Nanoparticles and Their Biological Applications: Recent Advances in 2022–2023

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Antimicrobial Agents and Resistance".

Deadline for manuscript submissions: closed (30 April 2023) | Viewed by 21449

Special Issue Editors


E-Mail Website
Guest Editor
State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
Interests: plant biology; plant stress physiology; plant resistance against different stresses; abiotic and biotic stresses; heavy metal stresses; phytohormones; plant autophagy; plant biotechnology; plant genome editing; CRISPR/Cas9; nanoparticles; plant-bacteria interaction
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, propagation and resistance of pathogenic microorganisms (bacteria, fungi, and virals) to common antimicrobial agents has led to serious health and food problems. Today, nanotechnology science and nanoparticles (NPs) have been identified as a new approach to deal with this problem because of their inherent antimicrobial activity. Several studies have reported that NPs are considered a group of materials that can be studied due to their antimicrobial properties. The emergence of nanotechnology has created many new antimicrobial options. The small size of the nanoparticles is very suitable for carrying out antimicrobial biological operations. Metals such as silver, zinc, copper, and iron nanoparticle types have shown tremendous potential as bactericidal and fungicidal elements, demonstrating their potential as efficient antibiotic reagents. These nanomaterials displayed antimicrobial activity against numerous pathogenic viral and bacterial species. They offer prolonged antimicrobial activity with negligible toxicity compared with small molecular antimicrobial agents that display short-term activity and environmental toxicity. The antimicrobial nanoparticle physically destroys the cell membranes of the organism, which prevent the development of drug-resistance microbes

This Special Issue includes but is not limited to the following topics:

  • Antimicrobial agents
  • Antibacterial properties
  • Antifungal properties
  • Antiviral properties
  • Biomedical applications
  • Nanotechnology
  • Antibiotics
  • Antioxidants
  • Plants nanoparticles
  • Fungi-mediated nanoparticles
  • Biometallic assembled nanoparticles

Dr. Wajid Zaman
Dr. Hakim Manghwar
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

 

Keywords

  • antimicrobial agents
  • antibacterial properties
  • antifungal properties
  • antiviral properties
  • biomedical applications
  • nanotechnology
  • antibiotics
  • antioxidants
  • plants nanoparticles
  • fungi-mediated nanoparticles
  • biometallic assembled nanoparticles

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research

3 pages, 165 KiB  
Editorial
Nanoparticles and Their Biological Applications: Recent Advances in 2022–2023
by Wajid Zaman and Hakim Manghwar
Microorganisms 2024, 12(3), 489; https://doi.org/10.3390/microorganisms12030489 - 28 Feb 2024
Viewed by 572
Abstract
This Special Issue illustrates the collaborative effort required to harness the potential of nanoparticles, showcasing their role in targeting drug-resistant bacteria and highlighting new pathways for drug delivery, diagnostics, and beyond [...] Full article

Research

Jump to: Editorial

11 pages, 2800 KiB  
Article
Biosynthesis of Silver Nanoparticles from Duchesnea indica Extracts Using Different Solvents and Their Antibacterial Activity
by Se-Min Kim, Hye-Jo Choi, Jeong-A Lim, Min-Ah Woo, Hyun-Joo Chang, Nari Lee and Min-Cheol Lim
Microorganisms 2023, 11(6), 1539; https://doi.org/10.3390/microorganisms11061539 - 09 Jun 2023
Cited by 2 | Viewed by 1404
Abstract
Silver nanoparticles (AgNPs) were synthesized using the whole plant of Duchesnea indica (DI) which was extracted in different solvents; the antimicrobial effects of the extract were investigated in this study. The extraction of DI was performed using three different solvents: water, pure ethanol [...] Read more.
Silver nanoparticles (AgNPs) were synthesized using the whole plant of Duchesnea indica (DI) which was extracted in different solvents; the antimicrobial effects of the extract were investigated in this study. The extraction of DI was performed using three different solvents: water, pure ethanol (EtOH), and pure dimethyl sulfoxide (DMSO). AgNP formation was monitored by measuring the UV–Vis spectrum of each reaction solution. After synthesis for 48 h, the AgNPs were collected and the negative surface charge and size distribution of the synthesized AgNPs were measured using dynamic light scattering (DLS). The AgNP structure was determined by high-resolution powder X-ray diffraction (XRD) and the AgNP morphology was investigated using transmission electron microscopy (TEM). AgNP antibacterial activities were evaluated against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella enteritidis, and Pseudomonas aeruginosa using the disc diffusion method. Additionally, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were also determined. Biosynthesized AgNPs showed enhanced antibacterial activity against B. cereus, S. aureus, E. coli, S. enteritidis, and P. aeruginosa compared with that of pristine solvent extract. These results suggest that AgNPs synthesized from extracts of DI are promising antibacterial agents against pathogenic bacteria and can be further applied in the food industry. Full article
Show Figures

Figure 1

16 pages, 2778 KiB  
Article
Antimicrobial Photodynamic Therapy against Escherichia coli and Staphylococcus aureus Using Nanoemulsion-Encapsulated Zinc Phthalocyanine
by Nada T. Felifel, Mahmoud A. Sliem, Zienat Kamel, Joanna Bojarska, Mohamed G. Seadawy, Rehab M. Amin and Sherif M. Elnagdy
Microorganisms 2023, 11(5), 1143; https://doi.org/10.3390/microorganisms11051143 - 27 Apr 2023
Cited by 3 | Viewed by 1682
Abstract
Multidrug-resistant microorganisms have become a significant public health threat, and traditional antibiotics are becoming ineffective. Photodynamic therapy (PDT) is a promising alternative that utilizes photosensitizers and light to produce Reactive Oxygen Species (ROS) that can kill microorganisms. Zinc phthalocyanine (ZnPc) is a promising [...] Read more.
Multidrug-resistant microorganisms have become a significant public health threat, and traditional antibiotics are becoming ineffective. Photodynamic therapy (PDT) is a promising alternative that utilizes photosensitizers and light to produce Reactive Oxygen Species (ROS) that can kill microorganisms. Zinc phthalocyanine (ZnPc) is a promising photosensitizer due to its strong affinity for encapsulation in nanoemulsions and its antimicrobial properties. In this study, nanoemulsion was prepared using Miglyol 812N, a surfactant, and distilled water to dissolve hydrophobic drugs such as ZnPc. The nanoemulsion was characterized by its particle size, polydispersity index, Transmission Electron Microscope and Zeta potential, and the results showed that it was an efficient nanocarrier system that facilitated the solubilization of hydrophobic drugs in water. The use of ZnPc encapsulated in the nanoemulsion produced through the spontaneous emulsification method resulted in a significant reduction in cell survival percentages of gram-positive Staphylococcus aureus and gram-negative Escherichia coli by 85% and 75%, respectively. This may be attributed to the more complex cell membrane structure of E. coli compared to S. aureus. This demonstrates the potential of nanoemulsion-based PDT as an effective alternative to traditional antibiotics for treating multidrug-resistant microorganisms. Full article
Show Figures

Figure 1

19 pages, 8510 KiB  
Article
Biogenic Synthesis of Multifunctional Silver Oxide Nanoparticles (Ag2ONPs) Using Parieteria alsinaefolia Delile Aqueous Extract and Assessment of Their Diverse Biological Applications
by Zakir Ullah, Farhat Gul, Javed Iqbal, Banzeer Ahsan Abbasi, Sobia Kanwal, Wadie Chalgham, Mohamed A. El-Sheikh, Sibel Emir Diltemiz and Tariq Mahmood
Microorganisms 2023, 11(4), 1069; https://doi.org/10.3390/microorganisms11041069 - 20 Apr 2023
Cited by 7 | Viewed by 2156
Abstract
Green nanotechnology has made the synthesis of nanoparticles a possible approach. Nanotechnology has a significant impact on several scientific domains and has diverse applications in different commercial areas. The current study aimed to develop a novel and green approach for the biosynthesis of [...] Read more.
Green nanotechnology has made the synthesis of nanoparticles a possible approach. Nanotechnology has a significant impact on several scientific domains and has diverse applications in different commercial areas. The current study aimed to develop a novel and green approach for the biosynthesis of silver oxide nanoparticles (Ag2ONPs) utilizing Parieteria alsinaefolia leaves extract as a reducing, stabilizing and capping agent. The change in color of the reaction mixture from light brown to reddish black determines the synthesis of Ag2ONPs. Further, different techniques were used to confirm the synthesis of Ag2ONPs, including UV-Visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential and dynamic light scattering (DLS) analyses. The Scherrer equation determined a mean crystallite size of ~22.23 nm for Ag2ONPs. Additionally, different in vitro biological activities have been investigated and determined significant therapeutic potentials. Radical scavenging DPPH assay (79.4%), reducing power assay (62.68 ± 1.77%) and total antioxidant capacity (87.5 ± 4.8%) were evaluated to assess the antioxidative potential of Ag2ONPs. The disc diffusion method was adopted to evaluate the antibacterial and antifungal potentials of Ag2ONPs using different concentrations (125–1000 μg/mL). Moreover, the brine shrimp cytotoxicity assay was investigated and the LC50 value was calculated as 2.21 μg/mL. The biocompatibility assay using red blood cells (<200 μg/mL) confirmed the biosafe and biocompatible nature of Ag2ONPs. Alpha-amylase inhibition assay was performed and reported 66% inhibition. In conclusion, currently synthesized Ag2ONPs have exhibited strong biological potential and proved as an attractive eco-friendly candidate. In the future, this preliminary research work will be a helpful source and will open new avenues in diverse fields, including the pharmaceutical, biomedical and pharmacological sectors. Full article
Show Figures

Figure 1

21 pages, 5890 KiB  
Article
Green Biofabrication of Silver Nanoparticles of Potential Synergistic Activity with Antibacterial and Antifungal Agents against Some Nosocomial Pathogens
by Fatimah O. Al-Otibi, Mohamed Taha Yassin, Abdulaziz A. Al-Askar and Khalid Maniah
Microorganisms 2023, 11(4), 945; https://doi.org/10.3390/microorganisms11040945 - 04 Apr 2023
Cited by 8 | Viewed by 2344
Abstract
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles [...] Read more.
Nosocomial bacterial and fungal infections are one of the main causes of high morbidity and mortality worldwide, owing to the high prevalence of multidrug-resistant microbial strains. Hence, the study aims to synthesize, characterize, and investigate the antifungal and antibacterial activity of silver nanoparticles (AgNPs) fabricated using Camellia sinensis leaves against nosocomial pathogens. The biogenic AgNPs revealed a small particle diameter of 35.761 ± 3.18 nm based on transmission electron microscope (TEM) graphs and a negative surface charge of −14.1 mV, revealing the repulsive forces between nanoparticles, which in turn indicated their colloidal stability. The disk diffusion assay confirmed that Escherichia coli was the most susceptible bacterial strain to the biogenic AgNPs (200 g/disk), while the lowest sensitive strain was found to be the Acinetobacter baumannii strain with relative inhibition zones of 36.14 ± 0.67 and 21.04 ± 0.19 mm, respectively. On the other hand, the biogenic AgNPs (200 µg/disk) exposed antifungal efficacy against Candida albicans strain with a relative inhibition zone of 18.16 ± 0.14 mm in diameter. The biogenic AgNPs exposed synergistic activity with both tigecycline and clotrimazole against A. baumannii and C. albicans, respectively. In conclusion, the biogenic AgNPs demonstrated distinct physicochemical properties and potential synergistic bioactivity with tigecycline, linezolid, and clotrimazole against gram-negative, gram-positive, and fungal strains, respectively. This is paving the way for the development of effective antimicrobial combinations for the effective management of nosocomial pathogens in intensive care units (ICUs) and health care settings. Full article
Show Figures

Figure 1

22 pages, 6208 KiB  
Article
Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease
by Madeeha Ansari, Shakil Ahmed, Asim Abbasi, Najwa A. Hamad, Hayssam M. Ali, Muhammad Tajammal Khan, Inzamam Ul Haq and Qamar uz Zaman
Microorganisms 2023, 11(4), 886; https://doi.org/10.3390/microorganisms11040886 - 29 Mar 2023
Cited by 10 | Viewed by 2881
Abstract
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers’ major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to [...] Read more.
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers’ major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP–treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security. Full article
Show Figures

Figure 1

21 pages, 12001 KiB  
Article
Synergistic Antibacterial Proficiency of Green Bioformulated Zinc Oxide Nanoparticles with Potential Fosfomycin Synergism against Nosocomial Bacterial Pathogens
by Khalid S. Almaary, Mohamed Taha Yassin, Abdallah M. Elgorban, Fatimah O. Al-Otibi, Abdulaziz A. Al-Askar and Khalid Maniah
Microorganisms 2023, 11(3), 645; https://doi.org/10.3390/microorganisms11030645 - 02 Mar 2023
Cited by 6 | Viewed by 2400
Abstract
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract [...] Read more.
The drug resistance of bacterial pathogens causes considerable morbidity and death globally, hence there is a crucial necessity for the development of effective antibacterial medicines to address the antibacterial resistance issue. The bioprepared zinc oxide nanoparticles (ZnO-NPs) were prepared utilizing the flower extract of Hibiscus sabdariffa and then characterized using different physicochemical techniques. The antibacterial effectiveness of the bioprepared ZnO-NPs and their synergism with fosfomycin were evaluated using disk diffusion assay against the concerned pathogens. Transmission electron microscopy (TEM) investigation of the bioprepared ZnO-NPs showed that their average particle size was 18.93 ± 2.65 nm. Escherichia coli expressed the highest sensitivity to the bioinspired ZnO-NPs with a suppressive zone of 22.54 ± 1.26 nm at a concentration of 50 µg/disk, whereas the maximum synergistic effect of the bioinspired ZnO-NPs with fosfomycin was noticed against Klebsiella pneumoniae strain with synergism ratio of 100.29%. In conclusion, the bioinspired ZnO-NPs demonstrated significant antibacterial and synergistic efficacy with fosfomycin against the concerned nosocomial bacterial pathogens, highlighting the potential of using the ZnO NPs-fosfomycin combination for effective control of nosocomial infections in intensive care units (ICUs) and health care settings. Furthermore, the biogenic ZnO-NPs’ potential antibacterial action against food pathogens such as Salmonella typhimurium and E. coli indicates their potential usage in food packaging applications. Full article
Show Figures

Figure 1

16 pages, 3421 KiB  
Article
TA-AgNPs/Alginate Hydrogel and Its Potential Application as a Promising Antibiofilm Material against Polymicrobial Wound Biofilms Using a Unique Biofilm Flow Model
by Oranee Srichaiyapol, Sarah E. Maddocks, Saengrawee Thammawithan, Sakda Daduang, Sompong Klaynongsruang and Rina Patramanon
Microorganisms 2022, 10(11), 2279; https://doi.org/10.3390/microorganisms10112279 - 16 Nov 2022
Cited by 3 | Viewed by 1725
Abstract
The presence of biofilm within a chronic wound may delay the healing process. Thus, control of biofilm formation and providing bactericidal effect are crucial factors for wound healing management. Alginate-based nanocomposite hydrogels have been suggested as dressing materials for wound treatment, which are [...] Read more.
The presence of biofilm within a chronic wound may delay the healing process. Thus, control of biofilm formation and providing bactericidal effect are crucial factors for wound healing management. Alginate-based nanocomposite hydrogels have been suggested as dressing materials for wound treatment, which are employed as a biocompatible matrix. Therefore, in this study, we aimed to develop a biocompatible antimicrobial wound dressing containing AgNPs and demonstrate its efficacy against polymicrobial wound biofilms by using a biofilm flow device to simulate a chronic infected, exuding wound and specific wound environment. The results from agar well diffusion, the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) assays showed that TA-AgNPs exhibited antibacterial activity against wound pathogens. Additionally, the Minimum Biofilm Eradication Concentration assay (MBEC) demonstrated it could impair biofilm formation. Importantly, our TA-AgNPs/Alginate hydrogel clearly showed antibacterial activities against Streptococcus pyogenes, Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, we used the biofilm flow device to test the topical antimicrobial hydrogel against a three-species biofilm. We found that TA-AgNPs/Alginate hydrogel significantly showed a 3–4 log reduction in bacterial numbers when applied with multiple doses at 24 h intervals, and was especially effective against the chronic wound pathogen P. aeruginosa. This work highlighted that the TA-AgNPs/Alginate hydrogel is a promising material for treating complex wound biofilms. Full article
Show Figures

Figure 1

16 pages, 3966 KiB  
Article
Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens
by Ammara Farooq, Umair A. Khan, Haider Ali, Manda Sathish, Syed Atif Hasan Naqvi, Shehzad Iqbal, Haider Ali, Iqra Mubeen, Muhammad Bilal Amir, Walid F. A. Mosa, Alaa Baazeem, Mahmoud Moustafa, Sulaiman Alrumman, Ali Shati and Sally Negm
Microorganisms 2022, 10(11), 2195; https://doi.org/10.3390/microorganisms10112195 - 04 Nov 2022
Cited by 11 | Viewed by 2685
Abstract
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading [...] Read more.
Nanotechnology is a burning field of scientific interest for researchers in current era. Diverse plant materials are considered as potential tool in green chemistry based technologies for the synthesis of metal nanoparticles (NPs) to cope with the hazardous effects of synthetic chemicals, leading to severe abiotic climate change issues in today’s agriculture. This study aimed to determine the synthesis and characterization of metal-based nanoparticles using extracts of the selected plant Calotropis gigantea and to evaluate the enzyme-inhibition activities and antibacterial and antifungal activity of extracts of metal-based zinc nanoparticles using C. gigantea extracts. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). C. gigantea was examined for antimicrobial activity against clinical isolates of bacteria and fungi. The water, ethanolic, and acetone extracts of C. gigantea were studied for their antagonistic action against bacterial strains (E. coli, S. aureus, P. multocida, and B. subtilis) and selected fungal strains (A. paracistic, F. solani, A. niger, S. ferrugenium, and R. nigricans). In vitro antimicrobial activity was determined by the disc diffusion method, where C. gigantea was tested for AChE and BChE inhibitory activity using Ellman’s methodology. The kinetic analysis was performed by the proverbial Berthelot reaction for urease inhibition. The results showed that out of all the extracts tested, ethanolic and water extracts possessed zinc nanoparticles. These extracts showed the maximum zone of inhibition against F. solani and P. multocida and the lowest against S. ferrugenium and B. subtilis. A potential source of AChE inhibitors is certainly provided by the abundance of plants in nature. Numerous phyto-constituents, such as AChE and BChE inhibitors, have been reported in this communication. Water extract was active and has the potential for in vitro AChE and BChE inhibitory activity. The urease inhibition with flower extracts of C. gigantea revealed zinc nanoparticles in water extracts that competitively inhibited urease enzymes. In the case of cholinesterase enzymes, it was inferred that the water extract and zinc nanoparticles have more potential for inhibition of BChE than AChE and urease inhibition. Furthermore, zinc nanoparticles with water extract are active inthe inhibition of the bacterial strains E. coli, S. aureus, and P. multocida and the fungal strains A. paracistic, F. solani, and A. niger. Full article
Show Figures

Figure 1

15 pages, 3764 KiB  
Article
Manufactured Nano-Objects Confer Viral Protection against Cucurbit Chlorotic Yellows Virus (CCYV) Infecting Nicotiana benthamiana
by Mayasar I. Al-Zaban, Sadeq K. Alhag, Anas S. Dablool, Ahmed Ezzat Ahmed, Saad Alghamdi, Baber Ali, Fatimah A. Al-Saeed, Muhammad Hamzah Saleem and Peter Poczai
Microorganisms 2022, 10(9), 1837; https://doi.org/10.3390/microorganisms10091837 - 14 Sep 2022
Cited by 16 | Viewed by 1807
Abstract
Nanotechnology has emerged as a new tool to combat phytopathogens in agricultural crops. Cucurbit chlorotic yellows virus (CCYV) mainly infects Solanaceae crops and causes significant crop losses. Nanomaterials (NMs) may have efficacy against plant viruses, but the mechanisms underlying complex nanomaterials-plant-virus interactions remain [...] Read more.
Nanotechnology has emerged as a new tool to combat phytopathogens in agricultural crops. Cucurbit chlorotic yellows virus (CCYV) mainly infects Solanaceae crops and causes significant crop losses. Nanomaterials (NMs) may have efficacy against plant viruses, but the mechanisms underlying complex nanomaterials-plant-virus interactions remain elusive. We challenged Nicotiana benthamiana plants with GFP-tagged CCYV and observed morphological, physiological, and molecular changes in response to 21-d foliar exposure to nanoscale Fe and Zn and C60 fullerenes at 100 mg/L concentration for 21 days. We observed that in response to C60 (100 mg/L) treatment, plants displayed a normal phenotype while the viral infection was not seen until 5 days post-inoculation. On the contrary, Fe and Zn were unable to suppress viral progression. The mRNA transcriptional analysis for GFP and viral coat protein revealed that the transcripts of both genes were 5-fold reduced in response to C60 treatment. Evaluation of the chloroplast ultrastructure showed that NMs treatment maintained the normal chloroplast structure in the plants as compared to untreated plants. C60 upregulated the defense-related phytohormones (abscisic acid and salicylic acid) by 42–43%. Our results demonstrate the protective function of carbon-based NMs, with suppression of CCYV symptoms via inhibition of viral replication and systemic movement. Full article
Show Figures

Figure 1

Back to TopTop