Iron Biogeochemical Cycle: Relationship with Global and Regional Earth Processes, and Ore Deposits Formation

A special issue of Minerals (ISSN 2075-163X). This special issue belongs to the section "Mineral Deposits".

Deadline for manuscript submissions: closed (30 June 2023) | Viewed by 324634

Special Issue Editors


E-Mail Website
Guest Editor
1. Division for Geology, School of Earth Sciences & Engineering, Tomsk Polytechnic University, 634050 Tomsk, Russia
2. Laboratory of Sedimentology and Paleobiosphere Evolution, University of Tyumen, 625002 Tyumen, Russia
Interests: ooidal ironstones; iron ore deposits; glauconites; geochemistry; mineralogy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Earth Sciences, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
Interests: sedimentary deposits; glauconite; microbially induced sedimentary structures; Precambrian sedimentation; facies; basin analysis; sequence stratigraphy; ironstones

Special Issue Information

Dear Colleagues,

The Special Issue ”Iron Biogeochemical Cycle: Relationship with Global and Regional Geological Processes, and Ore Deposits Formation“ focuses on the review of biogeochemical processes for the origin of iron-rich deposits. Factors controlling ironstones’ distribution, metal sources, and mineral formation mechanisms are yet to be properly understood. This Issue addresses the relationship between sedimentary ore formation, global geological events, paleoclimatic conditions, and biogeochemical processes. Understanding the factors controlling the physical-chemical conditions of deposition, and consequently, modification of the iron biogeochemical cycle, are necessary for highlighting the origin of sedimentary ores.

The main goal of this Special Issue is to focus on diverse ideas about and investigations of ironstone deposits with a focus on the relationship between biogeochemical processes, geological and climatic factors, and mineral formation conditions.

Multidisciplinary studies of iron-rich sediments based on a variety of laboratory methods and techniques and covering different research aspects addressing global geological events are welcome.

Dr. Maxim Rudmin
Prof. Dr. Santanu Banerjee
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Minerals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ironstones
  • iron biogeochemical cycle
  • geochemistry
  • mineralogy
  • global and regional earth processes
  • ore deposit
  • palaeoenvironment

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 10370 KiB  
Article
Ore Genesis of the Abu Ghalaga Ferro-Ilmenite Ore Associated with Neoproterozoic Massive-Type Gabbros, South-Eastern Desert of Egypt: Evidence from Texture and Mineral Chemistry
by Hatem M. El-Desoky, Ahmed M. Abdel-Rahman, Wael Fahmy, Ibrahim Khalifa, Salah A. Mohamed, Aref Shirazi, Ardeshir Hezarkhani, Adel Shirazy and Amin Beiranvand Pour
Minerals 2023, 13(3), 307; https://doi.org/10.3390/min13030307 - 22 Feb 2023
Cited by 2 | Viewed by 2204
Abstract
Massif-type mafic intrusions (gabbro and anorthosite) are known for their considerable resources of vanadium-bearing iron–titanium oxide ores. Massive-type gabbroic and anorthosite rocks are frequently associated with magmatic rocks that have significant quantities of iron, titanium, and vanadium. The most promising intrusions that host [...] Read more.
Massif-type mafic intrusions (gabbro and anorthosite) are known for their considerable resources of vanadium-bearing iron–titanium oxide ores. Massive-type gabbroic and anorthosite rocks are frequently associated with magmatic rocks that have significant quantities of iron, titanium, and vanadium. The most promising intrusions that host Fe-Ti oxide ores are the gabbroic rocks in the south-eastern desert. The ilmenite ore deposits are hosted in arc gabbroic and anorthosite rocks. They are classified into three types, namely black ore, red ore, and disseminated ore. The black ilmenite ore is located at the deeper level, while the oxidized red ore is mainly located at or near the surface. Petrographically, the gabbro and ilmenite ores indicate a crystallization sequence of plagioclase, titaniferous pyroxene, and ilmenite. This reveals that the ilmenite is a magmatic deposit formed by the liquid gravity concentration of ilmenite following the crystallization of feldspar and pyroxene. Meanwhile, quartz, tremolite, zoisite, and opaque minerals are accessory minerals. The Fe-Ti ores are composed of ilmenite hosting exsolved hematite lamellae of variable sizes and shapes, gangue silicate minerals, and some sulfides. The X-ray diffraction (XRD) data reveal the presence of two mineral phases: ilmenite and hematite formed by the unmixing of the ferroilmenite homogeneous phase upon cooling. As a result, the ore is mostly made up of hemo-ilmenite. Using an electron microscope (SEM), as well as by observing the textures seen by the ore microscope, ilmenite is the dominant Fe-Ti oxide and contains voluminous hematite exsolved crystals. Under the scanning electron microscope, ilmenite contained intergrowths of hematite as a thin sandwich and lens shape. The formation of hematite lamellae indicates an oxidation process. Mineral chemistry-based investigations reveal late/post-magmatic activity at high temperatures. The examined ilmenite plots on the ferro-ilmenite line were created by continuous solid solution over 800 °C, whereas the analyzed magnetite and Ti-magnetite plot near the magnetite line and were formed by continuous solid solution exceeding 600 °C. Full article
Show Figures

Figure 1

23 pages, 7223 KiB  
Article
Authigenic Green Mica in Interflow Horizons within Late Cretaceous Deccan Volcanic Province, India and Its Genetic Implications
by Pragya Singh, Santanu Banerjee, Kanchan Pande, Satadru Bhattacharya, Subham Sarkar and Emilia Le Pera
Minerals 2022, 12(2), 198; https://doi.org/10.3390/min12020198 - 03 Feb 2022
Cited by 3 | Viewed by 2311
Abstract
Green authigenic mica, i.e., celadonite, is commonly associated with submarine alteration of basic igneous rock. However, very few studies have reported the formation of celadonite under nonmarine conditions. An integrated study involving field investigation, petrography, mineralogy, and mineral chemistry highlighted the origin of [...] Read more.
Green authigenic mica, i.e., celadonite, is commonly associated with submarine alteration of basic igneous rock. However, very few studies have reported the formation of celadonite under nonmarine conditions. An integrated study involving field investigation, petrography, mineralogy, and mineral chemistry highlighted the origin of celadonite in two clay-rich horizons (green boles) of the Late Cretaceous Deccan volcanic province. Within the Salher green bole, the celadonite occurred as the dissolution and alteration of plagioclase, volcanic glass, and pore-filling cement. In the case of the Pune green bole, the celadonite was formed by the alteration of plagioclase, pyroxene, and precipitation as film within intergranular pores, along with zeolite. The celadonite in the Salher green bole exhibited slightly lower K2O and Fe2O3 and higher Al2O3 than in the Pune. The mineral chemistry of the former showed a composition closer to ferro-aluminoceladonite. Although the mineral chemistry of celadonite overlaps with glauconite, the distinct 10 Å and 15 Å reflections in XRD, euhedral lath and honeycomb morphology under SEM, and characteristic absorption bands in VNIR spectroscopy (0.4–2.5 µm) and FTIR spectroscopy (400–4000 cm−1) identified celadonite and Fe-smectite within green boles. The green boles were formed either by the alteration of a volcaniclastic deposit in local pools of water or by the in situ alteration of the fragmentary flow top. The present study is significant due to the occurrence of celadonite in a nonmarine environment, as it otherwise forms under submarine conditions. Full article
Show Figures

Figure 1

20 pages, 3706 KiB  
Article
Paleoenvironmental Conditions during the Paleocene–Eocene Transition Imprinted within the Glauconitic Giral Member of the Barmer Basin, India
by Tathagata Roy Choudhury, Santanu Banerjee, Sonal Khanolkar and Sher Singh Meena
Minerals 2022, 12(1), 56; https://doi.org/10.3390/min12010056 - 31 Dec 2021
Cited by 7 | Viewed by 2562
Abstract
The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), [...] Read more.
The roughly 6 m thick limestone–green shale alternation within the lignite-bearing Giral Member of the Barmer Basin corresponds to a marine flooding event immediately after the Paleocene–Eocene transition. A detailed characterization of the glauconite using Electron Probe Micro Analyzer (EPMA), X-Ray Diffraction (XRD), Mössbauer and Field Emission Gun-Scanning Electron Microscope (FEG-SEM) reveals its origin in the backdrop of prevailing warm climatic conditions. The glauconite pellets vary from fine silt-sized to coarse sand-sized pellets, often reaching ~60% of the rock by volume. Mineralogical investigation reveals a ‘nascent’ to ‘slightly evolved’ character of the marginal marine-originated glauconite showing considerable interstratification. The chemical composition of the glauconite is unusual with a high Al2O3 (>10 wt%) and moderately high Fe2O3(total) contents (>15 wt%). While the K2O content of these glauconites is low, the interlayer sites are atypically rich in Na2O, frequently occupying ~33% of the total interlayer sites. The Mössbauer spectrum indicates 10% of the total iron is in ferrous form. High tetrahedral Al3+ of these glauconites suggests a high-alumina substrate that transformed to glauconite by octahedral Al-for-Fe substitution followed by the addition of K into the interlayer structure. The unusually high Na2O suggests the possibility of a soda-rich pore water formed by the dissolution of alkaline volcanic minerals. The Giral glauconite formation could have been a part of the major contributors in the Fe-sequestration cycle in the Early Eocene shelves. Warm climate during the Early Eocene time favored the glauconitization because of the enhanced supply of Fe, Al, and Si and proliferation of an oxygen-depleted depositional environment. Full article
Show Figures

Figure 1

18 pages, 9892 KiB  
Article
Investigation of Magneto-/Radio-Metric Behavior in Order to Identify an Estimator Model Using K-Means Clustering and Artificial Neural Network (ANN) (Iron Ore Deposit, Yazd, IRAN)
by Adel Shirazy, Ardeshir Hezarkhani, Timofey Timkin and Aref Shirazi
Minerals 2021, 11(12), 1304; https://doi.org/10.3390/min11121304 - 23 Nov 2021
Cited by 11 | Viewed by 305595
Abstract
The study area is located near Toot village in the Yazd province of Iran, which is considered in terms of its iron mineralization potential. In this area, due to radioactivity, radiometric surveys were performed in a part of the area where magnetometric studies [...] Read more.
The study area is located near Toot village in the Yazd province of Iran, which is considered in terms of its iron mineralization potential. In this area, due to radioactivity, radiometric surveys were performed in a part of the area where magnetometric studies have also been performed. According to geological studies, the presence of magnetic anomalies can have a complex relationship with the intensity of radioactivity of radioactive elements. Using the K-means clustering method, the centers of the clusters were calculated with and without considering the coordinates of radiometric points. Finally, the behavior of the two variables of magnetic field strength and radioactivity of radioactive elements relative to each other was studied, and a mathematical relationship was presented to analyze the behavior of these two variables relative to each other. On the other hand, the increasing and then decreasing behavior of the intensity of the Earth’s magnetic field relative to the intensity of radioactivity of radioactive elements shows that it is possible to generalize the results of magnetometric surveys to radiometry without radiometric re-sampling in this region and neighboring areas. For this purpose, using the general regression neural network and backpropagation neural network (BPNN) methods, radiometric data were estimated with very good accuracy. The general regression neural network (GRNN) method, with more precision in estimation, was used as a model for estimating the radiation intensity of radioactive elements in other neighboring areas. Full article
Show Figures

Figure 1

21 pages, 35013 KiB  
Article
Depositional Conditions of Cretaceous Ironstones Deposit in the Chulym-Yenisey Basin (Western Siberia)
by Maxim Rudmin, Santanu Banerjee, Aigerim Dauletova and Aleksey Ruban
Minerals 2021, 11(9), 1008; https://doi.org/10.3390/min11091008 - 16 Sep 2021
Cited by 3 | Viewed by 2245
Abstract
This study reconstructs the depositional conditions of ironstones within the Chulym-Yenisey basin and assesses the iron source. The detrital minerals of the studied deposits include quartz and feldspar. The authigenic minerals are goethite, siderite, aragonite, dolomite, calcite, apatite, barite, and pyrite. The clay [...] Read more.
This study reconstructs the depositional conditions of ironstones within the Chulym-Yenisey basin and assesses the iron source. The detrital minerals of the studied deposits include quartz and feldspar. The authigenic minerals are goethite, siderite, aragonite, dolomite, calcite, apatite, barite, and pyrite. The clay components include minerals of the chlorite group (possible chamosite), nontronite, kaolinite, illite, and beidellite. Local bacterial sulfate reduction led to the formation of pyrite framboids in siltstone layers. The subsequent diagenetic iron reduction promoted the formation of chamosite from siderite. The goethite precipitation occurred in an oxidic aqueous environment. The Cretaceous continental sediments of the Ilek and Kia Formations of the Chulym-Yenisei depression consist of fine- and medium-grained, cross-stratified, poorly sorted litho-feldspatho-quartzose sandstones of fluvial channel origin alternating with bluish-gray siltstones and ironstones of floodplain–lacustrine–bog origin. Thin layers of iron-bearing rocks within siltstones formed in meromictic waters. The changes in geochemical proxies demonstrate fluctuations of paleoenvironmental conditions within the Cretaceous sequence. Siltstones and sandstones formed under humid and arid conditions, respectively. The primary iron source for sediments of the Chulym-Yenisey depression was determined as volcanogenic and igneous rocks of the Altai-Sayan mountainous region. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 2386 KiB  
Review
Origin of Banded Iron Formations: Links with Paleoclimate, Paleoenvironment, and Major Geological Processes
by Jiangning Yin, Han Li and Keyan Xiao
Minerals 2023, 13(4), 547; https://doi.org/10.3390/min13040547 - 13 Apr 2023
Cited by 1 | Viewed by 5225
Abstract
Banded iron-formations (BIFs) are marine chemical sedimentary rocks composed of siliceous and ferric materials, usually with typical thin layers or sheet structures. BIFs not only record a wealth of information about the state and evolution of the lithosphere, atmosphere, hydrosphere, and biosphere but [...] Read more.
Banded iron-formations (BIFs) are marine chemical sedimentary rocks composed of siliceous and ferric materials, usually with typical thin layers or sheet structures. BIFs not only record a wealth of information about the state and evolution of the lithosphere, atmosphere, hydrosphere, and biosphere but also host the majority of the economic iron resources in the world. Here, we summarize the types, mineralogical, and geochemical characteristics of BIFs; analyze their formation conditions, their oxidative mechanism, and the absence causes of BIFs; and elucidate the associations between BIFs and major atmospheric oxidation events (Paleoproterozoic great oxidation event (2.4~2.1 Ga) and Neoproterozoic oxidation event (0.8~0.55 Ga)). BIFs are intimately associated with enhanced submarine magmatic–hydrothermal activities. Finally, it is concluded that the deposition and demise of BIFs are closely related to major geological events, and these major geological events interact with each other, jointly constraining the evolution of the atmospheric and marine environment and of geo-biological and geodynamic processes. Full article
Show Figures

Figure 1

Back to TopTop