Multifunctional-Nanomaterials-Based Semiconductor Devices and Sensors

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D1: Semiconductor Devices".

Deadline for manuscript submissions: closed (31 January 2024) | Viewed by 1359

Special Issue Editors

Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala Lumpur 56000, Malaysia
Interests: organic sensors; transistors; solar cells; thermoelectric cells; flexible devices; high gravity deposition
Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan
Interests: electrophysical properties of organic semiconductors; organic semiconductor devices (sensors, solar cells); materials processing at high gravity conditions (thin films); utilization of renewable energy

Special Issue Information

Dear Colleagues,

In recent years, multifunctional-nanomaterials-based semiconducting devices and sensors have become one of the most researched topics. Due to changes in conductivity, semiconductor materials are widely employed in solar cells, thermoelectric materials, diodes, electrochemical cells, and sensors, among other applications. In addition to being a crucial material as an active layer, they also exhibit remarkable outcomes as substrates and supporting layers. Semiconductor-based devices respond differently to humidity, temperature, light, gas, etc. Therefore, the same device may perform many functions simultaneously, which not only reduces their size but also minimizes manufacturing costs. These devices can be manufactured using a variety of techniques, such as screen printing, spin coating, spray coating, rubbing-in, different gravity deposition, thermal deposition, chemical vapor deposition, etc., which provides a vast space for scientific research not only at the industrial level, but also at the domestic and academic levels. Generally speaking, semiconductor devices are more dependable, stable, affordable, and accessible. Due to the great sensitivity of their reactions, these devices are not only utilized as sensors, but also as one of the primary materials to meet the rising energy demands. Researchers are forced to employ free natural resources such as the sun to generate energy through solar cells and thermoelectric generators, which drives innovation in nanomaterials-based multi-functional semiconductor devices. Consequently, this Special Issue aims to feature research papers, brief communications, and review articles that focus on novel methodological developments in semiconductor-based devices and sensor applications not only in engineering and medical industries, but also in research development and domestic-level applications.

Dr. Noshin Fatima
Prof. Dr. Khasan S. Karimov
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • morphological and electrical analysis
  • nano materials
  • p–n junctions
  • semiconductor devices
  • simulation (theory)

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:


12 pages, 2778 KiB  
Fabrication and Investigation of Graphite-Flake-Composite-Based Non-Invasive Flex Multi-Functional Force, Acceleration, and Thermal Sensor
Micromachines 2023, 14(7), 1358; - 30 Jun 2023
Viewed by 860
This work examines the physics of a non-invasive multi-functional elastic thin-film graphite flake–isoprene sulfone composite sensor. The strain design and electrical characterization of the stretching force, acceleration, and temperature were performed. The rub-in technique was used to fabricate graphite flakes and isoprene sulfone [...] Read more.
This work examines the physics of a non-invasive multi-functional elastic thin-film graphite flake–isoprene sulfone composite sensor. The strain design and electrical characterization of the stretching force, acceleration, and temperature were performed. The rub-in technique was used to fabricate graphite flakes and isoprene sulfone into sensors, which were then analyzed for their morphology using methods such as SEM, AFM, X-ray diffraction, and Fourier transform infrared spectroscopy to examine the device’s surface and structure. Sensor impedance was measured from DC to 200 kHz at up to 20 gf, 20 m/s2, and 26–60 °C. Sensor resistance and impedance to stretching force and acceleration at DC and 200 Hz rose 2.4- and 2.6-fold and 2.01- and 2.06-fold, respectively. Temperature-measuring devices demonstrated 2.65- and 2.8-fold decreases in resistance and impedance at DC and 200 kHz, respectively. First, altering the graphite flake composite particle spacing may modify electronic parameters in the suggested multi-functional sensors under stress and acceleration. Second, the temperature impacts particle and isoprene sulfone properties. Due to their fabrication using an inexpensive deposition technique, these devices are environmentally friendly, are simple to build, and may be used in university research in international poverty-line nations. In scientific laboratories, such devices can be used to teach students how various materials respond to varying environmental circumstances. They may also monitor individuals undergoing physiotherapy and vibrating surfaces in a controlled setting to prevent public health risks. Full article
(This article belongs to the Special Issue Multifunctional-Nanomaterials-Based Semiconductor Devices and Sensors)
Show Figures

Figure 1

Back to TopTop