Topical Collection "Micromixers: Analysis, Design and Fabrication"

A topical collection in Micromachines (ISSN 2072-666X).

Viewed by 2805

Editor

Department of Mechanical Engineering, Inha University, Incheon 22212, Korea
Interests: micromixer; micro heat sink; fluid machinery; optimization; heat transfer
Special Issues, Collections and Topics in MDPI journals

Topical Collection Information

Dear Colleagues,

Micromixers are an important component in micro-total analysis systems (μTAS) and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The successful operation of microfluidic devices requires fast and adequate mixing, but mixing is a challenging task due to the laminar feature of flow at the microscale. Mixing in laminar flows relies on diffusion and requires a longer channel to achieve complete mixing due to the slow process compared with that in turbulent flows. Hence, it is crucial to overcome this challenge to improve the mixing performance. Based on their mixing mechanism, micromixers are classified into two types: active and passive. Passive micromixers are easy to fabricate and generally use geometry modification to cause chaotic advection or lamination to promote the mixing of fluid samples, unlike active micromixers, which use moving parts or some external agitation/energy for the mixing. This collection will highlight recent developments within new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. 

Prof. Dr. Kwang-Yong Kim
Collection Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micromixer
  • mixing
  • microfluidic device
  • analysis
  • design
  • fabrication

Published Papers (2 papers)

2022

Article
Serpentine Micromixers Using Extensional Mixing Elements
Micromachines 2022, 13(10), 1785; https://doi.org/10.3390/mi13101785 - 20 Oct 2022
Viewed by 911
Abstract
Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along [...] Read more.
Computational fluid dynamics modeling was used to characterize the effect of the integration of constrictions defined by the vertices of hyperbolas on the flow structure in microfluidic serpentine channels. In the new topology, the Dean flows characteristic of the pressure-driven fluid motion along curved channels are combined with elongational flows and asymmetric longitudinal eddies that develop in the constriction region. The resulting complex flow structure is characterized by folding and stretching of the fluid volumes, which can promote enhanced mixing. Optimization of the geometrical parameters defining the constriction region allows for the development of an efficient micromixer topology that shows robust enhanced performance across a broad range of Reynolds numbers from Re = 1 to 100. Full article
Show Figures

Figure 1

Article
Kinematic Properties of a Twisted Double Planetary Chaotic Mixer: A Three-Dimensional Numerical Investigation
Micromachines 2022, 13(9), 1545; https://doi.org/10.3390/mi13091545 - 17 Sep 2022
Viewed by 1136
Abstract
In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating [...] Read more.
In this study, a numerical investigation based on the CFD method is carried out to study the unsteady laminar flow of Newtonian fluid with a high viscosity in a three-dimensional simulation of a twisted double planetary mixer, which is composed of two agitating rods inside a moving tank. The considered stirring protocol is a “Continuous sine squared motion” by using the dynamic mesh model and user-defined functions (UDFs)to define the velocity profiles. The chaotic advection is obtained in our active mixers by the temporal modulation of rotational velocities of the moving walls in order to enhance the mixing of the fluid for a low Reynolds number and a high Peclet number. For this goal, we applied the Poincaré section and Lyapunov exponent as reliable mathematic tools for checking mixing quality by tracking a number of massless particles inside the fluid domain. Additionally, we investigated the development of fluid kinematics proprieties, such as vorticity, helicity, strain rate and elongation rate, at various time periods in order to view the impact of temporal modulation on the flow properties. The results of the mentioned simulation showed that it is possible to obtain a chaotic advection after a relatively short time, which can deeply enhance mixing fluid efficiency. Full article
Show Figures

Figure 1

Back to TopTop