

an Open Access Journal by MDPI

Environmentally Assisted Cracking in Advanced High Strength Alloys

Guest Editors:

Prof. Dr. Afrooz Barnoush

Curtin Corrosion Center, Curtin University, Technology Park, Bentley, WA 6102, Australia

Prof. Dr. Mariano lannuzzi

Curtin Corrosion Centre, Curtin University, Bentley, WA 6102, Australia

Deadline for manuscript submissions:

closed (31 December 2017)

Message from the Guest Editors

Dear Colleagues,

Environmentally assisted cracking (EAC), an intricate interaction between the environment, stress state, and material, results in brittle fracture of otherwise ductile materials. EAC covers a broad range of failure in materials, such as stress corrosion cracking (SCC), corrosion fatigue, hydrogen embrittlement, sulfide stress cracking, hydrogen enhanced fatigue, irradiation induced SCC, to name a few. All different forms of EAC have been studied extensively, and, for a relatively long time, generating a vast body of knowledge.

This Special Issue presents the latest research on EAC of advanced alloys.

Our topics of interest include, but are not limited to:

- Stress corrosion cracking;
- Environmentally assisted fracture;
- Hydrogen embrittlement;
- Mechanical aspects of corrosion;
- Hydrogen enhanced cracking;
- Irradiation-induced SCC;
- In situ testing

an Open Access Journal by MDPI

Editors-in-Chief

Prof. Dr. Hugo F. Lopez

Department of Materials Science and Engineering, College of Engineering & Applied Science, University of Wisconsin-Milwaukee, 3200 N. Cramer Street, Milwaukee, WI 53211, USA

Prof. Dr. Yong Zhang

Beijing Advanced Innovation Center of Materials Genome Engineering, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China

Message from the Editorial Board

Metallic materials play a vital role in the economic life of modern societies; contributions are sought on fresh developments that enhance our understanding of the fundamental aspects related to the relationships between processing, properties and microstructure - disciplines in metallurgical field the ranging from processing. mechanical behavior. phase transitions and microstructural evolution, nanostructures, as well as unique metallic properties – inspire general and scholarly interest among the scientific community.

Author Benefits

Open Access: free for readers, with <u>article processing charges (APC)</u> paid by authors or their institutions.

High Visibility: indexed within Scopus, SCIE (Web of Science),

Inspec, CAPlus / SciFinder, and other databases.

Journal Rank: JCR - Q2 (Metallurgy & Metallurgical Engineering) / CiteScore - Q1 (Metals

and Alloys)

Contact Us