Carbonic Anhydrases and Metabolism Volume 2

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Pharmacology and Drug Metabolism".

Deadline for manuscript submissions: closed (30 March 2020) | Viewed by 17648

Special Issue Editor


grade E-Mail Website
Guest Editor
Neurofarba Department, Section of Farmaceutical and Neutraceutical Sciences, University of Florence, Sesto Fiorentino, 50019 Florence, Italy
Interests: drug design; metalloenzymes; carbonic anhydrases; anticancer agents; antiinfectives; sulfonamides; coumarins
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Carbonic anhydrases (CAs, EC 4.2.1.1) are metalloenzymes present in all life kingdoms, as they equilibrate the reaction between three simple but essential chemical species: CO2, bicarbonate, and protons. Discovered more than 80 year ago, in 1933, these enzymes were extensively investigated due to the biomedical application of their inhibitors, but also because they are an extraordinary example of convergent evolution, with seven genetically-distinct CA families that evolved independently in Bacteria, Archaea, and Eukarya. CAs are also among the most efficient enzymes known in nature, due to the fact that the uncatalyzed CO2 hydration is a very slow process, and the physiologic demands for its conversion to ionic, soluble species is very high. Inhibition of the CAs has pharmacologic applications in many fields, such as antiglaucoma, anticonvulsant, antiobesity, and anticancer agents/diagnostic tools, but is also emerging for designing anti-infectives, i.e., antifungal, antibacterial and antiprotozoan agents with a novel mechanism of action. Mitochondrial CAs are implicated in de novo lipogenesis allowing the ability to consider selective inhibitors of such enzymes as useful for the development of new antiobesity drugs. As the tumor metabolism is diverse form that of normal cells, ultimately, relevant contributions on the role of the tumor-associated isoforms CA IX and XII in these phenomena have been published, and the two isoforms have been validated as novel antitumor/antimetastatic drug targets, with antibodies and small molecule inhibitors in various stages of clinical development. CAs also play a crucial role in other metabolic processes connected with urea biosynthesis, gluconeogenesis, etc., since many carboxylation reactions catalyzed by acetyl-coenzyme A carboxylase or pyruvate carboxylase use bicarbonate not CO2 as a substrate. In organisms other than mammals, e.g., plants, algae, and cyanobacteria, CAs are involved in photosynthesis, whereas, in many parasites (fungi, protozoa), they are involved in the de novo synthesis of important metabolites (lipids, nucleic acids, etc.). The metabolic effects related to interference with CA activity were, however, scarcely investigated. The present Special Issue of Metabolites has the goal of filling this gap, by presenting the latest developments in the field of CAs and their role in metabolism.

Prof. Dr. Claudiu T. Supuran
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • carbonic anhydrase
  • inhibitors
  • activators
  • metabolism

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

12 pages, 3979 KiB  
Article
Synthesis and Biological Evaluation of Imidazo[2,1-b]Thiazole based Sulfonyl Piperazines as Novel Carbonic Anhydrase II Inhibitors
by Kesari Lakshmi Manasa, Sravya Pujitha, Aaftaab Sethi, Mohammed Arifuddin, Mallika Alvala, Andrea Angeli and Claudiu T. Supuran
Metabolites 2020, 10(4), 136; https://doi.org/10.3390/metabo10040136 - 31 Mar 2020
Cited by 12 | Viewed by 3267
Abstract
A novel series of imidazo[2,1-b]thiazole-sulfonyl piperazine conjugates (9aa-ee) has been synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory potency against four isoforms: The cytosolic isozyme hCA I, II and trans-membrane tumor-associated isoform hCA IX and hCA XII, taking acetazolamide [...] Read more.
A novel series of imidazo[2,1-b]thiazole-sulfonyl piperazine conjugates (9aa-ee) has been synthesized and evaluated for carbonic anhydrase (CA, EC 4.2.1.1) inhibitory potency against four isoforms: The cytosolic isozyme hCA I, II and trans-membrane tumor-associated isoform hCA IX and hCA XII, taking acetazolamide (AAZ) as standard drug, using a stopped flow CO2 hydrase assay. The results revealed that most of the compounds showed selective activity against hCA II whereas none of them were active against hCA I, IX, XII (Ki > 100 µM). The physiologically dominant cytosolic isoform hCA II was inhibited by these molecules with inhibition constants in the range of 57.7–98.2 µM. This new derivative, thus, selectively inhibits hCA II over the hCA I, IX, XII isoforms, which may be used for further understanding the physiological roles of some of these isoforms in various pathologies. Full article
(This article belongs to the Special Issue Carbonic Anhydrases and Metabolism Volume 2)
Show Figures

Figure 1

10 pages, 999 KiB  
Article
Anion Inhibition Studies of the β-Class Carbonic Anhydrase CAS3 from the Filamentous Ascomycete Sordaria macrospora
by Daniela Vullo, Ronny Lehneck, William A. Donald, Stefanie Pöggeler and Claudiu T. Supuran
Metabolites 2020, 10(3), 93; https://doi.org/10.3390/metabo10030093 - 05 Mar 2020
Cited by 7 | Viewed by 2197
Abstract
CAS3 is a newly cloned cytosolic β-class carbonic anhydrase (CA, EC 4.2.1.1) from the filamentous ascomycete Sordaria macrospora. This enzyme has a high catalytic activity for the physiological CO2 hydration reaction and herein, we report the inhibition profile of CAS3 with [...] Read more.
CAS3 is a newly cloned cytosolic β-class carbonic anhydrase (CA, EC 4.2.1.1) from the filamentous ascomycete Sordaria macrospora. This enzyme has a high catalytic activity for the physiological CO2 hydration reaction and herein, we report the inhibition profile of CAS3 with anions and small molecules. The most effective CAS3 anions/small molecule inhibitors were diethyl-dithiocarbamate, sulfamide, sulfamate, phenyl boronic and phenyl arsonic acids, with KIs in the range of 0.89 mM–97 µM. Anions such as iodide, the pseudohalides, bicarbonate, carbonate, nitrate, nitrite, hydrogensulfide, stannate, selenate, tellurate, tetraborate, perrhenate, perruthenate, selenocyanide and trithiocarbonate were low millimolar CAS3 inhibitors. The light halides, sulfate, hydrogensulfite, peroxydisulfate, diphosphate, divanadate, perchlorate, tetrafluoroborate, fluorosulfonate and iminodisulfonate did not significantly inhibit this enzyme. These data may be useful for developing antifungals based on CA inhibition, considering the fact that many of the inhibitors reported here may be used as lead molecules and, by incorporating the appropriate organic scaffolds, potent nanomolar inhibitors could be developed. Full article
(This article belongs to the Special Issue Carbonic Anhydrases and Metabolism Volume 2)
Show Figures

Figure 1

12 pages, 1145 KiB  
Article
Sulfonamide Inhibition Profile of the β-Carbonic Anhydrase from Malassezia restricta, An Opportunistic Pathogen Triggering Scalp Conditions
by Sonia Del Prete, Andrea Angeli, Cynthia Ghobril, Julien Hitce, Cécile Clavaud, Xavier Marat, Claudiu T. Supuran and Clemente Capasso
Metabolites 2020, 10(1), 39; https://doi.org/10.3390/metabo10010039 - 16 Jan 2020
Cited by 18 | Viewed by 3026
Abstract
The critical CO2 hydration reaction to bicarbonate and protons is catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1). Their physiological role is to assist the transport of the CO2 and HCO3 at the cellular level, which will not be ensured [...] Read more.
The critical CO2 hydration reaction to bicarbonate and protons is catalyzed by carbonic anhydrases (CAs, EC 4.2.1.1). Their physiological role is to assist the transport of the CO2 and HCO3 at the cellular level, which will not be ensured by the low velocity of the uncatalyzed reaction. CA inhibition may impair the growth of microorganisms. In the yeasts, Candida albicans and Malassezia globosa, the activity of the unique β-CA identified in their genomes was demonstrated to be essential for growth of the pathogen. Here, we decided to investigate the sulfonamide inhibition profile of the homologous β-CA (MreCA) identified in the genome of Malassezia restricta, an opportunistic pathogen triggering dandruff and seborrheic dermatitis. Among 40 investigated derivatives, the best MreCA sulfonamide inhibitors were dorzolamide, brinzolamide, indisulam, valdecoxib, sulthiam, and acetazolamide (KI < 1.0 μM). The MreCA inhibition profile was different from those of the homologous enzyme from Malassezia globosa (MgCA) and the human isoenzymes (hCA I and hCA II). These results might be useful to for designing CA inhibitor scaffolds that may selectively inhibit the dandruff-producing fungi. Full article
(This article belongs to the Special Issue Carbonic Anhydrases and Metabolism Volume 2)
Show Figures

Figure 1

10 pages, 921 KiB  
Article
Anion Inhibition Profile of the β-Carbonic Anhydrase from the Opportunist Pathogenic Fungus Malassezia restricta Involved in Dandruff and Seborrheic Dermatitis
by Sonia Del Prete, Andrea Angeli, Cynthia Ghobril, Julien Hitce, Cécile Clavaud, Xavier Marat, Claudiu T. Supuran and Clemente Capasso
Metabolites 2019, 9(7), 147; https://doi.org/10.3390/metabo9070147 - 18 Jul 2019
Cited by 11 | Viewed by 4009
Abstract
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyze the crucial physiological CO2 hydration/dehydration reaction (CO2 + H2O ⇌ HCO3 + H+) balancing the equilibrium between CO2, H2CO3, [...] Read more.
Carbonic anhydrases (CAs, EC 4.2.1.1) are ubiquitous metalloenzymes, which catalyze the crucial physiological CO2 hydration/dehydration reaction (CO2 + H2O ⇌ HCO3 + H+) balancing the equilibrium between CO2, H2CO3, HCO3 and CO32−. It has been demonstrated that their selective inhibition alters the equilibrium of the metabolites above affecting the biosynthesis and energy metabolism of the organism. In this context, our interest has been focalized on the fungus Malassezia restricta, which may trigger dandruff and seborrheic dermatitis altering the complex bacterial and fungal equilibrium of the human scalp. We investigated a rather large number of inorganic metal-complexing anions (a well-known class of CA inhibitors) for their interaction with the β-CA (MreCA) encoded by the M. restricta genome. The results were compared with those obtained for the two human α-CA isoforms (hCAI and hCAII) and the β-CA from Malassezia globosa. The most effective MreCA inhibitors were diethyldithiocarbamate, sulfamide, phenyl arsenic acid, stannate, tellurate, tetraborate, selenocyanate, trithiocarbonate, and bicarbonate. The different KI values obtained for the four proteins investigated might be attributed to the architectural features of their catalytic site. The anion inhibition profile is essential for better understanding the inhibition/catalytic mechanisms of these enzymes and for designing novel types of inhibitors, which may have clinical applications for the management of dandruff and seborrheic dermatitis. Full article
(This article belongs to the Special Issue Carbonic Anhydrases and Metabolism Volume 2)
Show Figures

Figure 1

Review

Jump to: Research

15 pages, 773 KiB  
Review
Carbonic Anhydrases in Photosynthesizing Cells of C3 Higher Plants
by Lyudmila Ignatova, Natalia Rudenko, Elena Zhurikova, Maria Borisova-Mubarakshina and Boris Ivanov
Metabolites 2019, 9(4), 73; https://doi.org/10.3390/metabo9040073 - 16 Apr 2019
Cited by 24 | Viewed by 4422
Abstract
The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. [...] Read more.
The review presents data on the location, nature, properties, number, and expression of carbonic anhydrase genes in the photosynthesizing cells of C3 plants. The available data about the presence of carbonic anhydrases in plasma membrane, cytoplasm, mitochondria, chloroplast stroma and thylakoids are scrutinized. Special attention was paid to the presence of carbonic anhydrase activities in the different parts of thylakoids, and on collation of sources of these activities with enzymes encoded by the established genes of carbonic anhydrases. The data are presented to show that the consistent incorporation of carbonic anhydrases belonging to different families of these enzymes forms a coherent system of CO2 molecules transport from air to chloroplasts in photosynthesizing cells, where they are included in organic molecules in the carboxylation reaction. It is discussed that the manifestation of the activity of a certain carbonic anhydrase depends on environmental conditions and the stage of ontogenesis. Full article
(This article belongs to the Special Issue Carbonic Anhydrases and Metabolism Volume 2)
Show Figures

Figure 1

Back to TopTop