 = 0.39 ± 0.01 mg/mL). Moreover, it was shown that the hydroethanolic extract demonstrated the best antispasmodic activity (IC50 = 0.51 ± 0.05 mg/mL), followed by the ethyl acetate (IC50 = 4.05 ± 0.32 mg/mL) and chloroform (IC50 = 4.34 ± 0.45 mg/mL) fractions. The antioxidant tests showed that the hydroethanolic extract demonstrated high antioxidant activity, followed by the ethyl acetate and chloroform fractions. The LC/MS-MS analysis indicates that the plant extract was rich in flavonoids, to which the extract activity has been attributed. This study supports the traditional use of this plant to treat digestive problems, especially those with spasms. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

12 pages, 953 KiB  
Article
HPLC-Analysis, Biological Activities and Characterization of Action Mode of Saudi Marrubium vulgare against Foodborne Diseases Bacteria
by Mayasar Al-Zaban, Souheila Naghmouchi and Nada K. AlHarbi
Molecules 2021, 26(17), 5112; https://doi.org/10.3390/molecules26175112 - 24 Aug 2021
Cited by 2 | Viewed by 1947
Abstract
The present study aims to evaluate the chemical composition, metabolites secondary and pharmacology activities of methanolic extract of Marrubium vulgare collected from King Saudi Arabia. Moreover, the primary mode of action of the tested extract was studied here for the first time against [...] Read more.
The present study aims to evaluate the chemical composition, metabolites secondary and pharmacology activities of methanolic extract of Marrubium vulgare collected from King Saudi Arabia. Moreover, the primary mode of action of the tested extract was studied here for the first time against E. coli and L. monocytogenes. HPLC analysis shows that the major components in the tested extract are luteolin-7-O-d-glucoside, ferulic acid and premarrubiin. Obtained data demonstrated that the investigated extract was richer in phenol (26.8 ± 0.01 mg/GAE g) than in flavonoids (0.61 ± 0.05 mg EC/mL). In addition, the methanolic extract showed an important antioxidant capacity against the DPPH (IC50 = 35 ± 0.01 µg/mL) and ABTS (IC50 = 25 ± 0.2 µg/mL) radical scavenging and a strong inhibition of acetylcholinesterase enzyme with an IC50 value corresponding to 0.4 mg/mL. The antibacterial activity demonstrated that the evaluated extract had significant activity against both Gram-positive and Gram-negative bacteria. The effect of time on cell integrity on E. coli and L. monocytogenes determined by time–kill and bacteriolysis tests showed that the M. vulgare extract reduced the viability of both strains after 8 and 10 h and had a bacteriolytic effect against two different categories of bacteria, Gram-positive and negative, which are not of the same potency. Based on obtained data, it can be concluded that Saudi M. vulgare has a high pharmacological importance and can be used in preparation of food or drugs. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

23 pages, 1604 KiB  
Article
Acanthaster planci Inhibits PCSK9 and Lowers Cholesterol Levels in Rats
by Nurjannatul Naim Kamaruddin, Nor Azwin Hajri, Yosie Andriani, Aina Farahiyah Abdul Manan, Tengku Sifzizul Tengku Muhammad and Habsah Mohamad
Molecules 2021, 26(16), 5094; https://doi.org/10.3390/molecules26165094 - 23 Aug 2021
Cited by 1 | Viewed by 3054
Abstract
Atherosclerosis is the main cause of cardiovascular diseases which in turn, lead to the highest number of mortalities globally. This pathophysiological condition is developed due to a constant elevated level of plasma cholesterols. Statin is currently the widely used treatment in reducing the [...] Read more.
Atherosclerosis is the main cause of cardiovascular diseases which in turn, lead to the highest number of mortalities globally. This pathophysiological condition is developed due to a constant elevated level of plasma cholesterols. Statin is currently the widely used treatment in reducing the level of cholesterols, however, it may cause adverse side effects. Therefore, there is an urgent need to search for new alternative treatment. PCSK9 is an enzyme responsible in directing LDL-receptor (LDL-R)/LDL-cholesterols (LDL-C) complex to lysosomal degradation, preventing the receptor from recycling back to the surface of liver cells. Therefore, PCSK9 offers a potential target to search for small molecule inhibitors which inhibit the function of this enzyme. In this study, a marine invertebrate Acanthaster planci, was used to investigate its potential in inhibiting PCSK9 and lowering the levels of cholesterols. Cytotoxicity activity of A. planci on human liver HepG2 cells was carried out using the MTS assay. It was found that methanolic extract and fractions did not exhibit cytotoxicity effect on HepG2 cell line with IC50 values of more than 30 µg/mL. A compound deoxythymidine also did not exert any cytotoxicity activity with IC50 value of more than 4 µg/mL. Transient transfection and luciferase assay were conducted to determine the effects of A. planci on the transcriptional activity of PCSK9 promoter. Methanolic extract and Fraction 2 (EF2) produced the lowest reduction in PCSK9 promoter activity to 70 and 20% of control at 12.5 and 6.25 μg/mL, respectively. In addition, deoxythymidine also decreased PCSK9 promoter activity to the lowest level of 60% control at 3.13 μM. An in vivo study using Sprague Dawley rats demonstrated that 50 and 100 mg/kg of A. planci methanolic extract reduced the total cholesterols and LDL-C levels to almost similar levels of untreated controls. The level of serum glutamate oxalate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT) showed that the administration of the extract did not produce any toxicity effect and cause any damage to rat liver. The results strongly indicate that A. planci produced a significant inhibitory activity on PCSK9 gene expression in HepG2 cells which may be responsible for inducing the uptake of cholesterols by liver, thus, reducing the circulating levels of total cholesterols and LDL-C. Interestingly, A. planci also did show any adverse hepato-cytotoxicity and toxic effects on liver. Thus, this study strongly suggests that A. planci has a vast potential to be further developed as a new class of therapeutic agent in lowering the blood cholesterols and reducing the progression of atherosclerosis. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

16 pages, 4831 KiB  
Article
Phenolics Profiling of Carpobrotus edulis (L.) N.E.Br. and Insights into Molecular Dynamics of Their Significance in Type 2 Diabetes Therapy and Its Retinopathy Complication
by Saheed Sabiu, Fatai O. Balogun and Stephen O. Amoo
Molecules 2021, 26(16), 4867; https://doi.org/10.3390/molecules26164867 - 11 Aug 2021
Cited by 27 | Viewed by 2464
Abstract
Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. [...] Read more.
Adverse effects associated with synthetic drugs in diabetes therapy has prompted the search for novel natural lead compounds with little or no side effects. Effects of phenolic compounds from Carpobrotus edulis on carbohydrate-metabolizing enzymes through in vitro and in silico methods were assessed. Based on the half-maximal inhibitory concentrations (IC50), the phenolic extract of the plant had significant (p < 0.05) in vitro inhibitory effect on the specific activity of alpha-amylase (0.51 mg/mL), alpha-glucosidase (0.062 mg/mL) and aldose reductase (0.75 mg/mL), compared with the reference standards (0.55, 0.72 and 7.05 mg/mL, respectively). Molecular interactions established between the 11 phenolic compounds identifiable from the HPLC chromatogram of the extract and active site residues of the enzymes revealed higher binding affinity and more structural compactness with procyanidin (−69.834 ± 6.574 kcal/mol) and 1,3-dicaffeoxyl quinic acid (−42.630 ± 4.076 kcal/mol) as potential inhibitors of alpha-amylase and alpha-glucosidase, respectively, while isorhamnetin-3-O-rutinoside (−45.398 ± 4.568 kcal/mol) and luteolin-7-O-beta-d-glucoside (−45.102 ± 4.024 kcal/mol) for aldose reductase relative to respective reference standards. Put together, the findings are suggestive of the compounds as potential constituents of C. edulis phenolic extract responsible for the significant hypoglycemic effect in vitro; hence, they could be exploited in the development of novel therapeutic agents for type-2 diabetes and its retinopathy complication. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

18 pages, 1894 KiB  
Article
Biological Actions and Molecular Mechanisms of Sambucus nigra L. in Neurodegeneration: A Cell Culture Approach
by Olga Palomino, Ana García-Aguilar, Adrián González, Carlos Guillén, Manuel Benito and Luis Goya
Molecules 2021, 26(16), 4829; https://doi.org/10.3390/molecules26164829 - 10 Aug 2021
Cited by 9 | Viewed by 2660
Abstract
Sambucus nigra flowers (elderflower) have been widely used in traditional medicine for the relief of early symptoms of common cold. Its chemical composition mainly consists of polyphenolic compounds such as flavonoids, hydroxycinnamic acids, and triterpenes. Although the antioxidant properties of polyphenols are well [...] Read more.
Sambucus nigra flowers (elderflower) have been widely used in traditional medicine for the relief of early symptoms of common cold. Its chemical composition mainly consists of polyphenolic compounds such as flavonoids, hydroxycinnamic acids, and triterpenes. Although the antioxidant properties of polyphenols are well known, the aim of this study is to assess the antioxidant and protective potentials of Sambucus nigra flowers in the human neuroblastoma (SH-SY5Y) cell line using different in vitro approaches. The antioxidant capacity is first evaluated by the oxygen radical absorbance capacity (ORAC) and the free radical scavenging activity (DPPH) methods. Cell viability is assessed by the crystal violet method; furthermore, the intracellular ROS formation (DCFH-DA method) is determined, together with the effect on the cell antioxidant defenses: reduced glutathione (GSH) and antioxidant enzyme activities (GPx, GR). On the other hand, mTORC1 hyperactivation and autophagy blockage have been associated with an increase in the formation of protein aggregates, this promoting the transference and expansion of neurodegenerative diseases. Then, the ability of Sambucus nigra flowers in the regulation of mTORC1 signaling activity and the reduction in oxidative stress through the activation of autophagy/mitophagy flux is also examined. In this regard, search for different molecules with a potential inhibitory effect on mTORC1 activation could have multiple positive effects either in the molecular pathogenic events and/or in the progression of several diseases including neurodegenerative ones. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

16 pages, 3680 KiB  
Article
The Nephroprotective Effect of Zizyphus lotus L. (Desf.) Fruits in a Gentamicin-Induced Acute Kidney Injury Model in Rats: A Biochemical and Histopathological Investigation
by Noureddine Bencheikh, Mohamed Bouhrim, Loubna Kharchoufa, Omkulthom Mohamed Al Kamaly, Hamza Mechchate, Imane Es-safi, Ahmed Dahmani, Sabir Ouahhoud, Soufiane El Assri, Bruno Eto, Mohamed Bnouham, Mohammed Choukri and Mostafa Elachouri
Molecules 2021, 26(16), 4806; https://doi.org/10.3390/molecules26164806 - 08 Aug 2021
Cited by 16 | Viewed by 3108
Abstract
Zizyphus lotus L. (Desf.) (Z. lotus) is a medicinal plant largely distributed all over the Mediterranean basin and is traditionally used by Moroccan people to treat many illnesses, including kidney failure. The nephrotoxicity of gentamicin (GM) has been well documented in [...] Read more.
Zizyphus lotus L. (Desf.) (Z. lotus) is a medicinal plant largely distributed all over the Mediterranean basin and is traditionally used by Moroccan people to treat many illnesses, including kidney failure. The nephrotoxicity of gentamicin (GM) has been well documented in humans and animals, although the preventive strategies against it remain to be studied. In this investigation, we explore whether the extract of Zizyphus lotus L. (Desf.) Fruit (ZLF) exhibits a protective effect against renal damage produced by GM. Indeed, twenty-four Wistar rats were separated into four equal groups of six each (♂/♀ = 1). The control group was treated orally with distilled water (10 mL/kg); the GM treated group received distilled water (10 mL/kg) and an intraperitoneal injection of GM (80 mg/kg) 3 h after; and the treated groups received ZLF extract orally at the doses 200 or 400 mg/kg and injected intraperitoneally with the GM. All treatments were given daily for 14 days. At the end of the experiment, the biochemical parameters and the histological observation related the kidney function was explored. ZLF treatment has significantly attenuated the nephrotoxicity induced by the GM. This effect was indicated by its capacity to decrease significantly the serum creatinine, uric acid, urea, alkaline phosphatase, gamma-glutamyl-transpeptidase, albumin, calcium, sodium amounts, water intake, urinary volume, and relative kidney weight. In addition, this effect was also shown by the increase in the creatinine clearance, urinary creatinine, uric acid, and urea levels, weight gain, compared to the rats treated only with the GM. The hemostasis of oxidants/antioxidants has been significantly improved with the treatment of ZLF extract, which was shown by a significant reduction in malondialdehydes levels. Histopathological analysis of renal tissue was correlated with biochemical observation. Chemical analysis by HPLC-DAD showed that the aqueous extract of ZLF is rich in phenolic compounds such as 3-hydroxycinnamic acid, catechin, ferulic acid, gallic acid, hydroxytyrosol, naringenin, p- coumaric Acid, quercetin, rutin, and vanillic acid. In conclusion, ZLF extract improved the nephrotoxicity induced by GM, through the improvement of the biochemical and histological parameters and thus validates its ethnomedicinal use. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

14 pages, 1772 KiB  
Article
Interstrain Variability of Human Vaginal Lactobacillus crispatus for Metabolism of Biogenic Amines and Antimicrobial Activity against Urogenital Pathogens
by Scarlett Puebla-Barragan, Emiley Watson, Charlotte van der Veer, John A. Chmiel, Charles Carr, Jeremy P. Burton, Mark Sumarah, Remco Kort and Gregor Reid
Molecules 2021, 26(15), 4538; https://doi.org/10.3390/molecules26154538 - 27 Jul 2021
Cited by 9 | Viewed by 2876
Abstract
Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a [...] Read more.
Lactobacillus crispatus is the dominant species in the vagina of many women. With the potential for strains of this species to be used as a probiotic to help prevent and treat dysbiosis, we investigated isolates from vaginal swabs with Lactobacillus-dominated and a dysbiotic microbiota. A comparative genome analysis led to the identification of metabolic pathways for synthesis and degradation of three major biogenic amines in most strains. However, targeted metabolomic analysis of the production and degradation of biogenic amines showed that certain strains have either the ability to produce or to degrade these compounds. Notably, six strains produced cadaverine, one produced putrescine, and two produced tyramine. These biogenic amines are known to raise vaginal pH, cause malodour, and make the environment more favourable to vaginal pathogens. In vitro experiments confirmed that strains isolated from women with a dysbiotic vaginal microbiota have higher antimicrobial effects against the common urogenital pathogens Escherichia coli and Enterococcus faecium. The results indicate that not all L. crispatus vaginal strains appear suitable for probiotic application and the basis for selection should not be only the overall composition of the vaginal microbiota of the host from which they came, but specific biochemical and genetic traits. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

12 pages, 2893 KiB  
Article
Gomisin M2 Ameliorates Atopic Dermatitis-like Skin Lesions via Inhibition of STAT1 and NF-κB Activation in 2,4-Dinitrochlorobenzene/Dermatophagoides farinae Extract-Induced BALB/c Mice
by Jinjoo Kang, Soyoung Lee, Namkyung Kim, Hima Dhakal, Taeg-Kyu Kwon, Eun-Nam Kim, Gil-Saeng Jeong and Sang-Hyun Kim
Molecules 2021, 26(15), 4409; https://doi.org/10.3390/molecules26154409 - 21 Jul 2021
Cited by 7 | Viewed by 3307
Abstract
The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of [...] Read more.
The extracts of Schisandra chinensis (Turcz.) Baill. (Schisandraceae) have various therapeutic effects, including inflammation and allergy. In this study, gomisin M2 (GM2) was isolated from S. chinensis and its beneficial effects were assessed against atopic dermatitis (AD). We evaluated the therapeutic effects of GM2 on 2,4-dinitrochlorobenzene (DNCB) and Dermatophagoides farinae extract (DFE)-induced AD-like skin lesions with BALB/c mice ears and within the tumor necrosis factor (TNF)-α and interferon (IFN)-γ-stimulated keratinocytes. The oral administration of GM2 resulted in reduced epidermal and dermal thickness, infiltration of tissue eosinophils, mast cells, and helper T cells in AD-like lesions. GM2 suppressed the expression of IL-1β, IL-4, IL-5, IL-6, IL-12a, and TSLP in ear tissue and the expression of IFN-γ, IL-4, and IL-17A in auricular lymph nodes. GM2 also inhibited STAT1 and NF-κB phosphorylation in DNCB/DFE-induced AD-like lesions. The oral administration of GM2 reduced levels of IgE (DFE-specific and total) and IgG2a in the mice sera, as well as protein levels of IL-4, IL-6, and TSLP in ear tissues. In TNF-α/IFN-γ-stimulated keratinocytes, GM2 significantly inhibited IL-1β, IL-6, CXCL8, and CCL22 through the suppression of STAT1 phosphorylation and the nuclear translocation of NF-κB. Taken together, these results indicate that GM2 is a biologically active compound that exhibits inhibitory effects on skin inflammation and suggests that GM2 might serve as a remedy in inflammatory skin diseases, specifically on AD. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Graphical abstract

16 pages, 5329 KiB  
Article
Synthesis and Nano-Sized Characterization of Bioactive Oregano Essential Oil Molecule-Loaded Small Unilamellar Nanoliposomes with Antifungal Potentialities
by Katya M. Aguilar-Pérez, Dora I. Medina, Jayanthi Narayanan, Roberto Parra-Saldívar and Hafiz M. N. Iqbal
Molecules 2021, 26(10), 2880; https://doi.org/10.3390/molecules26102880 - 13 May 2021
Cited by 19 | Viewed by 2737
Abstract
The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition [...] Read more.
The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition of fungi species. However, their application as natural antifungal agents are limited due to their volatility, low stability, and restricted administration routes. Nanotechnology is receiving particular attention to overcome the drawbacks of EOs such as volatility, degradation, and high sensitivity to environmental/external factors. For the aforementioned reasons, nanoencapsulation of bioactive compounds, for instance, EOs, facilitates protection and controlled-release attributes. Nanoliposomes are bilayer vesicles, at nanoscale, composed of phospholipids, and can encapsulate hydrophilic and hydrophobic compounds. Considering the above critiques, herein, we report the in-house fabrication and nano-size characterization of bioactive oregano essential oil (Origanum vulgare L.) (OEO) molecules loaded with small unilamellar vesicles (SUV) nanoliposomes. The study was focused on three main points: (1) multi-compositional fabrication nanoliposomes using a thin film hydration–sonication method; (2) nano-size characterization using various analytical and imaging techniques; and (3) antifungal efficacy of as-developed OEO nanoliposomes against Trichophyton rubrum (T. rubrum) by performing the mycelial growth inhibition test (MGI). The mean size of the nanoliposomes was around 77.46 ± 0.66 nm and 110.4 ± 0.98 nm, polydispersity index (PdI) of 0.413 ± 0.015, zeta potential values up to −36.94 ± 0.36 mV were obtained by dynamic light scattering (DLS). and spherical morphology was confirmed by scanning electron microscopy (SEM). The presence of OEO into nanoliposomes was displayed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Entrapment efficiency values of 79.55 ± 6.9% were achieved for OEO nanoliposomes. In vitro antifungal activity of nanoliposomes tested against T. rubrum strains revealed that OEO nanoliposomes exhibited the highest MGI, 81.66 ± 0.86%, at a concentration of 1.5 µL/mL compared to the rest of the formulations. In summary, this work showed that bioactive OEO molecules with loaded nanoliposomes could be used as natural antifungal agents for therapeutical purposes against T. rubrum. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

15 pages, 2074 KiB  
Article
An In Vitro Pilot Fermentation Study on the Impact of Chlorella pyrenoidosa on Gut Microbiome Composition and Metabolites in Healthy and Coeliac Subjects
by Carmen van der Linde, Monica Barone, Silvia Turroni, Patrizia Brigidi, Enver Keleszade, Jonathan R. Swann and Adele Costabile
Molecules 2021, 26(8), 2330; https://doi.org/10.3390/molecules26082330 - 16 Apr 2021
Cited by 4 | Viewed by 2826
Abstract
The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was [...] Read more.
The response of a coeliac and a healthy gut microbiota to the green algae Chlorella pyrenoidosa was evaluated using an in vitro continuous, pH controlled, gut model system, which simulated the human colon. The effect of C. pyrenoidosa on the microbial structure was determined by 16S rRNA gene sequencing and inferred metagenomics, whereas the metabolic activitywas determined by1H-nuclear magnetic resonancespectroscopic analysis. The addition of C. pyrenoidosa significantly increased the abundance of the genera Prevotella, Ruminococcus and Faecalibacterium in the healthy donor, while an increase in Faecalibacterium, Bifidobacterium and Megasphaera and a decrease in Enterobacteriaceae were observed in the coeliac donor. C. pyrenoidosa also altered several microbial pathways including those involved in short-chain fatty acid (SCFA) production. At the metabolic level, a significant increase from baseline was seen in butyrate and propionate (p < 0.0001) in the healthy donor, especially in vessels 2 and 3. While acetate was significantly higher in the healthy donor at baseline in vessel 3 (p < 0.001) compared to the coeliac donor, this was markedly decreased after in vitro fermentation with C. pyrenoidosa. This is the first in vitro fermentation study of C. pyrenoidosa and human gut microbiota, however, further in vivo studies are needed to prove its efficacy. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

17 pages, 3099 KiB  
Article
Ursolic Acid Lactone Obtained from Eucalyptus tereticornis Increases Glucose Uptake and Reduces Inflammatory Activity and Intracellular Neutral Fat: An In Vitro Study
by Norman Balcazar, Laura I. Betancur, Diana L. Muñoz, Frankly J. Cabrera, Adriana Castaño, Luis F. Echeverri and Sergio Acin
Molecules 2021, 26(8), 2282; https://doi.org/10.3390/molecules26082282 - 15 Apr 2021
Cited by 10 | Viewed by 2563
Abstract
Obesity has a strong relationship to insulin resistance and diabetes mellitus, a chronic metabolic disease that alters many physiological functions. Naturally derived drugs have aroused great interest in treating obesity, and triterpenoids are natural compounds with multiple biological activities and antidiabetic mechanisms. Here, [...] Read more.
Obesity has a strong relationship to insulin resistance and diabetes mellitus, a chronic metabolic disease that alters many physiological functions. Naturally derived drugs have aroused great interest in treating obesity, and triterpenoids are natural compounds with multiple biological activities and antidiabetic mechanisms. Here, we evaluated the bioactivity of ursolic acid lactone (UAL), a lesser-known triterpenoid, obtained from Eucalyptus tereticornis. We used different cell lines to show for the first time that this molecule exhibits anti-inflammatory properties in a macrophage model, increases glucose uptake in insulin-resistant muscle cells, and reduces triglyceride content in hepatocytes and adipocytes. In 3T3-L1 adipocytes, UAL inhibited the expression of genes involved in adipogenesis and lipogenesis, enhanced the expression of genes involved in fat oxidation, and increased AMP-activated protein kinase phosphorylation. The range of biological activities demonstrated in vitro indicates that UAL is a promising molecule for fighting diabetes. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Graphical abstract

14 pages, 2939 KiB  
Article
The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach
by Panudda Dechwongya, Songpol Limpisood, Nawong Boonnak, Supachoke Mangmool, Mariko Takeda-Morishita, Thitianan Kulsirirat, Pattarawit Rukthong and Korbtham Sathirakul
Molecules 2020, 25(24), 5877; https://doi.org/10.3390/molecules25245877 - 11 Dec 2020
Cited by 4 | Viewed by 2289
Abstract
The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and [...] Read more.
The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Graphical abstract

15 pages, 3090 KiB  
Article
Ethyl Pyruvate Promotes Proliferation of Regulatory T Cells by Increasing Glycolysis
by Ivan Koprivica, Dragica Gajić, Nada Pejnović, Verica Paunović, Tamara Saksida and Ivana Stojanović
Molecules 2020, 25(18), 4112; https://doi.org/10.3390/molecules25184112 - 09 Sep 2020
Cited by 7 | Viewed by 2522
Abstract
Ethyl pyruvate (EP), a stable form of pyruvate, has shown beneficial effects in animal models of shock, ischemia/reperfusion injury, and sepsis due to its potent anti-oxidant and anti-inflammatory properties. Our recent study demonstrated that EP application prevented the clinical manifestation of type 1 [...] Read more.
Ethyl pyruvate (EP), a stable form of pyruvate, has shown beneficial effects in animal models of shock, ischemia/reperfusion injury, and sepsis due to its potent anti-oxidant and anti-inflammatory properties. Our recent study demonstrated that EP application prevented the clinical manifestation of type 1 diabetes in mice by augmenting regulatory T cell (Treg) number and function. Our present study shows that EP increases Treg proliferation and suppressive function (perforin and IL-10 expression) during in vitro differentiation from conventional CD4+CD25 T cells. Enhanced expansion of Treg after EP treatment correlated with increased ATP levels and relied on increased glycolysis. Inhibition of oxidative phosphorylation did not attenuate EP stimulatory effects, suggesting that this metabolic pathway was not mandatory for EP-driven Treg proliferation. Moreover, EP lowered the expression of carnitine palmitoyltransferase I, an enzyme involved in fatty acid oxidation. Further, the stimulatory effect of EP on Treg proliferation was not mediated through inhibition of the mTOR signaling pathway. When given in vivo either intraperitoneally or orally to healthy C57BL/6 mice, EP increased the number of Treg within the peritoneal cavity or gut-associated lymphoid tissue, respectively. In conclusion, EP promotes in vitro Treg proliferation through increased glycolysis and enhances Treg proliferation when administered in vivo. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1531 KiB  
Review
Anti-Depressant Properties of Crocin Molecules in Saffron
by Shahida Anusha Siddiqui, Ali Ali Redha, Edgar Remmet Snoeck, Shubhra Singh, Jesus Simal-Gandara, Salam A. Ibrahim and Seid Mahdi Jafari
Molecules 2022, 27(7), 2076; https://doi.org/10.3390/molecules27072076 - 23 Mar 2022
Cited by 44 | Viewed by 7517
Abstract
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored [...] Read more.
Saffron is a valued herb, obtained from the stigmas of the C. sativus Linn (Iridaceae), with therapeutic effects. It has been described in pharmacopoeias to be variously acting, including as an anti-depressant, anti-carcinogen, and stimulant agent. The therapeutic effects of saffron are harbored in its bioactive molecules, notably crocins, the subject of this paper. Crocins have been demonstrated to act as a monoamine oxidase type A and B inhibitor. Furthermore, saffron petal extracts have experimentally been shown to impact contractile response in electrical field stimulation. Other research suggests that saffron also inhibits the reuptake of monoamines, exhibits N-methyl-d-aspartate antagonism, and improves brain-derived neurotrophic factor signaling. A host of experimental studies found saffron/crocin to be similarly effective as fluoxetine and imipramine in the treatment of depression disorders. Saffron and crocins propose a natural solution to combat depressive disorders. However, some hurdles, such as stability and delivery, need to be overcome. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Graphical abstract

14 pages, 1281 KiB  
Review
Role of Specialized Pro-Resolving Mediators in Modifying Host Defense and Decreasing Bacterial Virulence
by Julianne M. Thornton and Kingsley Yin
Molecules 2021, 26(22), 6970; https://doi.org/10.3390/molecules26226970 - 18 Nov 2021
Cited by 10 | Viewed by 2584
Abstract
Bacterial infection activates the innate immune system as part of the host’s defense against invading pathogens. Host response to bacterial pathogens includes leukocyte activation, inflammatory mediator release, phagocytosis, and killing of bacteria. An appropriate host response requires resolution. The resolution phase involves attenuation [...] Read more.
Bacterial infection activates the innate immune system as part of the host’s defense against invading pathogens. Host response to bacterial pathogens includes leukocyte activation, inflammatory mediator release, phagocytosis, and killing of bacteria. An appropriate host response requires resolution. The resolution phase involves attenuation of neutrophil migration, neutrophil apoptosis, macrophage recruitment, increased phagocytosis, efferocytosis of apoptotic neutrophils, and tissue repair. Specialized Pro-resolving Mediators (SPMs) are bioactive fatty acids that were shown to be highly effective in promoting resolution of infectious inflammation and survival in several models of infection. In this review, we provide insight into the role of SPMs in active host defense mechanisms for bacterial clearance including a new mechanism of action in which an SPM acts directly to reduce bacterial virulence. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

19 pages, 621 KiB  
Review
A Review of the Health Protective Effects of Phenolic Acids against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections)
by Sotirios Kiokias and Vassiliki Oreopoulou
Molecules 2021, 26(17), 5405; https://doi.org/10.3390/molecules26175405 - 06 Sep 2021
Cited by 30 | Viewed by 4543
Abstract
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, [...] Read more.
Phenolic acids comprise a class of phytochemical compounds that can be extracted from various plant sources and are well known for their antioxidant and anti-inflammatory properties. A few of the most common naturally occurring phenolic acids (i.e., caffeic, carnosic, ferulic, gallic, p-coumaric, rosmarinic, vanillic) have been identified as ingredients of edible botanicals (thyme, oregano, rosemary, sage, mint, etc.). Over the last decade, clinical research has focused on a number of in vitro (in human cells) and in vivo (animal) studies aimed at exploring the health protective effects of phenolic acids against the most severe human diseases. In this review paper, the authors first report on the main structural features of phenolic acids, their most important natural sources and their extraction techniques. Subsequently, the main target of this analysis is to provide an overview of the most recent clinical studies on phenolic acids that investigate their health effects against a range of severe pathologic conditions (e.g., cancer, cardiovascular diseases, hepatotoxicity, neurotoxicity, and viral infections—including coronaviruses-based ones). Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

38 pages, 2462 KiB  
Review
Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review
by Tanvir Ahmed and Chin-Kun Wang
Molecules 2021, 26(16), 5028; https://doi.org/10.3390/molecules26165028 - 19 Aug 2021
Cited by 44 | Viewed by 12027
Abstract
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60–90 °C) and humidity (70–90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl [...] Read more.
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60–90 °C) and humidity (70–90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl cysteine, S-allyl-mercapto cysteine), 5-hydroxymethylfurfural, organosulfur compounds, polyphenol, volatile compounds, and products of other Millard reactions compared to fresh garlic after the thermal processing. Recent studies have demonstrated that BG and its bioactive compounds possess a wide range of biological activities and pharmacological properties that preserve and show better efficacy in preventing different types of diseases. Most of these benefits can be attributed to its anti-oxidation, anti-inflammation, anti-obesity, hepatoprotection, hypolipidemia, anti-cancer, anti-allergy, immunomodulation, nephroprotection, cardiovascular protection, and neuroprotection. Substantial studies have been conducted on BG and its components against different common human diseases in the last few decades. Still, a lot of research is ongoing to find out the therapeutic effects of BG. Thus, in this review, we summarized the pre-clinical and clinical studies of BG and its bioactive compounds on human health along with diverse bioactivity, a related mode of action, and also future challenges. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

16 pages, 2350 KiB  
Review
Biological Activities of Paeonol in Cardiovascular Diseases: A Review
by Shalini Vellasamy, Dharmani Murugan, Razif Abas, Aspalilah Alias, Wu Yuan Seng and Choy Ker Woon
Molecules 2021, 26(16), 4976; https://doi.org/10.3390/molecules26164976 - 17 Aug 2021
Cited by 18 | Viewed by 3916
Abstract
Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the [...] Read more.
Paeonol is a naturally existing bioactive compound found in the root bark of Paeonia suffruticosa and it is traditionally used in Chinese medicine for the prevention and management of cardiovascular diseases. To date, a great deal of studies has been reported on the pharmacological effects of paeonol and its mechanisms of action in various diseases and conditions. In this review, the underlying mechanism of action of paeonol in cardiovascular disease has been elucidated. Recent studies have revealed that paeonol treatment improved endothelium injury, demoted inflammation, ameliorated oxidative stress, suppressed vascular smooth muscle cell proliferation, and repressed platelet activation. Paeonol has been reported to effectively protect the cardiovascular system either employed alone or in combination with other traditional medicines, thus, signifying it could be a hypothetically alternative or complementary atherosclerosis treatment. This review summarizes the biological and pharmacological activities of paeonol in the treatment of cardiovascular diseases and its associated underlying mechanisms for a better insight for future clinical practices. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Graphical abstract

31 pages, 28846 KiB  
Review
Therapeutic Attributes of Endocannabinoid System against Neuro-Inflammatory Autoimmune Disorders
by Ishtiaq Ahmed, Saif Ur Rehman, Shiva Shahmohamadnejad, Muhammad Anjum Zia, Muhammad Ahmad, Muhammad Muzammal Saeed, Zain Akram, Hafiz M. N. Iqbal and Qingyou Liu
Molecules 2021, 26(11), 3389; https://doi.org/10.3390/molecules26113389 - 03 Jun 2021
Cited by 6 | Viewed by 5671
Abstract
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific [...] Read more.
In humans, various sites like cannabinoid receptors (CBR) having a binding affinity with cannabinoids are distributed on the surface of different cell types, where endocannabinoids (ECs) and derivatives of fatty acid can bind. The binding of these substance(s) triggers the activation of specific receptors required for various physiological functions, including pain sensation, memory, and appetite. The ECs and CBR perform multiple functions via the cannabinoid receptor 1 (CB1); cannabinoid receptor 2 (CB2), having a key effect in restraining neurotransmitters and the arrangement of cytokines. The role of cannabinoids in the immune system is illustrated because of their immunosuppressive characteristics. These characteristics include inhibition of leucocyte proliferation, T cells apoptosis, and induction of macrophages along with reduced pro-inflammatory cytokines secretion. The review seeks to discuss the functional relationship between the endocannabinoid system (ECS) and anti-tumor characteristics of cannabinoids in various cancers. The therapeutic potential of cannabinoids for cancer—both in vivo and in vitro clinical trials—has also been highlighted and reported to be effective in mice models in arthritis for the inflammation reduction, neuropathic pain, positive effect in multiple sclerosis and type-1 diabetes mellitus, and found beneficial for treating in various cancers. In human models, such studies are limited; thereby, further research is indispensable in this field to get a conclusive outcome. Therefore, in autoimmune disorders, therapeutic cannabinoids can serve as promising immunosuppressive and anti-fibrotic agents. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

22 pages, 912 KiB  
Review
Milk Proteins—Their Biological Activities and Use in Cosmetics and Dermatology
by Kinga Kazimierska and Urszula Kalinowska-Lis
Molecules 2021, 26(11), 3253; https://doi.org/10.3390/molecules26113253 - 28 May 2021
Cited by 26 | Viewed by 7762
Abstract
Milk and colostrum have high biological potential, and due to their natural origin and non-toxicity, they have many uses in cosmetics and dermatology. Research is ongoing on their potential application in other fields of medicine, but there are still few results; most of [...] Read more.
Milk and colostrum have high biological potential, and due to their natural origin and non-toxicity, they have many uses in cosmetics and dermatology. Research is ongoing on their potential application in other fields of medicine, but there are still few results; most of the published ones are included in this review. These natural products are especially rich in proteins, such as casein, β-lactoglobulin, α-lactalbumin, lactoferrin, immunoglobulins, lactoperoxidase, lysozyme, and growth factors, and possess various antibacterial, antifungal, antiviral, anticancer, antioxidant, immunomodulatory properties, etc. This review describes the physico-chemical properties of milk and colostrum proteins and the natural functions they perform in the body and compares their composition between animal species (cows, goats, and sheep). The milk- and colostrum-based products can be used in dietary supplementation and for performing immunomodulatory functions; they can enhance the effects of certain drugs and can have a lethal effect on pathogenic microorganisms. Milk products are widely used in the treatment of dermatological diseases for promoting the healing of chronic wounds, hastening tissue regeneration, and the treatment of acne vulgaris or plaque psoriasis. They are also increasingly regarded as active ingredients that can improve the condition of the skin by reducing the number of acne lesions and blackheads, regulating sebum secretion, ameliorating inflammatory changes as well as bestowing a range of moisturizing, protective, toning, smoothing, anti-irritation, whitening, soothing, and antiaging effects. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

28 pages, 2165 KiB  
Review
Bioactive Components of Salvia and Their Potential Antidiabetic Properties: A Review
by Aswir Abd Rashed and Devi-Nair Gunasegavan Rathi
Molecules 2021, 26(10), 3042; https://doi.org/10.3390/molecules26103042 - 20 May 2021
Cited by 19 | Viewed by 3859
Abstract
The utilization of therapeutic plants is expanding around the globe, coupled with the tremendous expansion of alternative medicine and growing demand in health treatment. Plants are applied in pharmaceuticals to preserve and expand health—physically, mentally and as well as to treat particular health [...] Read more.
The utilization of therapeutic plants is expanding around the globe, coupled with the tremendous expansion of alternative medicine and growing demand in health treatment. Plants are applied in pharmaceuticals to preserve and expand health—physically, mentally and as well as to treat particular health conditions and afflictions. There are more than 600 families of plants identified so far. Among the plants that are often studied for their health benefit include the genus of Salvia in the mint family, Lamiaceae. This review aims to determine the bioactive components of Salvia and their potential as antidiabetic agents. The search was conducted using three databases (PubMed, EMBASE and Scopus), and all relevant articles that are freely available in the English language were extracted within 10 years (2011–2021). Salvia spp. comprises many biologically active components that can be divided into monoterpenes, diterpenes, triterpenes, and phenolic components, but only a few of these have been studied in-depth for their health benefit claims. The most commonly studied bioactive component was salvianolic acids. Interestingly, S. miltiorrhiza is undoubtedly the most widely studied Salvia species in terms of its effectiveness as an antidiabetic agent. In conclusion, we hope that this review stimulates more studies on bioactive components from medicinal plants, not only on their potential as antidiabetic agents but also for other possible health benefits. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

15 pages, 8276 KiB  
Review
Jasmonate Compounds and Their Derivatives in the Regulation of the Neoplastic Processes
by Iwona Jarocka-Karpowicz and Agnieszka Markowska
Molecules 2021, 26(10), 2901; https://doi.org/10.3390/molecules26102901 - 13 May 2021
Cited by 6 | Viewed by 2483
Abstract
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support [...] Read more.
Cancer is a serious problem in modern medicine, mainly due to the insufficient effectiveness of currently available therapies. There is a particular interest in compounds of natural origin, which can be used in the prophylaxis, as well as in the treatment and support of cancer treatment. One such compound is jasmonic acid (3-oxo-2-(pent-2’-enyl)cyclopentane acetic acid; isolated active form: trans-(-)-(3R,7R)- and cis-(+)-(3R,7S)-jasmonic acid) and its derivatives, which, due to their wide range of biological activities, are also proposed as potential therapeutic agents. Therefore, a review of literature data on the biological activity of jasmonates was prepared, with particular emphasis on the mechanisms of jasmonate action in neoplastic diseases. The anti-tumor activity of jasmonate compounds is based on altered cellular ATP levels; induction of re-differentiation through the action of Mitogen Activated Protein Kinases (MAPKs); the induction of the apoptosis by reactive oxygen species. Jasmonates can be used in anti-cancer therapy in combination with other known drugs, such as cisplatin, paclitaxel or doxorubicin, showing a synergistic effect. The structure–activity relationship of novel jasmonate derivatives with anti-tumor, anti-inflammatory and anti-aging effects is also shown. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

16 pages, 2724 KiB  
Review
Algae-Derived Bioactive Molecules for the Potential Treatment of SARS-CoV-2
by Md. Asraful Alam, Roberto Parra-Saldivar, Muhammad Bilal, Chowdhury Alfi Afroze, Md. Nasir Ahmed, Hafiz M.N. Iqbal and Jingliang Xu
Molecules 2021, 26(8), 2134; https://doi.org/10.3390/molecules26082134 - 08 Apr 2021
Cited by 50 | Viewed by 7297
Abstract
The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, [...] Read more.
The recently emerged COVID-19 disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has adversely affected the whole world. As a significant public health threat, it has spread worldwide. Scientists and global health experts are collaborating to find and execute speedy diagnostics, robust and highly effective vaccines, and therapeutic techniques to tackle COVID-19. The ocean is an immense source of biologically active molecules and/or compounds with antiviral-associated biopharmaceutical and immunostimulatory attributes. Some specific algae-derived molecules can be used to produce antibodies and vaccines to treat the COVID-19 disease. Algae have successfully synthesized several metabolites as natural defense compounds that enable them to survive under extreme environments. Several algae-derived bioactive molecules and/or compounds can be used against many diseases, including microbial and viral infections. Moreover, some algae species can also improve immunity and suppress human viral activity. Therefore, they may be recommended for use as a preventive remedy against COVID-19. Considering the above critiques and unique attributes, herein, we aimed to systematically assess algae-derived, biologically active molecules that could be used against this disease by looking at their natural sources, mechanisms of action, and prior pharmacological uses. This review also serves as a starting point for this research area to accelerate the establishment of anti-SARS-CoV-2 bioproducts. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

27 pages, 1412 KiB  
Review
Nutritional Value and Preventive Role of Nigella sativa L. and Its Main Component Thymoquinone in Cancer: An Evidenced-Based Review of Preclinical and Clinical Studies
by Johura Ansary, Francesca Giampieri, Tamara Y. Forbes-Hernandez, Lucia Regolo, Denise Quinzi, Santos Gracia Villar, Eduardo Garcia Villena, Kilian Tutusaus Pifarre, José M. Alvarez-Suarez, Maurizio Battino and Danila Cianciosi
Molecules 2021, 26(8), 2108; https://doi.org/10.3390/molecules26082108 - 07 Apr 2021
Cited by 25 | Viewed by 6382
Abstract
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, [...] Read more.
In recent times, scientific attention has been paid to different foods and their bioactive components for the ability to inhibit the onset and progress of different types of cancer. Nigella sativa extract, powder and seed oil and its main components, thymoquinone and α-hederin, have showed potent anticancer and chemosensitizing effects against various types of cancer, such as liver, colon, breast, renal, cervical, lung, ovarian, pancreatic, prostate and skin tumors, through the modulation of various molecular signaling pathways. Herein, the purpose of this review was to highlight the anticancer activity of Nigella sativa and it constitutes, focusing on different in vitro, in vivo and clinical studies and projects, in order to underline their antiproliferative, proapoptotic, cytotoxic and antimetastatic effects. Particular attention has been also given to the synergistic effect of Nigella sativa and it constitutes with chemotherapeutic drugs, and to the synthesized analogs of thymoquinone that seem to enhance the chemo-sensitizing potential. This review could be a useful step towards new research on N. sativa and cancer, to include this plant in the dietary treatments in support to conventional therapies, for the best achievement of therapeutic goals. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

23 pages, 1186 KiB  
Review
The Potentials of Melatonin in the Prevention and Treatment of Bacterial Meningitis Disease
by Dong Zhang, Shu Xu, Yiting Wang and Guoqiang Zhu
Molecules 2021, 26(5), 1419; https://doi.org/10.3390/molecules26051419 - 05 Mar 2021
Cited by 5 | Viewed by 8281
Abstract
Bacterial meningitis (BM) is an acute infectious central nervous system (CNS) disease worldwide, occurring with 50% of the survivors left with a long-term serious sequela. Acute bacterial meningitis is more prevalent in resource-poor than resource-rich areas. The pathogenesis of BM involves complex mechanisms [...] Read more.
Bacterial meningitis (BM) is an acute infectious central nervous system (CNS) disease worldwide, occurring with 50% of the survivors left with a long-term serious sequela. Acute bacterial meningitis is more prevalent in resource-poor than resource-rich areas. The pathogenesis of BM involves complex mechanisms that are related to bacterial survival and multiplication in the bloodstream, increased permeability of blood–brain barrier (BBB), oxidative stress, and excessive inflammatory response in CNS. Considering drug-resistant bacteria increases the difficulty of meningitis treatment and the vaccine also has been limited to several serotypes, and the morbidity rate of BM still is very high. With recent development in neurology, there is promising progress for drug supplements of effectively preventing and treating BM. Several in vivo and in vitro studies have elaborated on understanding the significant mechanism of melatonin on BM. Melatonin is mainly secreted in the pineal gland and can cross the BBB. Melatonin and its metabolite have been reported as effective antioxidants and anti-inflammation, which are potentially useful as prevention and treatment therapy of BM. In bacterial meningitis, melatonin can play multiple protection effects in BM through various mechanisms, including immune response, antibacterial ability, the protection of BBB integrity, free radical scavenging, anti-inflammation, signaling pathways, and gut microbiome. This manuscript summarizes the major neuroprotective mechanisms of melatonin and explores the potential prevention and treatment approaches aimed at reducing morbidity and alleviating nerve injury of BM. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

11 pages, 724 KiB  
Review
Probiotics in Cosmetic and Personal Care Products: Trends and Challenges
by Scarlett Puebla-Barragan and Gregor Reid
Molecules 2021, 26(5), 1249; https://doi.org/10.3390/molecules26051249 - 26 Feb 2021
Cited by 39 | Viewed by 15691
Abstract
Probiotics, defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host,” are becoming increasingly popular and marketable. However, too many of the products currently labelled as probiotics fail to comply with the defining characteristics. In recent [...] Read more.
Probiotics, defined as “live microorganisms that, when administered in adequate amounts, confer a health benefit on the host,” are becoming increasingly popular and marketable. However, too many of the products currently labelled as probiotics fail to comply with the defining characteristics. In recent years, the cosmetic industry has increased the number of products classified as probiotics. While there are several potential applications for probiotics in personal care products, specifically for oral, skin, and intimate care, proper regulation of the labelling and marketing standards is still required to guarantee that consumers are indeed purchasing a probiotic product. This review explores the current market, regulatory aspects, and potential applications of probiotics in the personal care industry. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

14 pages, 1396 KiB  
Review
Potential of Sulforaphane as a Natural Immune System Enhancer: A Review
by Andrea Mahn and Antonio Castillo
Molecules 2021, 26(3), 752; https://doi.org/10.3390/molecules26030752 - 01 Feb 2021
Cited by 53 | Viewed by 8476
Abstract
Brassicaceae are an outstanding source of bioactive compounds such as ascorbic acid, polyphenols, essential minerals, isothiocyanates and their precursors, glucosinolates (GSL). Recently, GSL gained great attention because of the health promoting properties of their hydrolysis products: isothiocyanates. Among them, sulforaphane (SFN) became the [...] Read more.
Brassicaceae are an outstanding source of bioactive compounds such as ascorbic acid, polyphenols, essential minerals, isothiocyanates and their precursors, glucosinolates (GSL). Recently, GSL gained great attention because of the health promoting properties of their hydrolysis products: isothiocyanates. Among them, sulforaphane (SFN) became the most attractive one owing to its remarkable health-promoting properties. SFN may prevent different types of cancer and has the ability to improve hypertensive states, to prevent type 2 diabetes–induced cardiomyopathy, and to protect against gastric ulcer. SFN may also help in schizophrenia treatment, and recently it was proposed that SFN has potential to help those who struggle with obesity. The mechanism underlying the health-promoting effect of SFN relates to its indirect action at cellular level by inducing antioxidant and Phase II detoxifying enzymes through the activation of transcription nuclear factor (erythroid-derived 2)-like (Nrf2). The effect of SFN on immune response is generating scientific interest, because of its bioavailability, which is much higher than other phytochemicals, and its capacity to induce Nrf2 target genes. Clinical trials suggest that sulforaphane produces favorable results in cases where pharmaceutical products fail. This article provides a revision about the relationship between sulforaphane and immune response in different diseases. Special attention is given to clinical trials related with immune system disorders. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

15 pages, 627 KiB  
Review
Clinical Efficacy of Brown Seaweeds Ascophyllum nodosum and Fucus vesiculosus in the Prevention or Delay Progression of the Metabolic Syndrome: A Review of Clinical Trials
by Enver Keleszade, Michael Patterson, Steven Trangmar, Kieran J. Guinan and Adele Costabile
Molecules 2021, 26(3), 714; https://doi.org/10.3390/molecules26030714 - 30 Jan 2021
Cited by 9 | Viewed by 4802
Abstract
Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially [...] Read more.
Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

25 pages, 2749 KiB  
Review
The Emerging Role of Polyphenols in the Management of Type 2 Diabetes
by Yao Wang, Hana Alkhalidy and Dongmin Liu
Molecules 2021, 26(3), 703; https://doi.org/10.3390/molecules26030703 - 29 Jan 2021
Cited by 56 | Viewed by 9920
Abstract
Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. [...] Read more.
Type 2 diabetes (T2D) is a fast-increasing health problem globally, and it results from insulin resistance and pancreatic β-cell dysfunction. The gastrointestinal (GI) tract is recognized as one of the major regulatory organs of glucose homeostasis that involves multiple gut hormones and microbiota. Notably, the incretin hormone glucagon-like peptide-1 (GLP-1) secreted from enteroendocrine L-cells plays a pivotal role in maintaining glucose homeostasis via eliciting pleiotropic effects, which are largely mediated via its receptor. Thus, targeting the GLP-1 signaling system is a highly attractive therapeutic strategy to treatment T2D. Polyphenols, the secondary metabolites from plants, have drawn considerable attention because of their numerous health benefits, including potential anti-diabetic effects. Although the major targets and locations for the polyphenolic compounds to exert the anti-diabetic action are still unclear, the first organ that is exposed to these compounds is the GI tract in which polyphenols could modulate enzymes and hormones. Indeed, emerging evidence has shown that polyphenols can stimulate GLP-1 secretion, indicating that these natural compounds might exert metabolic action at least partially mediated by GLP-1. This review provides an overview of nutritional regulation of GLP-1 secretion and summarizes recent studies on the roles of polyphenols in GLP-1 secretion and degradation as it relates to metabolic homeostasis. In addition, the effects of polyphenols on microbiota and microbial metabolites that could indirectly modulate GLP-1 secretion are also discussed. Full article
(This article belongs to the Special Issue Bioactive Compounds on Health and Disease)
Show Figures

Figure 1

Back to TopTop