Identification and Therapeutic Properties of Secondary Metabolites of Medicinal Plants

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Plant Metabolism".

Deadline for manuscript submissions: closed (31 January 2023) | Viewed by 58990

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
Interests: phytotherapy; phytochemistry; natural product chemistry; chromatography; extraction procedures; secondary metabolites
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Secondary metabolites comprise a diverse group of molecules produced by higher plants that are not directly involved in the normal growth, development, or reproduction of the plants that produce them. Nevertheless a growing body of research indicates that they may display multiple effects beneficial for general well-being of human organism. Those effects include both non-specific ones that affect the whole organism, such as antioxidant or anti-inflammatory effects, as well as more specific effects that target just one organ or system, such as laxative, myorelaxant or antitussive effect, to name a few. Among the plant secondary metabolites used as therapeutic agents are flavonoids, terpenes, cardiac glycosides, alkaloids, anthraquinone derivatives and many others. They may be a part of prescription drugs (such as atropine or digoxine), as well as incorporated in various phytochemical preparation or food supplements. However, for a proper testing of pharmacological activity of a secondary metabolite, it should be identified or isolated from the plant material and subjected to the appropriate biological assays.

This Special Issue is dedicated to Identification and Therapeutic Properties of Secondary Metabolites of Medicinal Plants including, but not limited to, their isolation and structure-determination, as well as chromatographic methods for their analysis in plant material. Furthermore, the submissions related to the in vivo, in vitro and in silico study of their pharmacological activities are strongly encouraged.

Prof. Dr. Marijana Zovko Končić
Dr. Michal Tomczyk
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antioxidant activity
  • bioactivity
  • chromatography
  • phytochemistry
  • phytotherapy
  • plant secondary metabolites
  • polyphenols

Published Papers (28 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

13 pages, 2600 KiB  
Article
Optimization of Ultrasonic-Assisted Extraction of α-Glucosidase Inhibitors from Dryopteris crassirhizoma Using Artificial Neural Network and Response Surface Methodology
by Nguyen Viet Phong, Dan Gao, Jeong Ah Kim and Seo Young Yang
Metabolites 2023, 13(4), 557; https://doi.org/10.3390/metabo13040557 - 13 Apr 2023
Cited by 3 | Viewed by 1295
Abstract
Dryopteris crassirhizoma Nakai is a plant with significant medicinal properties, such as anticancer, antioxidant, and anti-inflammatory activities, making it an attractive research target. Our study describes the isolation of major metabolites from D. crassirhizoma, and their inhibitory activities on α-glucosidase were evaluated [...] Read more.
Dryopteris crassirhizoma Nakai is a plant with significant medicinal properties, such as anticancer, antioxidant, and anti-inflammatory activities, making it an attractive research target. Our study describes the isolation of major metabolites from D. crassirhizoma, and their inhibitory activities on α-glucosidase were evaluated for the first time. The results revealed that nortrisflavaspidic acid ABB (2) is the most potent α-glucosidase inhibitor, with an IC50 of 34.0 ± 0.14 μM. In addition, artificial neural network (ANN) and response surface methodology (RSM) were used in this study to optimize the extraction conditions and evaluate the independent and interactive effects of ultrasonic-assisted extraction parameters. The optimal extraction conditions are extraction time of 103.03 min, sonication power of 342.69 W, and solvent-to-material ratio of 94.00 mL/g. The agreement between the predicted models of ANN and RSM and the experimental values was notably high, with a percentage of 97.51% and 97.15%, respectively, indicating that both models have the potential to be utilized for optimizing the industrial extraction process of active metabolites from D. crassirhizoma. Our results could provide relevant information for producing high-quality extracts from D. crassirhizoma for functional foods, nutraceuticals, and pharmaceutical industries. Full article
Show Figures

Graphical abstract

14 pages, 3086 KiB  
Article
The Dynamic Changes in the Main Substances in Codonopsis pilosula Root Provide Insights into the Carbon Flux between Primary and Secondary Metabolism during Different Growth Stages
by Sheng-Song Wang, Tong Zhang, Long Wang, Shuai Dong, Dong-Hao Wang, Bin Li and Xiao-Yan Cao
Metabolites 2023, 13(3), 456; https://doi.org/10.3390/metabo13030456 - 21 Mar 2023
Cited by 1 | Viewed by 1315
Abstract
The dried root of Codonopsis pilosula (Franch.) Nannf., referred to as Dangshen in Chinese, is a famous traditional Chinese medicine. Polysaccharides, lobetyolin, and atractylenolide III are the major bioactive components contributing to its medicinal properties. Here, we investigated the dynamic changes of the [...] Read more.
The dried root of Codonopsis pilosula (Franch.) Nannf., referred to as Dangshen in Chinese, is a famous traditional Chinese medicine. Polysaccharides, lobetyolin, and atractylenolide III are the major bioactive components contributing to its medicinal properties. Here, we investigated the dynamic changes of the main substances in annual Dangshen harvested at 12 time points from 20 May to 20 November 2020 (from early summer to early winter). Although the root biomass increased continuously, the crude polysaccharides content increased and then declined as the temperature fell, and so did the content of soluble proteins. However, the content of total phenolics and flavonoids showed an opposite trend, indicating that the carbon flux was changed between primary metabolism and secondary metabolism as the temperature and growth stages changed. The changes in the contents of lobetyolin and atractylenolide III indicated that autumn might be a suitable harvest time for Dangshen. The antioxidant capacity in Dangshen might be correlated with vitamin C. Furthermore, we analyzed the expression profiles of a few enzyme genes involved in the polysaccharide biosynthesis pathways at different growth stages, showing that CpUGpase and CPPs exhibited a highly positive correlation. These results might lay a foundation for choosing cultivars using gene expression levels as markers. Full article
Show Figures

Figure 1

11 pages, 941 KiB  
Article
Constituents of the Stem Bark of Trichilia monadelpha (Thonn.) J. J. De Wilde (Meliaceae) and Their Antibacterial and Antiplasmodial Activities
by Arnauld Kenfack Djoumessi, Raymond Ngansop Nono, Beate Neumann, Hans-Georg Stammler, Gabin Thierry Mbahbou Bitchagno, Noella Molisa Efange, Celine Nguefeu Nkenfou, Lawrence Ayong, Bruno Ndjakou Lenta, Norbert Sewald, Pépin Nkeng-Efouet-Alango and Jean Rodolphe Chouna
Metabolites 2023, 13(2), 298; https://doi.org/10.3390/metabo13020298 - 17 Feb 2023
Cited by 3 | Viewed by 1632
Abstract
The chemical investigation of the EtOH extract from the stem bark of Trichilia monadelpha (Thonn.) J. J. De Wilde afforded two new limonoids (1 and 2): 24-acetoxy-21,25-dihydroxy-21,23-epoxytirucall-7-en-3-one (1) and (6R)-1-O-deacetylkhayanolide E (2), together [...] Read more.
The chemical investigation of the EtOH extract from the stem bark of Trichilia monadelpha (Thonn.) J. J. De Wilde afforded two new limonoids (1 and 2): 24-acetoxy-21,25-dihydroxy-21,23-epoxytirucall-7-en-3-one (1) and (6R)-1-O-deacetylkhayanolide E (2), together with eleven known compounds (313), including additional limonoids, flavonoids, triterpenoids, steroids, and fatty acid. Their structures were determined using 1D- and 2D-NMR experiments, ESI mass spectrometry, and single crystal X-ray diffraction analysis. The antibacterial and antiplasmodial activities of the extracts, sub-extracts, fractions, and some of the isolated compounds were evaluated in known pathogenic strains, including Staphylococcus aureus and Plasmodium falciparum. Fraction E (n-Hex/EtOAc 30:70, v/v) showed significant activity against S. aureus ATCC 25923 with a MIC value of 3.90 µg/mL, while one of its constituents (epicatechin (9)) exhibited significant activity with MIC values of 7.80 µg/mL. Interestingly, grandifotane A (6) (IC50 = 1.37 µM) and khayanolide D (5) (IC50 = 1.68 µM) were highly active against the chloroquine-sensitive/sulfadoxine-resistant plasmodium falciparum 3D7 strain, unlike their corresponding plant extract and fractions. Full article
Show Figures

Figure 1

22 pages, 1893 KiB  
Article
Optimization of Cyclodextrin-Assisted Extraction of Phenolics from Helichrysum italicum for Preparation of Extracts with Anti-Elastase and Anti-Collagenase Properties
by Marijan Marijan, Dora Tomić, Jakub W. Strawa, Lejsa Jakupović, Suzana Inić, Mario Jug, Michał Tomczyk and Marijana Zovko Končić
Metabolites 2023, 13(2), 257; https://doi.org/10.3390/metabo13020257 - 09 Feb 2023
Cited by 6 | Viewed by 1869
Abstract
Helichrysum italicum is a plant traditionally used for skin-related disorders that is becoming an increasingly popular ingredient in cosmetic products. In this work, a “green” ultrasound-assisted extraction method for H. italicum phenolics was developed using skin-friendly cyclodextrins (CDs). Extraction conditions needed for the [...] Read more.
Helichrysum italicum is a plant traditionally used for skin-related disorders that is becoming an increasingly popular ingredient in cosmetic products. In this work, a “green” ultrasound-assisted extraction method for H. italicum phenolics was developed using skin-friendly cyclodextrins (CDs). Extraction conditions needed for the greatest yield of target compounds (total phenolics, phenolic acids, and flavonoids) were calculated. The composition of the extracts was determined using LC-MS and spectrophotometric methods. Among the tested CDs, 2-hydroxylpropyl-beta-CD (HP-β-CD) was the best suited for extraction of target phenolics and used to prepare two optimized extracts, OPT 1 (the extract with the highest phenolic acid content) and OPT 2 (the extract with the highest total phenol and flavonoid content). The extracts were prepared at 80 °C, using 0.089 g of plant material/g solvent (0.6 mmol of HP-β-CD), with or without addition of 1.95% (w/w) lactic acid. The main metabolite in both extracts was 3,5-O-dicaffeoylquinic acid. It was found that the addition of lactic acid greatly contributes to the extraction of arzanol, a well-known anti-inflammatory agent. IC50 values of the anti-elastase (22.360 ± 0.125 μL extract/mL and 20.067 ± 0.975 for OPT-1 and OPT-2, respectively) and anti-collagenase (12.035 ± 1.029 μL extract/mL and 14.392 ± 0.705 μL extract/mL for OPT-1 and OPT-2, respectively) activities of the extracts surpassed those of the applied positive controls, namely ursolic and gallic acids. This activity deems the prepared extracts promising ingredients for natural cosmetics, appropriate for direct use in cosmetic products, removing the need for the evaporation of conventional solvents. Full article
Show Figures

Figure 1

20 pages, 1675 KiB  
Article
Glycerol and Natural Deep Eutectic Solvents Extraction for Preparation of Luteolin-Rich Jasione montana Extracts with Cosmeceutical Activity
by Aleksandra Maria Juszczak, Marijan Marijan, Lejsa Jakupović, Monika Tomczykowa, Michał Tomczyk and Marijana Zovko Končić
Metabolites 2023, 13(1), 32; https://doi.org/10.3390/metabo13010032 - 24 Dec 2022
Cited by 7 | Viewed by 2470
Abstract
Jasione montana is a plant from the family Campanulaceae rich in phenols with health-beneficial properties such as luteolin (LUT) derivatives. In this work, a glycerol-based ultrasound-assisted extraction method was developed and optimized for in total phenol (TP) and LUT content, as well as [...] Read more.
Jasione montana is a plant from the family Campanulaceae rich in phenols with health-beneficial properties such as luteolin (LUT) derivatives. In this work, a glycerol-based ultrasound-assisted extraction method was developed and optimized for in total phenol (TP) and LUT content, as well as antiradical activity (RSA). The best conditions (glycerol content, temperature, plant material weight, and ultrasonication power) for the preparation of J. montana extracts richest in TP (OPT-TP), LUT (OPT-LUT), and having the best RSA (OPT-RSA) were determined. Furthermore, numerous natural deep eutectic solvents (NADES), containing proline, glycerol, betaine, urea, and glucose were prepared and used for the extraction of J. montana. Contents of TP, LUT, and RSA in the prepared extracts were established. Antioxidant and cosmeceutical activity of the prepared extracts was tested. The OPT-TP, OPT-LUT, and OPT-RSA, as well as the most efficient NADES-based extract, PG-50-TP, were excellent antioxidants and Fe2+ ion chelators. In addition, they were potent inhibitors of collagenase and hyaluronidase, as well as good significant anti-elastase and -lipoxygenase activity. The observed antioxidant- and enzyme-inhibiting activity of J. montana extracts prepared using environmentally friendly methods and non-toxic solvents makes them promising ingredients of cosmeceutical products. Full article
Show Figures

Figure 1

16 pages, 2210 KiB  
Article
Bio-Guided Isolation of New Compounds from Baccharis spp. as Antifungal against Botrytis cinerea
by Ana A. Pinto, Antonio Ruano-González, Abdellah Ezzanad, Cristina Pinedo-Rivilla, Rosario Sánchez-Maestre and Juan Manuel Amaro-Luis
Metabolites 2022, 12(12), 1292; https://doi.org/10.3390/metabo12121292 - 19 Dec 2022
Viewed by 1446
Abstract
Baccharis genus Asteraceae is widely used in traditional treatment against fever, headache, hepatobiliary disorders, skin ulcers, diabetes, and rheumatism, as well as an antispasmodic and diuretic. Its phytochemistry mainly shows the presence of flavonoids and terpenoids such as monoterpenes, sesquiterpenes, diterpenes, and triterpenes. [...] Read more.
Baccharis genus Asteraceae is widely used in traditional treatment against fever, headache, hepatobiliary disorders, skin ulcers, diabetes, and rheumatism, as well as an antispasmodic and diuretic. Its phytochemistry mainly shows the presence of flavonoids and terpenoids such as monoterpenes, sesquiterpenes, diterpenes, and triterpenes. Some of them have been evaluated for biological activities presenting allelopathic, antimicrobial, cytotoxic, and anti-inflammatory properties. In this paper, our research group reported the isolation, characterization, and antifungal evaluation of several molecules isolated from the dichloromethane extract from Baccharis prunifolia, Baccharis trinervis, and Baccharis zumbadorensis against the phytopathogen fungus Botrytis cinerea. The isolated compounds have not previously been tested against Botrytis, revealing an important source of antifungals in the genus Baccharis. Six known flavones were isolated from B. prunifolia. The dichloromethane extracts of B. trinervis and B. zumbadorensis were subjected to a bio-guided isolation, obtaining three known flavones, an α-hydroxidihydrochalcone mixture, one labdane, one triterpene, and two norbisabolenes from the most active fractions. The compounds 4′-methoxy-α-hydroxydihydrochalcone (7A), 3β,15-dihydroxylabdan-7-en-17-al (8), and 13-nor-11,12-dihydroxybisabol-2-enone (11) are novel. The most active compounds were the Salvigenin (5) and 1,2-dihydrosenedigital-2-one (10) with an IC50 of 13.5 and 3.1 μg/mL, respectively. Full article
Show Figures

Graphical abstract

13 pages, 2565 KiB  
Article
The Roots of Deguelia nitidula as a Natural Antibacterial Source against Staphylococcus aureus Strains
by Suzana Helena Campelo Nogueira-Lima, Paulo Wender P. Gomes, Kely C. Navegantes-Lima, José Diogo E. Reis, Alice Rhelly Veloso Carvalho, Sônia das Graças Santa R. Pamplona, Abraão de Jesus B. Muribeca, Milton N. da Silva, Marta C. Monteiro and Consuelo Yumiko Yoshioka e Silva
Metabolites 2022, 12(11), 1083; https://doi.org/10.3390/metabo12111083 - 08 Nov 2022
Cited by 1 | Viewed by 1368
Abstract
Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called “raiz do sol” (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, [...] Read more.
Deguelia nitidula (Benth.) A.M.G.Azevedo & R.A.Camargo (Fabaceae) is an herbaceous plant distributed in the Brazilian Amazon, and it is called “raiz do sol” (sun roots). On Marajó Island, quilombola communities use its prepared roots to treat skin diseases commonly caused by fungi, viruses, and bacteria. Thus, in this study, the extract, and its fractions from D. nitidula roots were used to perform in vitro cytotoxic and antibacterial assays against Staphylococcus aureus strains. Thereafter, liquid chromatography–mass spectrometry (LC–MS) was used for the metabolite annotation process. The ethanolic extract of D. nitidula roots show significant bactericidal activity against S. aureus with IC50 82 μg.mL−1 and a selectivity index (SI) of 21.35. Furthermore, the SREFr2 and SREFr3 fractions show a potent bactericidal activity, i.e., MIC of 46.8 μg.mL−1 for both, and MBC of 375 and 93.7 μg.mL−1, respectively. As showcased, SREFr3 shows safe and effective antibacterial activity mainly in respect to the excellent selectivity index (SI = 82.06). On the other hand, SREFr2 shows low selectivity (SI = 6.8), which characterizes it as not safe for therapeutic use. Otherwise, due to a limited amount of reference MS2 spectra in public libraries, up to now, it was not possible to perform a complete metabolite annotation. Despite that, our antibacterial results for SREFr3 and correlated substructures of amino acid derivatives show that the roots of D. nitidula are a natural source of specialized metabolites, which can be isolated in the future, and then used as a support for further bio-guided research, as well as natural drug development. Full article
Show Figures

Graphical abstract

12 pages, 2664 KiB  
Article
Antiadhesive and Antibiofilm Effect of Malvidin-3-Glucoside and Malvidin-3-Glucoside/Neochlorogenic Acid Mixtures upon Staphylococcus
by Sara Silva, Eduardo M. Costa, Manuela Machado, Rui Morais, Conceição Calhau and Manuela Pintado
Metabolites 2022, 12(11), 1062; https://doi.org/10.3390/metabo12111062 - 03 Nov 2022
Cited by 3 | Viewed by 1128
Abstract
Several reports on the biological activity of anthocyanin-rich extracts have been made. However, despite the association of said activity with their anthocyanin content, to the best of our knowledge, there are no previous works regarding the antimicrobial, antibiofilm and/or antiadhesive properties of anthocyanins [...] Read more.
Several reports on the biological activity of anthocyanin-rich extracts have been made. However, despite the association of said activity with their anthocyanin content, to the best of our knowledge, there are no previous works regarding the antimicrobial, antibiofilm and/or antiadhesive properties of anthocyanins alone. Therefore, the present work aimed to determine the effects of malvidin-3-glucoside, a major component of a previously reported extract, and the impact of its association with neochlorogenic acid (the only non-anthocyanin phenolic present in said extract), upon several Staphylococcus strains with varying resistance profiles. Results show that, while malvidin-3-glucoside and malvidin-3-glucoside/neochlorogenic acid mixtures were unable to considerably inhibit bacterial growth after 24 h, they still possessed an interesting antibiofilm activity (with reductions of biofilm entrapped cells up to 2.5 log cycles, metabolic inhibition rates up to 81% and up to 51% of biomass inhibition). When considering the bacteria’s capacity to adhere to plain polystyrene surfaces, the inhibition ranges were considerably lower (21% maximum value). However, when considering polystyrene surfaces coated with plasmatic proteins this value was considerably higher (45% for adhesion in the presence of extract and 39% for adhesion after the surface was exposed to extract). Overall, the studied anthocyanins showed potential as future alternatives to traditional antimicrobials in adhesion and biofilm formation prevention. Full article
Show Figures

Figure 1

22 pages, 2611 KiB  
Article
In-Vitro, In-Vivo, Molecular Docking and ADMET Studies of 2-Substituted 3,7-Dihydroxy-4H-chromen-4-one for Oxidative Stress, Inflammation and Alzheimer’s Disease
by Mater H. Mahnashi, Mohammed Abdulrahman Alshahrani, Mohammed H. Nahari, Syed Shams ul Hassan, Muhammad Saeed Jan, Muhammad Ayaz, Farhat Ullah, Osama M. Alshehri, Mohammad Ali Alshehri, Umer Rashid and Abdul Sadiq
Metabolites 2022, 12(11), 1055; https://doi.org/10.3390/metabo12111055 - 02 Nov 2022
Cited by 17 | Viewed by 2017
Abstract
Plants’ bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological [...] Read more.
Plants’ bioactives are well-known safe drugs for vital diseases. Flavones and Flavonoid-rich dietary supplements are known to exhibit neuroprotective potential. In this study, we isolated a flavone 2-(3,4-dimethoxyphenyl)-3,7-dihydroxy-4H-chromen-4-one from Notholirion thomsonianum and it was evaluated against various targets of the oxidative stress-related neurological disorders. The compound showed excellent acetyl and butyrylcholinesterase inhibitions in its profile, giving IC50 values of 1.37 and 0.95 μM, respectively. Similarly, in in-vitro MAO-B assay, our flavone exhibited an IC50 value of 0.14 μM in comparison to the standard safinamide (IC50 0.025 μM). In in-vitro anti-inflammatory assay, our isolated compound exhibited IC50 values of 7.09, 0.38 and 0.84 μM against COX-1, COX-2 and 5-LOX, respectively. The COX-2 selectivity (SI) of the compound was 18.70. The compound was found safe in animals and was very effective in carrageenan-induced inflammation. Due to the polar groups in the structure, a very excellent antioxidant profile was observed in both in-vitro and in-vivo models. The compound was docked into the target proteins of the respective activities and the binding energies confirmed the potency of our compound. Furthermore, absorption, distribution, metabolism, excretion, and toxicity (ADMET) results showed that the isolated flavone has a good GIT absorption ability and comes with no hepatic and cardiotoxicity. In addition, the skin sensitization test, in-vitro human cell line activation test (h-CLAT) and KeratinoSens have revealed that isolated flavone is not skin sensitive with a confidence score of 59.6% and 91.6%. Herein, we have isolated a natural flavone with an effective profile against Alzheimer’s, inflammation and oxidative stress. The exploration of this natural flavone will provide a baseline for future research in the field of drug development. Full article
Show Figures

Figure 1

19 pages, 2807 KiB  
Article
Euclea divinorum Hiern: Chemical Profiling of the Leaf Extract and Its Antioxidant Activity In Silico, In Vitro and in Caenorhabditis elegans Model
by Hanin A. Bogari, Rasha M. H. Rashied, Mohamed A. O. Abdelfattah, Rania T. Malatani, Roaa M. Khinkar, Rawan H. Hareeri, Michael Wink and Mansour Sobeh
Metabolites 2022, 12(11), 1031; https://doi.org/10.3390/metabo12111031 - 27 Oct 2022
Cited by 6 | Viewed by 1475
Abstract
Euclea divinorum Hiern is a medicinal plant widely distributed in the northeast parts of South Africa. This plant has been used to treat miscarriage and to alleviate gastrointestinal problems. It can also be used externally for the treatment of ulcers and gonorrhea. In [...] Read more.
Euclea divinorum Hiern is a medicinal plant widely distributed in the northeast parts of South Africa. This plant has been used to treat miscarriage and to alleviate gastrointestinal problems. It can also be used externally for the treatment of ulcers and gonorrhea. In this study, we investigated the phytochemical composition of E. divinorum leaf extract using LC-MS and explored its antioxidant properties in vitro and in vivo. The total polyphenolic content of the extract was determined by the Folin–Ciocalteu method. DPPH and FRAP assays were employed to confirm the plant’s antioxidant potential in vitro. A survival assay in the Caenorhabditis elegans model was used to evaluate the extract’s ability to counteract juglone-induced oxidative stress. Moreover, a docking study was performed for the extract’s metabolites, in order to predict possible molecular targets that could explain the antioxidant effect of the plant on a molecular level. This in silico approach was accomplished on three different proteins; xanthine oxidase enzyme, heat shock protein 90 (Hsp90), and induced nitric oxide synthase (iNOS). Docking scores of the resulting poses and their interactions with binding sites’ residues were explored for each protein and were compared to those of simultaneously docked respective co-crystallized and reference substrates. The extract furnished promising antioxidant activities in vitro and in vivo in the C. elegans model that might be attributed to the presence of 46 compounds, which showed several interactions and low binding scores with the tested enzymes. In conclusion, E. divinorum is a promising, safe, and effective antioxidant candidate that could be used to ameliorate oxidative stress-related disorders. Full article
Show Figures

Figure 1

17 pages, 2173 KiB  
Article
Echinocystic Acid Bidesmoside Saponins from Microglossa afzelii O. Hoffm and Their Cytotoxic Activity against the CAL-27 Oral Squamous Carcinoma Cell Line
by Billy Toussie Tchegnitegni, Tehmina Ahmed, Francis Tatong Ngouafong, Viviane Flore Kamlo Kamso, Rémy Bertrand Teponno, Bruno Ndjakou Lenta, Léon Azefack Tapondjou, Arslan Ali and Syed Ghulam Musharraf
Metabolites 2022, 12(11), 1018; https://doi.org/10.3390/metabo12111018 - 25 Oct 2022
Cited by 1 | Viewed by 1330
Abstract
This paper describes eight new triterpenoid saponins, including afzeliioside A (1), four acetylated afzeliiosides as pairs of inseparable regioisomers, called afzeliiosides B/C (2/3) and D/E (4/5), afzeliiosides F-H (6–8), and a known impatiprin C ( [...] Read more.
This paper describes eight new triterpenoid saponins, including afzeliioside A (1), four acetylated afzeliiosides as pairs of inseparable regioisomers, called afzeliiosides B/C (2/3) and D/E (4/5), afzeliiosides F-H (6–8), and a known impatiprin C (9), which were isolated from the n-BuOH fraction of the liana of Microglossa afzelii. Their structures were established mainly by extensive spectroscopic analysis, including 1D and 2D NMR, HRFAB-MS, tandem ESI-MS/MS, and chemical methods, as well as a comparison of their spectral data with those of related compounds. All the isolates were screened for their cytotoxic activity against the CAL-27 oral squamous carcinoma cell line. Only compounds 4/5 (EC50 = 36.0 μg/mL (32.7 μM)) exhibited moderate cytotoxic activity. This work presents the first chemical and biological investigation of Microglossa afzelii and reports, for the first time, on the isolation of saponins in the genus Microglossa. Full article
Show Figures

Graphical abstract

21 pages, 1343 KiB  
Article
LC-MS/MS Characterization of Phenolic Metabolites and Their Antioxidant Activities from Australian Native Plants
by Akhtar Ali, Jeremy J. Cottrell and Frank R. Dunshea
Metabolites 2022, 12(11), 1016; https://doi.org/10.3390/metabo12111016 - 24 Oct 2022
Cited by 18 | Viewed by 3274
Abstract
Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, [...] Read more.
Polyphenols are considered vital bioactive compounds beneficial for human health. The Australian flora is enriched with polyphenols which are not fully characterized yet. Thus, the main objective of this study was to identify and characterize the Australian native sandalwood nuts, wattle seeds, lemongrass, and old man saltbush for phenolic compounds and their antioxidant activities. In this study, we tentatively identified a total of 155 phenolic compounds including 25 phenolic acids, 55 flavonoids, 22 isoflavonoids, 22 tannins, 22 lignans, 33 stilbenes, 33 coumarins and derivatives, 12 tyrosols and derivatives, and 6 phenolic terpenes. The highest total phenolic content (TPC) (15.09 ± 0.88 mg GAE/g) was quantified in lemongrass, while the lowest TPC (4.17 ± 0.33 mg GAE/g) was measured in wattle seeds. The highest total flavonoid content (TFC) and total condensed tannins (TCT) were measured in lemongrass and wattle seeds, respectively. A total of 18 phenolic metabolites were quantified/semi-quantified in this experiment. Lemongrass contains a vast number of phenolic metabolites. Full article
Show Figures

Figure 1

21 pages, 4712 KiB  
Article
Network Pharmacology- and Molecular Dynamics Simulation-Based Bioprospection of Aspalathus linearis for Type-2 Diabetes Care
by Ayesha Akoonjee, Athika Rampadarath, Christiana Eleojo Aruwa, Taibat Arinola Ajiboye, Abdulwakeel Ayokun-nun Ajao and Saheed Sabiu
Metabolites 2022, 12(11), 1013; https://doi.org/10.3390/metabo12111013 - 24 Oct 2022
Cited by 8 | Viewed by 2035
Abstract
The medicinal herb Aspalathus linearis (rooibos) is globally recognized in type-2 diabetes mellitus (T2DM) treatment due to its known and distinctive compounds. This work utilized network pharmacology (NP) coupled with molecular dynamics simulation in gaining new insight into the anti-diabetic molecular mechanism of [...] Read more.
The medicinal herb Aspalathus linearis (rooibos) is globally recognized in type-2 diabetes mellitus (T2DM) treatment due to its known and distinctive compounds. This work utilized network pharmacology (NP) coupled with molecular dynamics simulation in gaining new insight into the anti-diabetic molecular mechanism of action of rooibos teas. It looked at the interactions between rooibos constituents with various relevant protein receptors and signaling routes associated with T2DM progression. The initial analysis revealed 197 intersecting gene targets and 13 bioactive rooibos constituents linked to T2DM. The interactions between proteins and compounds to the target matrix were generated with the Cystoscope platform and STRING database. These analyses revealed intersecting nodes active in T2DM and hypoxia-inducible factor 1 (HIF-1) as an integral receptors target. In addition, KEGG analysis identified 11 other pathways besides the hub HIF-1 signaling route which may also be targeted in T2DM progression. In final molecular docking and dynamics simulation analysis, a significant binding affinity was confirmed for key compound-protein matrices. As such, the identified rooibos moieties could serve as putative drug candidates for T2DM control and therapy. This study shows rooibos constituents’ interaction with T2DM-linked signaling pathways and target receptors and proposes vitexin, esculin and isovitexin as well as apigenin and kaempferol as respective pharmacologically active rooibos compounds for the modulation of EGFR and IGF1R in the HIF-1 signaling pathway to maintain normal homeostasis and function of the pancreas and pancreatic β-cells in diabetics. Full article
Show Figures

Figure 1

26 pages, 6579 KiB  
Article
Cheminformatics Bioprospection of Broad Spectrum Plant Secondary Metabolites Targeting the Spike Proteins of Omicron Variant and Wild-Type SARS-CoV-2
by Jamiu Olaseni Aribisala, Christiana Eleojo Aruwa, Taofik Olatunde Uthman, Ismaila Olanrewaju Nurain, Kehinde Idowu and Saheed Sabiu
Metabolites 2022, 12(10), 982; https://doi.org/10.3390/metabo12100982 - 17 Oct 2022
Cited by 7 | Viewed by 1816
Abstract
The spike protein (SP) of SARS-CoV-2 (SC-2) is susceptible to high mutation and has contributed to the multiple waves of COVID-19 being experienced. Hence, targeting the SP remains a logical approach in the development of potent therapeutics against SARS-CoV-2. Here, a computational technique [...] Read more.
The spike protein (SP) of SARS-CoV-2 (SC-2) is susceptible to high mutation and has contributed to the multiple waves of COVID-19 being experienced. Hence, targeting the SP remains a logical approach in the development of potent therapeutics against SARS-CoV-2. Here, a computational technique was adopted to identify broad-spectrum plant secondary metabolites with indigenous relevance in the management of respiratory infections against the SPs of the SC-2 wild- type (SC-2WT) and omicron variants. Following 100 ns molecular dynamic (MD) simulation and binding free energy calculation of the top five compounds identified through molecular docking, maysin (SC-2WT (−34.85 kcal/mol), omicron (−38.88 kcal/mol)) and geraniin (SC-2WT (−36.90 kcal/mol) omicron (−31.28 kcal/mol)) had better broad-spectrum activities for the investigated SPs than zafirlukast (SC-2WT (−33.73 kcal/mol) omicron (−22.38 kcal/mol)). Furthermore, 6-hydroxycyanidin-3-rutinoside (−42.97 kcal/mol) and kaempferol-7-glucoside (−37.11 kcal/mol) had the best affinity for the SPs of omicron and SC-2WT, respectively. Interestingly, except for Kaempferol-7-glucoside against omicron SP, all the top-ranked compounds were thermodynamically stable with the SP of both variants, and this observation was linked to the number, nature, and bond length in the resulting complexes in each case. Also, except for geraniin, all the top-ranked compounds had lower toxicity profiles compared to zafirlukast and this could be attributed to their phenolic moieties. Nevertheless, the in vitro and in vivo confirmation of the activities observed in this study is recommended, especially for maysin and geraniin with the best broad-spectrum activity, towards development of COVID-19 drug candidates. Full article
Show Figures

Figure 1

12 pages, 1626 KiB  
Article
New Oligomeric Dihydrochalcones in the Moss Polytrichum commune: Identification, Isolation, and Antioxidant Activity
by Anna V. Faleva, Nikolay V. Ul’yanovskii, Danil I. Falev, Aleksandra A. Onuchina, Nikolay A. Budaev and Dmitry S. Kosyakov
Metabolites 2022, 12(10), 974; https://doi.org/10.3390/metabo12100974 - 14 Oct 2022
Cited by 3 | Viewed by 1696
Abstract
One of the most widespread representatives of mosses in the temperate and boreal latitudes of the Northern Hemisphere is common haircap (Polytrichum commune), which is known as the largest moss in the world and widely used in traditional herbal medicine. Polyphenolic [...] Read more.
One of the most widespread representatives of mosses in the temperate and boreal latitudes of the Northern Hemisphere is common haircap (Polytrichum commune), which is known as the largest moss in the world and widely used in traditional herbal medicine. Polyphenolic compounds constitute one of the most important groups of biologically active secondary metabolites of P. commune, however, the available information on their chemical composition is still incomplete and contradictory. In the present study, a group of dihydrochalcone polyphenolic derivatives that were not previously found in mosses was isolated from P. commune biomass using pressurized liquid extraction with aqueous acetone. The combination of two-dimensional NMR spectroscopy and high-performance liquid chromatography–high-resolution mass spectrometry allowed for identifying them as 3-hydroxyphloretin oligomers formed through a carbon–carbon bond between phloroglucinol and pyrocatechol moieties (“head-to-tail” coupling), with a polymerization degree of 2–5. The individual compounds isolated by preparative reverse-phase HPLC had a purity of 71 to 97% and demonstrated high radical scavenging activity (17.5–42.5% with respect to Trolox) determined by the photochemiluminescence method. Along with the low toxicity predicted by QSAR/QSTR algorithms, this makes 3-hydroxyphloretin oligomers a promising source for the production of biologically active food additives and pharmaceuticals. Full article
Show Figures

Graphical abstract

21 pages, 2524 KiB  
Article
Physicochemical Characterization and Prospecting Biological Activity of Some Authentic Transylvanian Essential Oils: Lavender, Sage and Basil
by Dan Vârban, Marius Zăhan, Carmen Rodica Pop, Sonia Socaci, Răzvan Ștefan, Ioana Crișan, Loredana Elena Bota, Ileana Miclea, Adriana Sebastiana Muscă, Alexandru Marius Deac and Rodica Vârban
Metabolites 2022, 12(10), 962; https://doi.org/10.3390/metabo12100962 - 11 Oct 2022
Cited by 5 | Viewed by 1905
Abstract
Essential oils are a category of agro-based industrial products experiencing increasing demand. In this research, three essential oils obtained by steam distillation from lavender, sage and basil plants cultivated in temperate continental conditions of Transylvania were investigated for chemical composition, physical characteristics and [...] Read more.
Essential oils are a category of agro-based industrial products experiencing increasing demand. In this research, three essential oils obtained by steam distillation from lavender, sage and basil plants cultivated in temperate continental conditions of Transylvania were investigated for chemical composition, physical characteristics and biological activity (antimicrobial and cytotoxic effect on cancer cell lines). The number of identified compounds varied: 38 for lavender, 29 for sage essential oil and 41 for basil. The volatile profile was dominated by terpenes and terpenoids (>80%). Major components were beta-linalool and linalool acetate in lavender essential oil; thujones and camphor in sage essential oil; beta-linalool, thujone, camphor and eucalyptol in basil essential oil. Refractive index of the essential oils was lowest for lavender and highest for sage. Antibacterial activity was strongest for basil, moderate for lavender and weakest for sage essential oil. The most active on both colon adenocarcinoma (Caco-2) and ovary carcinoma (A2780) was sage essential oil. Full article
Show Figures

Figure 1

20 pages, 5391 KiB  
Article
Rapid Screening of Proanthocyanidins from the Roots of Ephedra sinica Stapf and its Preventative Effects on Dextran-Sulfate-Sodium-Induced Ulcerative Colitis
by Mengying Lv, Yang Wang, Xiayun Wan, Bo Han, Wei Yu, Qiaoling Liang, Jie Xiang, Zheng Wang, Yanqing Liu, Yayun Qian and Fengguo Xu
Metabolites 2022, 12(10), 957; https://doi.org/10.3390/metabo12100957 - 10 Oct 2022
Cited by 4 | Viewed by 1669
Abstract
Proanthocyanidins (PACs) have been proven to exert antioxidant and anti-inflammatory effects. In this study, ultra-performance liquid chromatography (UPLC) coupled with linear ion trap-Orbitrap (LTQ-Orbitrap) high-resolution mass spectrometry was first employed to systematically screen PACs from the roots of Ephedra sinica Stapf, and its [...] Read more.
Proanthocyanidins (PACs) have been proven to exert antioxidant and anti-inflammatory effects. In this study, ultra-performance liquid chromatography (UPLC) coupled with linear ion trap-Orbitrap (LTQ-Orbitrap) high-resolution mass spectrometry was first employed to systematically screen PACs from the roots of Ephedra sinica Stapf, and its ethyl acetate extract (ERE) was found to contain PAC monomers and A-type dimeric proanthocyanidins, which were tentatively identified through characteristic fragmentation patterns. In vitro, the antioxidant activity of ERE was tested through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. In addition, ERE could inhibit the production of nitric oxide (NO) in lipopolysaccharide (LPS)-induced RAW 264.7 cells. In vivo, the preventative effects on dextran-sulfate-sodium-induced ulcerative colitis in mice was investigated. Mice were administered with ERE for 21 days, and during the last 7 days of the treatment period dextran sulfate sodium (DSS) was used to induce experimental colitis. The results showed that ERE treatment alleviated DSS-induced colitis, which was characterized by decreases in disease activity index (DAI) scores, spleen index and colon levels of TNF-α and IL-6, mitigation in pathological damage and oxidative stress and increases in colon length and IL-10 levels. In conclusion, supplementation of PACs derived from ERE may offer a new strategy for the treatment of ulcerative colitis. Moreover, our research will greatly facilitate better utilization of Ephedra plants. Full article
Show Figures

Graphical abstract

15 pages, 6885 KiB  
Article
Inhibitory Activity of Bioactive Phloroglucinols from the Rhizomes of Dryopteris crassirhizoma on Escherichia coli β-Glucuronidase: Kinetic Analysis and Molecular Docking Studies
by Nguyen Viet Phong, Yan Zhao, Byung Sun Min, Seo Young Yang and Jeong Ah Kim
Metabolites 2022, 12(10), 938; https://doi.org/10.3390/metabo12100938 - 02 Oct 2022
Cited by 10 | Viewed by 1694
Abstract
Phloroglucinols—one of the major secondary metabolites in Dryopteris crassirhizoma—exhibit various pharmacological effects, such as antiviral, antioxidant, and antidiabetic activities. This study evaluated 30 phloroglucinols isolated from the rhizomes of D. crassirhizoma for their inhibitory activity on β-glucuronidase via in vitro assays. [...] Read more.
Phloroglucinols—one of the major secondary metabolites in Dryopteris crassirhizoma—exhibit various pharmacological effects, such as antiviral, antioxidant, and antidiabetic activities. This study evaluated 30 phloroglucinols isolated from the rhizomes of D. crassirhizoma for their inhibitory activity on β-glucuronidase via in vitro assays. Among them, dimeric phloroglucinols 1315 moderately inhibited β-glucuronidase, and trimeric phloroglucinols 2628 showed strong inhibitory effects, with IC50 values ranging from 5.6 to 8.0 μM. Enzyme kinetic analysis confirmed all six active compounds to be in a competitive mode of inhibition. Molecular docking simulations revealed the key binding interactions with the active site of β-glucuronidase protein and the binding mechanisms of these active metabolites. Our results suggest that the rhizomes of D. crassirhizoma and trimeric compounds 2628 may serve as potential candidates for discovering and developing new β-glucuronidase inhibitors. Full article
Show Figures

Figure 1

18 pages, 3761 KiB  
Article
Pharmacological Interaction of Quercetin Derivatives of Tilia americana and Clinical Drugs in Experimental Fibromyalgia
by Yara Elena Quinto-Ortiz, María Eva González-Trujano, Edith Sánchez-Jaramillo, Gabriel Fernando Moreno-Pérez, Salomón Jacinto-Gutiérrez, Francisco Pellicer, Alonso Fernández-Guasti and Alberto Hernandez-Leon
Metabolites 2022, 12(10), 916; https://doi.org/10.3390/metabo12100916 - 28 Sep 2022
Cited by 3 | Viewed by 2234
Abstract
Fibromyalgia (FM) is a pain syndrome characterized by chronic widespread pain and CNS comorbidities. Tilia americana var. mexicana is a medicinal species used to treat anxiety, insomnia, and acute or chronic pain. However, its spectrum of analgesic efficacy for dysfunctional pain is unknown. [...] Read more.
Fibromyalgia (FM) is a pain syndrome characterized by chronic widespread pain and CNS comorbidities. Tilia americana var. mexicana is a medicinal species used to treat anxiety, insomnia, and acute or chronic pain. However, its spectrum of analgesic efficacy for dysfunctional pain is unknown. To investigate a possible therapeutic alternative for FM-type pain, an aqueous Tilia extract (TE) and its flavonoid fraction (FF) containing rutin and isoquercitrin were evaluated alone and/or combined with clinical drugs (tramadol—TRA and pramipexol—PRA) using the reserpine-induced FM model in rats. Chromatographic analysis allowed the characterization of flavonoids, while a histological analysis confirmed their presence in the brain. TE (10–100 mg/kg, i.p.) and FF (10–300 mg/kg, i.p.) produced significant and dose-dependent antihyperalgesic and antiallodynic effects equivalent to TRA (3–10 mg/kg, i.p.) or PRA (0.01–1 mg/kg, s.c.). Nevertheless, the combination of FF + TRA or FF + PRA resulted in an antagonistic interaction by possible competitive action on the serotonin transporter or µ-opioid and D2 receptors, respectively, according to the in silico analysis. Flavonoids were identified in cerebral regions because of their self-epifluorescence. In conclusion, Tilia possesses potential properties to relieve FM-type pain. However, the consumption of this plant or flavonoids such as quercetin derivatives in combination with analgesic drugs might reduce their individual benefits. Full article
Show Figures

Figure 1

18 pages, 4970 KiB  
Article
Three New Compounds, Licopyranol A–C, Together with Eighteen Known Compounds Isolated from Glycyrrhiza glabra L. and Their Antitumor Activities
by Shanshan Wang, Jameel Hizam Alafifi, Qin Chen, Xue Shen, Chunmei Bi, Yangyang Wu, Yihan Jiang, Yanan Liu, Yimeng Li, Dian He and Zhigang Yang
Metabolites 2022, 12(10), 896; https://doi.org/10.3390/metabo12100896 - 23 Sep 2022
Viewed by 1539
Abstract
Glycyrrhiza glabra L., known as licorice, is one of the most famous herbs in the world. In this study, we investigated the phytochemical and antitumor activities of G. glabra, especially its anti-colorectal cancer activities. G. glabra was extracted with 70% methanol, and [...] Read more.
Glycyrrhiza glabra L., known as licorice, is one of the most famous herbs in the world. In this study, we investigated the phytochemical and antitumor activities of G. glabra, especially its anti-colorectal cancer activities. G. glabra was extracted with 70% methanol, and the ethyl acetate layer was separated by silica gel, ODS, LH-20 column chromatography, and semi-preparative HPLC to obtain the compounds. The structures were determined by NMR and MS methods. Three new compounds named licopyranol A–C (13), and eighteen known compounds (421) were isolated. Compounds with an isoprenyl group or dimethylpyran ring showed better antitumor activities. Licopyranol A (1) and glycyrol (5) both inhibited the proliferation, reduced clone formation and promoted apoptosis of RKO cells. The Western blotting assays showed that glycyrol significantly reduced the expression of E-cadherin, β-catenin, c-Myc, and GSK-3β proteins in RKO cells, suggesting that glycyrol may inhibit the growth of colorectal cancer RKO cells via the Wnt/β-catenin signaling pathway. Full article
Show Figures

Graphical abstract

18 pages, 5483 KiB  
Article
In Vitro Induction of Apoptosis in Isolated Acute Myeloid Leukemia Cells: The Role of Anastatica hierochuntica Methanolic Extract
by Islam M. El-Garawani, Amira S. Abd El-Gaber, Noura A. Algamdi, Aamer Saeed, Chao Zhao, Omar M. Khattab, Mohamed F. AlAjmi, Zhiming Guo, Shaden A. M. Khalifa and Hesham R. El-Seedi
Metabolites 2022, 12(9), 878; https://doi.org/10.3390/metabo12090878 - 17 Sep 2022
Cited by 3 | Viewed by 1883
Abstract
Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract [...] Read more.
Anastatica hierochuntica L. (Cruciferae) has been known in Egyptian folk medicine as a remedy for gastrointestinal disorders, diabetes and heart diseases. Despite the wide usage, A. hierochuntica research provides insufficient data to support its traditional practice. The cytotoxicity of A. hierochuntica methanolic extract was investigated on acute myeloid leukemia blasts (AML) and normal human peripheral leucocytes (NHPL). The phytochemical identification of bioactive compounds using 1H-NMR and LC-ESI-MS was also performed. A. hierochuntica extract caused non-significant cytotoxicity on NHPL, while the cytotoxicity on AML was significant (IC50: 0.38 ± 0.02 μg/mL). The negative expression of p53, upregulation of Caspase-3 and increase in the BAX/BCL-2 ratio were reported at the protein and mRNA levels. The results suggest that A. hierochuntica extract induced AML cell death via the p53-independent mitochondrial intrinsic pathway and further attention should be paid to this plant as a promising natural anticancer agent. Full article
Show Figures

Figure 1

12 pages, 1688 KiB  
Article
Optimization of Elicitation Conditions to Enhance the Production of Potent Metabolite Withanolide from Withania somnifera (L.)
by Manali Singh, Sanjeev Agrawal, Obaid Afzal, Abdulmalik S. A. Altamimi, Alya Redhwan, Nawaf Alshammari, Mitesh Patel, Mohd Adnan, Abdelbaset Mohamed Elasbali and Shahanavaj Khan
Metabolites 2022, 12(9), 854; https://doi.org/10.3390/metabo12090854 - 11 Sep 2022
Cited by 1 | Viewed by 1704
Abstract
This study aimed at optimizing conditions for increased withanolide production in Withania somnifera. The elicitors used for the foliar spray on the aerial parts of the plant were salicylic acid, jasmonic acid, and chitosan for the enhancement of withanolides in Withania somnifera [...] Read more.
This study aimed at optimizing conditions for increased withanolide production in Withania somnifera. The elicitors used for the foliar spray on the aerial parts of the plant were salicylic acid, jasmonic acid, and chitosan for the enhancement of withanolides in Withania somnifera under different environmental regimes. Three different elicitors, i.e., chitosan, jasmonic acid and salicylic acid, were applied on the plants through foliar route every 15th day for 6 months, and later plants were used for sample preparation. Further, the elicitors were used in different concentration, i.e., jasmonic acid (50, 200 and 400 ppm), chitosan (10, 50 and 100 ppm) and salicylic acid (0.5, 1 and 2 ppm). The elicitors were sprayed on the foliar parts of the plant between 10:00–11:00 a.m. on application days. For elicitor spray, a calibrated sprayer was used. The withanolide A/withaferin A was quantified through HPLC. It was found that in an open environment, maximum withaferin A content, i.e., 0.570 mg/g (DW), was recorded with jasmonic acid (50 ppm) treatment in comparison to control (0.067 mg/g DW). Thus, there was an 8.5-fold increase in the withaferin A content. Maximum withanolide A content of 0.352 mg/g (DW) was recorded when chitosan (50 ppm) was sprayed, while in the control, withanolide A content was recorded to be 0.031 mg/g (DW); thus, chitosan application increased the production of withanolide A by 11.3-fold. Under controlled conditions, maximum withaferin A content of 1.659 mg/g (DW) was recorded when plants were sprayed with chitosan (100 ppm), which was 8.1 times greater than the control content of 0.203 mg/g (DW). Maximum withanolide A content of 0.460 mg/g (DW) was recorded when chitosan (100 ppm) was applied, whereas in the control, withanolide A content was found to be 0.061 mg/g (DW). Thus, foliar spraying of elicitors in very low concentrations can serve as a low-cost, eco-friendly, labor-intensive and elegant alternative approach that can be practiced by farmers for the enhancement, consistent production and improved yield of withanolide A/withaferin A. This can be a suitable way to enhance plant productivity, thus increasing the availability of withanolide A and withaferin A for the health and pharma industry. Full article
Show Figures

Figure 1

15 pages, 4637 KiB  
Article
Profile of Selected Secondary Metabolites and Antioxidant Activity of Valerian and Lovage Grown in Organic and Low-Input Conventional System
by Dominika Średnicka-Tober, Ewelina Hallmann, Klaudia Kopczyńska, Rita Góralska-Walczak, Marcin Barański, Alicja Grycz, Katarzyna Seidler-Łożykowska, Ewa Rembiałkowska and Renata Kazimierczak
Metabolites 2022, 12(9), 835; https://doi.org/10.3390/metabo12090835 - 03 Sep 2022
Cited by 1 | Viewed by 1627
Abstract
In the present study, the roots of valerian (Valeriana officinalis L.) and lovage (Levisticum officinale Koch.) from the organic and low-input conventional cultivation systems were subjected to the analysis of selected groups of phenolic compounds (phenolic acids, flavonoids) and antioxidant activity. [...] Read more.
In the present study, the roots of valerian (Valeriana officinalis L.) and lovage (Levisticum officinale Koch.) from the organic and low-input conventional cultivation systems were subjected to the analysis of selected groups of phenolic compounds (phenolic acids, flavonoids) and antioxidant activity. Plants were grown in two consecutive vegetation seasons in the experimental plots located in western Poland. Phenolic acids and flavonoids were determined by high performance liquid chromatography (HPLC/UV–Vis), while the antioxidant activity of the samples was measured with the use of DPPH radical scavenging activity assay. The concentrations of phenolic acids (sum) and flavonoids (sum) were found to be higher in the conventional lovage roots, as compared to the organically grown lovage roots, while in the case of valerian, no significant effects of the cultivation system on the levels of the sums of these analyzed compounds were found. Furthermore, no significant effect of the cultivation system on the antioxidant activity of herbs was observed. Additional efforts could be invested in enhancing the potential of organic medicinal plants to consistently present the expected high concentrations of health-promoting antioxidants, which could be effectively brought through their post-harvest handling, storage and processing, and thus meet consumers’ expectations at the stage when they reach the market. Full article
Show Figures

Figure 1

19 pages, 1543 KiB  
Article
When Is the Right Moment to Pick Blueberries? Variation in Agronomic and Chemical Properties of Blueberry (Vaccinium corymbosum) Cultivars at Different Harvest Times
by Miljan Cvetković, Milana Kočić, Dragana Dabić Zagorac, Ivanka Ćirić, Maja Natić, Đurađ Hajder, Aleksandar Životić and Milica Fotirić Akšić
Metabolites 2022, 12(9), 798; https://doi.org/10.3390/metabo12090798 - 26 Aug 2022
Cited by 3 | Viewed by 1838
Abstract
Blueberries, which are recognized by their colored fruits and exquisite flavor and taste, are a great source of bioactive substances with potential functional properties. For the purpose of this study, the blueberry cultivars ‘Duke’, ‘Chandler’ and ‘Bluecrop’ were picked at four different times. [...] Read more.
Blueberries, which are recognized by their colored fruits and exquisite flavor and taste, are a great source of bioactive substances with potential functional properties. For the purpose of this study, the blueberry cultivars ‘Duke’, ‘Chandler’ and ‘Bluecrop’ were picked at four different times. The aim of the study was to compare the cultivars and determine the best time for picking fruits for table consumption and to produce berries that can be used as functional foods with elevated levels of bioactive compounds. According to principal component analysis (PCA), the most influential traits for distinguishing different times of harvest in the ‘Duke’ cultivar were sorbitol, glucose, sucrose, and turanose; for the cultivar ‘Chandler’, they were caffeic acid, aesculetin, and quercetin; for the ‘Bluecrop’, they were fructose, maltose, radical scavenging activity, and quercetin. Blueberry fruits aimed for table consumption were those harvested in the first two pickings of the cultivar ‘Duke’, in the first and third of the ‘Bluecrop’, and in the third picking time of the cultivar ‘Chandler’, due to the highest fruit size and very high level of sugar (mostly glucose and fructose). ‘Duke’ berries from the second and third harvest (high level of total phenolic content, radical scavenging activity, total anthocyanins, aesculin, quercetin, and isorhamnetin), ‘Chandler’ from the first and third (the highest p-hydroxybenzoic acid, aesculetin, caffeic acid, phloridzin, kaempferol, kaempferol 3-O-glucoside, quercetin 3-O-rhamnoside, rutin, and quercetin) and ‘Bluecrop’ from the third harvest (highest level of total phenolics, radical scavenging activity, quercetin, rutin, quercetin 3-O-glucoside, kaempferol, quercetin 3-O-rhamnoside, kaempferol 3-O-glucoside, and isorhamnetin) had the highest levels of health-promoting compounds. Full article
Show Figures

Figure 1

19 pages, 8390 KiB  
Article
Metabolic Profiling of Jasminum grandiflorum L. Flowers and Protective Role against Cisplatin-Induced Nephrotoxicity: Network Pharmacology and In Vivo Validation
by Moneerah J. Alqahtani, Sally A. Mostafa, Ismail A. Hussein, Seham Elhawary, Fatma A. Mokhtar, Sarah Albogami, Michał Tomczyk, Gaber El-Saber Batiha and Walaa A. Negm
Metabolites 2022, 12(9), 792; https://doi.org/10.3390/metabo12090792 - 25 Aug 2022
Cited by 6 | Viewed by 1750
Abstract
Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through [...] Read more.
Cisplatin (CP) is a powerful chemotherapeutic agent; however, its therapeutic use is restricted due to its nephrotoxicity. In this work, we profiled the phytoconstituents of Jasminum grandiflorum flower extract (JGF) using LC-MS/MS and explored the possible molecular mechanisms against acute renal failure through pharmacological network analysis. Furthermore, the possible molecular mechanisms of JGF against acute renal failure were verified in an in vivo nephrotoxicity model caused by cisplatin. LC-MS analysis furnished 26 secondary metabolites. Altogether, there were 112 total hit targets for the identified metabolites, among which 55 were potential consensus targets related to nephrotoxicity based on the network pharmacology approach. Upon narrowing the scope to acute renal failure, using the DisGeNET database, only 30 potential targets were determined. The computational pathway analysis illustrated that JGF might inhibit renal failure through PI3K-Akt, MAPK signaling pathway, and EGFR tyrosine kinase inhibitor resistance. This study was confirmed by in vivo experiment in which kidneys were collected for histopathology and gene expression of mitogen-activated protein kinase 4 (MKK4), MKK7, I-CAM 1, IL-6, and TNF receptor-associated factor 2 (TRAF2). The animal-administered cisplatin exhibited a substantial rise in the expression levels of the MMK4, MKK7, I CAM 1, and TRFA2 genes compared to the control group. To summarize, J. grandiflorum could be a potential source for new reno-protective agents. Further experiments are needed to confirm the obtained activities and determine the therapeutic dose and time. Full article
Show Figures

Figure 1

20 pages, 2413 KiB  
Article
Antibiotic Isoflavonoids, Anthraquinones, and Pterocarpanoids from Pigeon Pea (Cajanus cajan L.) Seeds against Multidrug-Resistant Staphylococcus aureus
by Lex Aliko P. Balida, Julia Theresa A. Regalado, Jade Joshua R. Teodosio, Kathryn Ann H. Dizon, Zhe Sun, Zhao Qi Zhan, Jenny Marie D. Blancaflor, Jan Vincent N. Sollesta, Zenith M. Villorente, Jonel P. Saludes and Doralyn S. Dalisay
Metabolites 2022, 12(4), 279; https://doi.org/10.3390/metabo12040279 - 23 Mar 2022
Cited by 4 | Viewed by 4170
Abstract
Cajanus cajan L. (pigeon pea, locally known in the Philippines as kadios) seed is a functional food with health benefits that extend beyond their nutritional value. C. cajan seeds contain highly diverse secondary metabolites with enriched beneficial properties, such as antibacterial, anticancer, and [...] Read more.
Cajanus cajan L. (pigeon pea, locally known in the Philippines as kadios) seed is a functional food with health benefits that extend beyond their nutritional value. C. cajan seeds contain highly diverse secondary metabolites with enriched beneficial properties, such as antibacterial, anticancer, and antioxidant activities. However, the antibacterial activities of secondary metabolites from Philippine-grown C. cajan, against multidrug-resistant Staphylococcus aureus have not been thoroughly described. Here, we investigated the in vitro antibacterial properties of C. cajan seed against multidrug-resistant S. aureus ATCC BAA-44 (MDRSA) and three other S. aureus strains (S. aureus ATCC 25923, S. aureus ATCC 6538, and coagulase-negative S. aureus) and, subsequently, identified the antibiotic markers against S. aureus strains using mass spectrometry. Secondary metabolites from C. cajan seeds were extracted using acetone, methanol, or 95% ethanol. Antibacterial screening revealed antibiotic activity for the C. cajan acetone extract. Bioassay-guided purification of the C. cajan acetone extract afforded three semi-pure high-performance liquid chromatography (HPLC) fractions exhibiting 32–64 µg/mL minimum inhibitory concentration (MIC) against MDRSA. Chemical profiling of these fractions using liquid chromatography mass spectrometry (LCMS) identified six compounds that are antibacterial against MDRSA. High-resolution mass spectrometry (HRMS), MS/MS, and dereplication using Global Natural Products Social Molecular Networking (GNPS)™, and National Institute of Standards and Technology (NIST) Library identified the metabolites as rhein, formononetin, laccaic acid D, crotafuran E, ayamenin A, and biochanin A. These isoflavonoids, anthraquinones, and pterocarpanoids from C. cajan seeds are potential bioactive compounds against S. aureus, including the multidrug-resistant strains. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

27 pages, 5704 KiB  
Review
Secondary Metabolites Isolated from Artemisia afra and Artemisia annua and Their Anti-Malarial, Anti-Inflammatory and Immunomodulating Properties—Pharmacokinetics and Pharmacodynamics: A Review
by Lahngong Methodius Shinyuy, Gisèle E. Loe, Olivia Jansen, Lúcia Mamede, Allison Ledoux, Sandra Fankem Noukimi, Suh Nchang Abenwie, Stephen Mbigha Ghogomu, Jacob Souopgui, Annie Robert, Kristiaan Demeyer and Michel Frederich
Metabolites 2023, 13(5), 613; https://doi.org/10.3390/metabo13050613 - 29 Apr 2023
Cited by 8 | Viewed by 2752
Abstract
There are over 500 species of the genus Artemisia in the Asteraceae family distributed over the globe, with varying potentials to treat different ailments. Following the isolation of artemisinin (a potent anti-malarial compound with a sesquiterpene backbone) from Artemisia annua, the phytochemical [...] Read more.
There are over 500 species of the genus Artemisia in the Asteraceae family distributed over the globe, with varying potentials to treat different ailments. Following the isolation of artemisinin (a potent anti-malarial compound with a sesquiterpene backbone) from Artemisia annua, the phytochemical composition of this species has been of interest over recent decades. Additionally, the number of phytochemical investigations of other species, including those of Artemisia afra in a search for new molecules with pharmacological potentials, has increased in recent years. This has led to the isolation of several compounds from both species, including a majority of monoterpenes, sesquiterpenes, and polyphenols with varying pharmacological activities. This review aims to discuss the most important compounds present in both plant species with anti-malarial properties, anti-inflammatory potentials, and immunomodulating properties, with an emphasis on their pharmacokinetics and pharmacodynamics properties. Additionally, the toxicity of both plants and their anti-malaria properties, including those of other species in the genus Artemisia, is discussed. As such, data were collected via a thorough literature search in web databases, such as ResearchGate, ScienceDirect, Google scholar, PubMed, Phytochemical and Ethnobotanical databases, up to 2022. A distinction was made between compounds involved in a direct anti-plasmodial activity and those expressing anti-inflammatory and immunomodulating activities or anti-fever properties. For pharmacokinetics activities, a distinction was made between compounds influencing bioavailability (CYP effect or P-Glycoprotein effect) and those affecting the stability of pharmacodynamic active components. Full article
Show Figures

Figure 1

19 pages, 1852 KiB  
Review
Poisonous Plants of the Indian Himalaya: An Overview
by Abhishek Jamloki, Vijay Laxmi Trivedi, M. C. Nautiyal, Prabhakar Semwal and Natália Cruz-Martins
Metabolites 2022, 12(6), 540; https://doi.org/10.3390/metabo12060540 - 13 Jun 2022
Cited by 5 | Viewed by 5488
Abstract
Indian Himalayan region (IHR) supports a wide diversity of plants and most of them are known for their medicinal value. Humankind has been using medicinal plants since the inception of civilization. Various types of bioactive compounds are found in plants, which are directly [...] Read more.
Indian Himalayan region (IHR) supports a wide diversity of plants and most of them are known for their medicinal value. Humankind has been using medicinal plants since the inception of civilization. Various types of bioactive compounds are found in plants, which are directly and indirectly beneficial for plants as well as humans. These bioactive compounds are highly useful and being used as a strong source of medicines, pharmaceuticals, agrochemicals, food additives, fragrances, and flavoring agents. Apart from this, several plant species contain some toxic compounds that affect the health of many forms of life as well as cause their death. These plants are known as poisonous plants, because of their toxicity to both humans and animals. Therefore, it is necessary to know in what quantity they should be taken so that it does not have a negative impact on health. Recent studies on poisonous plants have raised awareness among people who are at risk of plant toxicity in different parts of the world. The main aim of this review article is to explore the current knowledge about the poisonous plants of the Indian Himalayas along with the importance of these poisonous plants to treat different ailments. The findings of the present review will be helpful to different pharmaceutical industries, the scientific community and researchers around the world. Full article
Show Figures

Graphical abstract

Back to TopTop