Numerical and Experimental Advances in Metal Processing

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Casting, Forming and Heat Treatment".

Deadline for manuscript submissions: 31 August 2024 | Viewed by 1131

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
Interests: manufacturing processes; metal forming technology and processing; sheet metal forming; numerical simulation; experimental validation; material testing and constitutive modelling
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute of Science and Innovation in Mechanical and Industrial Engineering, R. Dr. Roberto Frias, 400, 4200-465, Porto, Portugal
Interests: metal forming processes; material characterization; constitutive modelling; numerical simulation; experimental validation; inverse optimization techniques
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to provide the most recent advances in the manufacturing processes of metallic materials and to identify directions both in experimental and numerical research, including the requirements for sustainable technologies and processes.

The covered topics will be of major interest for scientists and professionals working at universities, research institutes, laboratories and industries concerned with established and novel manufacturing methodologies using conventional and emerging materials.

A key aspect is proper process design in order to guarantee the compliance of the final product with the intended functionality, while at the same time minimizing resource usage. Metal processing optimization and the strength of the final products, including their fatigue performance, could be anticipated at the design stage by resorting to advanced modelling, including numerical simulation (e.g., FEA). The continuous development of these technologies and processes, research on suitable numerical tools and models, and experimental procedures allow proper process design for tailored product performance, which is mandatory for industry competitiveness and the sustainability of society.

The Special Issue will cover, but will not be limited to, the following topics:

  • Formability in metal forming processes;
  • Modeling and designing of forming and joining processes;
  • Ductile damage and fracture: experiments, modeling and numerical prediction;
  • Modeling of anisotropic behavior in plasticity;
  • Inverse identification of constitutive material models;
  • Additive, subtractive and hybrid manufacturing;
  • Emerging manufacturing processes;
  • Intelligent metal processing technologies.
  • Processes of lightweight metals and numerical modeling;
  • Product design and process optimization;
  • Mechanical performance of products.

Dr. Abel Dias dos Santos
Dr. Abílio M. P. De Jesus
Dr. Rui L. Amaral
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • manufacturing
  • metals
  • manufacturing processes
  • fatigue
  • fracture
  • product design
  • finite element analysis
  • structural integrity
  • surface integrity
  • residual stresses

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 2990 KiB  
Article
Cold Rolling Technology Optimization for EN AW 4343/3003/4343 Cladded Aluminum Alloys and Influence of Parameters on Microstructure, Mechanical Properties and Sustainable Recyclability
by Bojan Kropf, Peter Cvahte, Matija Arzenšek and Jakob Kraner
Metals 2024, 14(2), 230; https://doi.org/10.3390/met14020230 - 14 Feb 2024
Viewed by 924
Abstract
The present study investigates the accumulative roll bonding process applied to the EN AW 3003 aluminum alloy, serving as a composite material on both sides and consisting of the EN AW 4343 aluminum alloy. For the characterization of the optical microscopy, corrosion tests [...] Read more.
The present study investigates the accumulative roll bonding process applied to the EN AW 3003 aluminum alloy, serving as a composite material on both sides and consisting of the EN AW 4343 aluminum alloy. For the characterization of the optical microscopy, corrosion tests with saltwater acetic acid and mechanical properties before and after the braze test were employed. The numerical simulations accurately predicted the industrial cold rolling values for the rolling force and surface temperature. The most comprehensive understanding of the cold rolling parameters for both side-cladded materials was achieved by combining predictions for cladded and uncladded materials. The thickness of the cladded layer presented as a percentage after roll bonding was 18.7%. During the cold rolling and annealing, the cladded thickness was increased to 24.7% of the final 0.3 mm of the total cold-rolled product thickness. According to the performed braze test for final thickness, the ultimate tensile strength and yield strength were decreased, and the elongation increased to 18.1%. In addition to the described changes in mechanical properties, the material’s anisotropy improved from 5.4% in the cold-rolled condition to 2.0% after the braze test. After multiple re-meltings of the cladded material, the analyzed chemical compositions allow for recycling and reuse as different 4xxx, 5xxx, and 6xxx alloys. Full article
(This article belongs to the Special Issue Numerical and Experimental Advances in Metal Processing)
Show Figures

Figure 1

Back to TopTop