Special Issue "Extraction, Characterization, Chemical Composition and Biological Activity of Natural Metabolites"

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Plant Metabolism".

Deadline for manuscript submissions: 31 October 2023 | Viewed by 23646

Special Issue Editors

Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
Interests: secondary metabolites; drug discovery; HPLC; marine products; isolation and characterization; natural products; fungal endophytes; marine microbes
Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
Interests: medicinal plants; GC; LC/MS analysis; phytochemistry; nanoformulation; bioactivity; structural elucidation
Department of Medicine, Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville, KY, USA
Interests: particulate matter air pollution; volatile organic compounds; cardiovascular disease; endothelial progenitor cells
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With their diverse chemical structures, secondary metabolites are an inexhaustible source of many novel drugs, providing a promising potential in drug discovery. With great developments in the separation, isolation, identification and structural elucidation of these compounds, they are of high interest for many researchers worldwide. The metabolic profiling of crude extracts and the isolation of natural compounds have become easier than before, owing to the presence of many advanced and hyphenated chromatographic and spectroscopic techniques, such as LC-MS, NMR and GC-MS. This Special Issue aims to shed light on classical and novel methods for the determination the chemical composition and biological activity of secondary metabolites from terrestrial and marine sources. In addition, research concerning the potential activity of these bioactive metabolites in promoting health and well-being also aim to be addressed. All manuscripts, including short communications, research articles and reviews, are welcomed.

Dr. Sameh S. Elhady
Dr. Enas E. Eltamany
Dr. Timothy O'Toole
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural sources
  • natural products
  • medicinal plants
  • marine organisms
  • fungal endophytes
  • marine microbes
  • secondary metabolites
  • chemical profiling
  • biological activities
  • structural elucidation
  • spectroscopic techniques
  • NMR (nuclear magnetic resonance)
  • LC-MS (liquid chromatography coupled with mass spectrometry)
  • GC-MS (gas chromatography coupled with mass spectrometry)

Published Papers (25 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions
Metabolites 2023, 13(6), 691; https://doi.org/10.3390/metabo13060691 - 26 May 2023
Viewed by 456
Abstract
Pereskia aculeata Miller, is an unconventional food plant native to South America. This study aimed to investigate the influence of different ultrasonic extraction times (10, 20, 30, and 40 min) on the phytochemical profile, antioxidant and antibacterial activities of ethanolic extracts obtained from [...] Read more.
Pereskia aculeata Miller, is an unconventional food plant native to South America. This study aimed to investigate the influence of different ultrasonic extraction times (10, 20, 30, and 40 min) on the phytochemical profile, antioxidant and antibacterial activities of ethanolic extracts obtained from lyophilized Pereskia aculeate Miller (ora-pro-nobis) leaves, an under-researched plant. Morphological structure and chemical group evaluations were also conducted for the lyophilized P. aculeate leaves. The different extraction times resulted in distinct phenolic content and Antioxidant Activity (ATT) values. Different extraction time conditions resulted in phenolic compound contents ranging from 2.07 to 2.60 mg EAG.g−1 of extract and different ATT values. The ATT evaluated by DPPH was significantly higher (from 61.20 to 70.20 μM of TE.g−1 of extract) in extraction times of 30 and 40 min, respectively. For ABTS, it varied between 6.38 and 10.24 μM of TE.g−1 of extract and 24.34 and 32.12 μM ferrous sulp.g−1 of extract. All of the obtained extracts inhibited the growth of Staphylococcus aureus, particularly the treatment employing 20 min of extraction at the highest dilution (1.56 mg.mL−1). Although liquid chromatography analyses showed that chlorogenic acid was the primary compound detected for all extracts, Paper Spray Mass Spectrometry (PS-MS) suggested the extracts contained 53 substances, such as organic, fatty, and phenolic acids, sugars, flavonoids, terpenes, phytosterols, and other components. The PS-MS proved to be a valuable technique to obtain the P. aculeate leaves extract chemical profile. It was observed that the freeze-drying process enhanced the conservation of morphological structures of P. aculeate leaves, as evidenced by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) identified carboxyl functional groups and proteins between the 1000 and 1500 cm−1 bands in the P. aculeate leaves, thus favoring water interaction and contributing to gel formation. To the best of our knowledge, this is the first study to evaluate different times (10, 20, 30 and 40 min) for ultrasound extraction of P. aculeate leaves. The polyphenols improved extraction, and high antioxidant activity demonstrates the potential for applying P. aculeate leaves and their extract as functional ingredients or additives in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

Article
Development and Characterization of Yellow Passion Fruit Peel Flour (Passiflora edulis f. flavicarpa)
Metabolites 2023, 13(6), 684; https://doi.org/10.3390/metabo13060684 - 25 May 2023
Viewed by 287
Abstract
In this study, the peels of the yellow passion fruit (Passiflora edulis f. flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its [...] Read more.
In this study, the peels of the yellow passion fruit (Passiflora edulis f. flavicarpa) were used to develop a flour that was evaluated in terms of its physicochemical, microscopic, colorimetric, and granulometric characteristics, its total phenolic compound and carotenoid contents, and its antioxidant capacity. Fourier Transform Infrared (FTIR) spectroscopy measurements were employed to investigate the constituent functional groups, compounds’ chemical profiles were assessed by Paper Spray Mass Spectrometry (PS-MS), and the compound’s chemical profiles were evaluated by Ultra-Performance Liquid Chromatography (UPLC). This flour presented a light color, heterogeneous granulometry, high carbohydrate, carotenoid, and total phenolic compound contents with high antioxidant capacity. Scanning Electron Microscopy (SEM) showed a particulate flour, which is supposed to contribute to its compactness. FTIR demonstrated the presence of functional groups corresponding to cellulose, hemicellulose, and lignin, constituents of insoluble dietary fiber. The PS-MS analysis suggested the presence of 22 substances, covering diverse component classes such as organic, fatty, and phenolic acids, flavonoids, sugars, quinones, phenylpropanoid glycerides terpenes, and amino acids. This research demonstrated the potential of using Passion Fruit Peel Flour (PFPF) as an ingredient for food products. The advantages of using PFPF comprise the reduction of agro-industrial waste, contribution to the development of a sustainable food system, and increment of food products’ functional profile. Moreover, its high content of several bioactive compounds can benefit consumers’ health. Full article
Show Figures

Figure 1

Article
Computational Insights into Natural Antischistosomal Metabolites as SmHDAC8 Inhibitors: Molecular Docking, ADMET Profiling, and Molecular Dynamics Simulation
Metabolites 2023, 13(5), 658; https://doi.org/10.3390/metabo13050658 - 15 May 2023
Viewed by 535
Abstract
Schistosomiasis is a neglected tropical disease with a significant socioeconomic impact. It is caused by several species of blood trematodes from the genus Schistosoma, with S. mansoni being the most prevalent. Praziquantel (PZQ) is the only drug available for treatment, but it [...] Read more.
Schistosomiasis is a neglected tropical disease with a significant socioeconomic impact. It is caused by several species of blood trematodes from the genus Schistosoma, with S. mansoni being the most prevalent. Praziquantel (PZQ) is the only drug available for treatment, but it is vulnerable to drug resistance and ineffective in the juvenile stage. Therefore, identifying new treatments is crucial. SmHDAC8 is a promising therapeutic target, and a new allosteric site was discovered, providing the opportunity for the identification of a new class of inhibitors. In this study, molecular docking was used to screen 13,257 phytochemicals from 80 Saudi medicinal plants for inhibitory activity on the SmHDAC8 allosteric site. Nine compounds with better docking scores than the reference were identified, and four of them (LTS0233470, LTS0020703, LTS0033093, and LTS0028823) exhibited promising results in ADMET analysis and molecular dynamics simulation. These compounds should be further explored experimentally as potential allosteric inhibitors of SmHDAC8. Full article
Show Figures

Graphical abstract

Article
Secondary Metabolites Profiling, Antimicrobial and Cytotoxic Properties of Commiphora gileadensis L. Leaves, Seeds, Callus, and Cell Suspension Extracts
Metabolites 2023, 13(4), 537; https://doi.org/10.3390/metabo13040537 - 10 Apr 2023
Viewed by 687
Abstract
Commiphora gileadensis L. is an important endangered medicinal plant that belongs to the family Burseraceae. In this study, C. gileadensis callus culture was established successfully using mature leaves as explants cultured on Murashige and Skoog (MS) media supplemented with 24.50 μM of indole butyric acid [...] Read more.
Commiphora gileadensis L. is an important endangered medicinal plant that belongs to the family Burseraceae. In this study, C. gileadensis callus culture was established successfully using mature leaves as explants cultured on Murashige and Skoog (MS) media supplemented with 24.50 μM of indole butyric acid (IBA) and 2.22 μM 6-Benzylaminopurine (BAP) (callus induction media). The obtained callus was maintained on MS medium supplemented with 16.11 μM naphthalene acetic acid (NAA) in combination with 6.66 μM BAP, which resulted in a substantial increase in callus fresh and dry weights. The cell suspension culture was established successfully using liquid callus induction media supplemented with 3.0 mg·L−1 proline. Thereafter, the chemical constituents of different C. gileadensis methanolic extracts (callus, cell suspension, leaves, and seeds) were profiled, and their cytotoxic and antimicrobial properties were investigated. The LC-MS GNPS analyses were applied for chemical profiling of the methanolic plant extracts, and several natural products were identified, including flavonols, flavanones, and flavonoids glycosides, with two unusual families that included puromycin, 10-hydroxycamptothecin, and justicidin B. The methanolic extracts have shown selective antimicrobial and cytotoxic properties against different microbes and cancer cell lines. For instance, leaf extract showed the highest zone of inhibition for Staphylococcus aureus, while cell suspension culture was effective against Staphylococcus epidermidis and Staphylococcus aureus. All extracts showed selective activity against A549 cell lines for the cytotoxicity assay, while the leaf extract had a broad cytotoxic effect against all tested cell lines. This study revealed that C. gileadensis callus and cell suspension cultures can be employed to increase the in vitro formation of biologically active compounds that may have cytotoxicity and antibacterial action against different cancer cell lines and bacterial species. Further studies are required to isolate and identify such constituents that corroborate the observed activities. Full article
Show Figures

Figure 1

Article
Optimization of Phenolic Compounds Extraction and Antioxidant Activity from Inonotus hispidus Using Ultrasound-Assisted Extraction Technology
Metabolites 2023, 13(4), 524; https://doi.org/10.3390/metabo13040524 - 05 Apr 2023
Viewed by 657
Abstract
The use of ultrasound-assisted extraction (UAE) of bioactive compounds has been increasing because it is a good alternative to the conventional extraction methods. UAE was used to maximize total polyphenol content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) of [...] Read more.
The use of ultrasound-assisted extraction (UAE) of bioactive compounds has been increasing because it is a good alternative to the conventional extraction methods. UAE was used to maximize total polyphenol content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging capacity, and ferric reducing antioxidant power (FRAP) of the mushroom Inonotus hispidus using response surface methodology (RSM). Firstly, the effect of 40% (v/v) ethanol and 80% (v/v) methanol on the TPC, DPPH scavenging capacity, and FRAP was evaluated. The ethanolic extracts showed a significantly higher (p < 0.0001) TPC, DPPH scavenging capacity, and FRAP than the methanolic extracts. The best condition to produce an extract with the higher TPC and antioxidant activity was achieved when using 40% (v/v) ethanol, a ratio of 75 mL/g, and an extraction time of 20 min. The chromatographic profile of the extract obtained in the optimized condition revealed that hispidin is the main polyphenol present in the extracts of I. hispidus, representing, together with hispidin-like compounds, the majority of the phenolic compounds (159.56 µg/g DW out of 219.01 µg/g DW). The model allowed us to optimize the conditions to maximize the extraction of phenolic compounds with antioxidant activity from I. hispidus, demonstrating its potential as a source of antioxidant compounds, with possible industrial, pharmaceutical, and food applications. Full article
Show Figures

Graphical abstract

Article
Phytochemicals Identification and Bioactive Compounds Estimation of Artemisia Species Grown in Saudia Arabia
Metabolites 2023, 13(3), 443; https://doi.org/10.3390/metabo13030443 - 17 Mar 2023
Viewed by 840
Abstract
Artemisia species are very important medicinal plants, particularly in the Middle East and in developing countries. Their products have been used in traditional and medicine contemporary for the treating of infectious ulcers, gangrenous ulcers, inflammations, and malaria. Artemisinin derived from Artemisia species has [...] Read more.
Artemisia species are very important medicinal plants, particularly in the Middle East and in developing countries. Their products have been used in traditional and medicine contemporary for the treating of infectious ulcers, gangrenous ulcers, inflammations, and malaria. Artemisinin derived from Artemisia species has been used as a drug in many countries for malaria disease treatment. Hence, this study aimed to identify and evaluate the bioactive compounds of three species of Artemisia (Artemisia judaica, Artemisia monosperma, and Artemisia sieberi) growing in Saudi Arabia. Therefore, several analytical techniques, such as gas chromatography–mass spectrometry (GC-MS), UV-Visible spectrophotometry (UV-Vis), and high-performance liquid chromatography (HPLC), with reference standards, were used. The GC-MS analysis of the artemisia species revealed many bioactive constituents associated with plant secondary metabolites; some of these identified phytochemical components have biological activity. A. Judaica showed the highest number of bioactive compounds, followed by A. sieberi and A. monosperma. Further, the total phenol, total flavonoid, total tannin, terpenoids, and TCA were estimated. Furthermore, biomolecules such gallic acid, tannin acid, quercetin, and artemisinin in different artemisia species were quantified using HPLC with the reference standard. The amount of artemisinin in the leaf extract of these species (A. sieberi, A. Judaica, and A. monosperma) was found to be about 3.01, 2.5, and 1.9 mg/g DW, respectively. Moreover, the antioxidant activity of the samples was estimated. The obtained results have shown that these species possessed high antioxidant activity, and the scavenging of the DPPH radical and hydrogen peroxide were found to be raised with the increase in the plant extract concentration. This reflects the number of bioactive compounds in these species. The findings of this research support and justify the utilization of Artemisia species in folk medicine in the Middle East. Full article
Show Figures

Figure 1

Article
The Invasive Anemone Condylactis sp. of the Coral Reef as a Source of Sulfur- and Nitrogen-Containing Metabolites and Cytotoxic 5,8-Epidioxy Steroids
Metabolites 2023, 13(3), 392; https://doi.org/10.3390/metabo13030392 - 07 Mar 2023
Viewed by 602
Abstract
The Condylactis-genus anemones were examined for their proteinaceous poisons over 50 years ago. On the other hand, the current research focuses on isolating and describing the non-proteinaceous secondary metabolites from the invasive Condylactis anemones, which help take advantage of their population outbreak [...] Read more.
The Condylactis-genus anemones were examined for their proteinaceous poisons over 50 years ago. On the other hand, the current research focuses on isolating and describing the non-proteinaceous secondary metabolites from the invasive Condylactis anemones, which help take advantage of their population outbreak as a new source of chemical candidates and potential drug leads. From an organic extract of Condylactis sp., a 1,2,4-thiadiazole-based alkaloid, identified as 3,5-bis(3-pyridinyl)-1,2,4-thiadiazole (1), was found to be a new natural alkaloid despite being previously synthesized. The full assignment of NMR data of compound 1, based on the analysis of 2D NMR correlations, is reported herein for the first time. The proposed biosynthetic precursor thionicotinamide (2) was also isolated for the first time from nature along with nicotinamide (3), uridine (5), hypoxanthine (6), and four 5,8-epidioxysteroids (710). A major secondary metabolite (−)-betonicine (4) was isolated from Condylactis sp. and found for the first time in marine invertebrates. The four 5,8-epidioxysteroids, among other metabolites, exhibited cytotoxicity (IC50 3.5–9.0 μg/mL) toward five cancer cell lines. Full article
Show Figures

Figure 1

Article
Natural Corynanthe-Type Cholinesterase Inhibitors from Malaysian Uncaria attenuata Korth.: Isolation, Characterization, In Vitro and In Silico Studies
Metabolites 2023, 13(3), 390; https://doi.org/10.3390/metabo13030390 - 07 Mar 2023
Viewed by 714
Abstract
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two [...] Read more.
The Uncaria genus is notable for its therapeutic potential in treating age-related dementia, such as Alzheimer’s disease. A phytochemical study of the leaves of Malaysian Uncaria attenuata Korth., afforded an undescribed natural corynanthe-type oxindole alkaloid, isovillocarine D (1) together with two known indole alkaloids, villocarine A (2) and geissoschizine methyl ether (3), and their structural identification was performed with extensive mono- and bidimensional NMR and MS spectroscopic methods. The isolated alkaloids were evaluated for their acetylcholinesterase (AChE)- and butyrylcholinesterase (BChE)-inhibitory activity. The results indicated that compound (2) was the most potent inhibitor against both AChE and BChE, with IC50 values of 14.45 and 13.95 µM, respectively, whereas compounds (1) and (3) were selective BChE inhibitors with IC50 values of 35.28 and 17.65 µM, respectively. In addition, molecular docking studies revealed that compound (2) interacts with the five main regions of AChE via both hydrogen and hydrophobic bonding. In contrast to AChE, the interactions of (2) with the enzymatic site of BChE are established only through hydrophobic bonding. The current finding suggests that U. attenuata could be a good source of bioactive alkaloids for treating age-related dementia. Full article
Show Figures

Figure 1

Article
Biopreservative Effect of the Tunisian Halophyte Lobularia maritima Flavonoid Fraction, Used Alone and in Combination with Linalool in Stored Minced Beef Meat
Metabolites 2023, 13(3), 371; https://doi.org/10.3390/metabo13030371 - 02 Mar 2023
Cited by 2 | Viewed by 613
Abstract
In the present study, Lobularia maritima (Lm) flavonoid extract (LmFV) was characterized by HPLC analyses and five compounds were detected. Further, to describe the chemical content of the matrix, GC-MS analyses after silylation were performed; the obtained results showed [...] Read more.
In the present study, Lobularia maritima (Lm) flavonoid extract (LmFV) was characterized by HPLC analyses and five compounds were detected. Further, to describe the chemical content of the matrix, GC-MS analyses after silylation were performed; the obtained results showed the presence of a large number of components belonging to several chemical classes, mostly sugar alcohols, sugars, fatty acids, and terpenes. Firstly, the antibacterial activities of this fraction and linalool (Lin) were evaluated against eight foodborne pathogenic strains with MIC values between 2.3 and 5.8 mg/mL and 0.23 and 0.7 mg/mL, respectively. Then, the antioxidant activity of both was evaluated by the DPPH antiradical test and the phosphomolybdenum test. Furthermore, the biopreservative effect of LmFV alone and in combination with Lin on minced beef stored at 4 °C for 14 days was evaluated using microbiological and physiochemical tests. LmFV at 4.6% alone significantly reduced microbial spoilage in ground meat (p < 0.05). The combination of LmFV (4.6%) and Lin (0.46%) was more effective than LmFV alone in inhibiting bacterial contamination, reducing TBARS values and the risk of bacterial contamination, and reducing the accumulation of Met myoglobin (MetMb). This combination, therefore, extends the shelf life of the product by about 10 days. Based on these microbiological results and physicochemical parameters, it can be stated that the addition of Lin potentiates the flavonoid fraction of L. maritima more strongly against the deterioration of meat quality by significantly improving its biopreservative effect as a natural conservative. Full article
Show Figures

Graphical abstract

Article
Breynia cernua: Chemical Profiling of Volatile Compounds in the Stem Extract and Its Antioxidant, Antibacterial, Antiplasmodial and Anticancer Activity In Vitro and In Silico
Metabolites 2023, 13(2), 281; https://doi.org/10.3390/metabo13020281 - 15 Feb 2023
Viewed by 1097
Abstract
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the [...] Read more.
Breynia cernua has been used as an alternative medicine for wounds, smallpox, cervical cancer, and breast cancer. This plant is a potential source of new plant-derived drugs to cure numerous diseases for its multiple therapeutic functions. An in vitro study revealed that the methanol extract of B. cernua (stem) exhibits antioxidant activity according to DPPH and SOD methods, with IC50 values of 33 and 8.13 ppm, respectively. The extract also exerts antibacterial activity against Staphylococcus aureus with minimum bactericidal concentration of 1875 ppm. Further analysis revealed that the extract with a concentration of 1–2 ppm protects erythrocytes from the ring formation stage of Plasmodium falciparum, while the extract with a concentration of 1600 ppm induced apoptosis in the MCF-7 breast cancer cell line. GC–MS analysis showed 45 bioactive compounds consisting of cyclic, alkyl halide, organosulfur, and organoarsenic compounds. Virtual screening via a blind docking approach was conducted to analyze the binding affinity of each metabolite against various target proteins. The results unveiled that two compounds, namely, N-[β-hydroxy-β-[4-[1-adamantyl-6,8-dichloro]quinolyl]ethyl]piperidine and 1,3-phenylene, bis(3-phenylpropenoate), demonstrated the best binding score toward four tested proteins with a binding affinity varying from −8.3 to −10.8 kcal/mol. Site-specific docking analysis showed that the two compounds showed similar binding energy with native ligands. This finding indicated that the two phenolic compounds could be novel antioxidant, antibacterial, antiplasmodial, and anticancer drugs. A thorough analysis by monitoring drug likeness and pharmacokinetics revealed that almost all the identified compounds can be considered as drugs, and they have good solubility, oral bioavailability, and synthetic accessibility. Altogether, the in vitro and in silico analysis suggested that the extract of B. cernua (stem) contains various compounds that might be correlated with its bioactivities. Full article
Show Figures

Figure 1

Article
Anti-Inflammatory Activity of Compounds Derived from Vitex rotundifolia
Metabolites 2023, 13(2), 249; https://doi.org/10.3390/metabo13020249 - 09 Feb 2023
Cited by 1 | Viewed by 618
Abstract
The objective of this study is to describe the separation and identification of one new phenolic and 19 known compounds from Vitex rotundifolia. Their structures were determined based on spectroscopic (NMR, CD, and MS) data analysis or Mosher’s method, and were compared [...] Read more.
The objective of this study is to describe the separation and identification of one new phenolic and 19 known compounds from Vitex rotundifolia. Their structures were determined based on spectroscopic (NMR, CD, and MS) data analysis or Mosher’s method, and were compared with those reported in the literature. These isolates were then evaluated for their anti-inflammatory and antioxidant activities based on the inhibition of nitric oxide (NO) and interleukin (IL)-8 production in lipopolysaccharide (LPS)-stimulated cells (RAW264.7 and HT-29) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging abilities, respectively. In the NO assay, compounds 1214 showed strong inhibition with compounds 10 and 15 displaying significant inhibition. In the IL-8 assay, compounds 8, 9, 13, 14, 19, and 20 exhibited potential to inhibit IL-8 production and other compounds displayed moderate inhibition. An in silico docking approach also revealed strong binding affinities for protein–ligand complexes of these active compounds against IL-8 production. The docking results were correlated with the experimental data of the IL-8 assay. Thus, these active compounds should be considered as candidates for further in vivo studies. This study implies the potential of new and active chemicals isolated from V. rotundifolia and provides evidence to support the development of active fractions and constituents into functional products targeting inflammatory diseases the future. Full article
Show Figures

Figure 1

Article
In the Beginning Was the Bud: Phytochemicals from Olive (Olea europaea L.) Vegetative Buds and Their Biological Properties
Metabolites 2023, 13(2), 237; https://doi.org/10.3390/metabo13020237 - 05 Feb 2023
Viewed by 799
Abstract
Even though Olea europaea L. is one of the most important and well-studied crops in the world, embryonic parts of the plants remain largely understudied. In this study, comprehensive phytochemical profiling of olive vegetative buds of two Croatian cultivars, Lastovka and Oblica, [...] Read more.
Even though Olea europaea L. is one of the most important and well-studied crops in the world, embryonic parts of the plants remain largely understudied. In this study, comprehensive phytochemical profiling of olive vegetative buds of two Croatian cultivars, Lastovka and Oblica, was performed with an analysis of essential oils and methanol extracts as well as biological activities (antioxidant, antimicrobial, and cytotoxic activities). A total of 113 different volatiles were identified in essential oils with hydrocarbons accounting for up to 60.30% and (Z)-3-heptadecene being the most abundant compound. Oleacein, oleuropein, and 3-hydroxytyrosol had the highest concentrations of all phenolics in the bud extracts. Other major compounds belong to the chemical classes of sugars, fatty acids, and triterpenoid acids. Antioxidant, antimicrobial, and cytotoxic activities were determined for both cultivars. Apart from antioxidant activity, essential oils had a weak overall biological effect. The extract from cultivar Lastovka showed much better antioxidant activity than both isolates with both methods (with an oxygen radical absorbance capacity value of 1835.42 μM TE/g and DPPH IC50 of 0.274 mg/mL), as well as antimicrobial activity with the best results against Listeria monocytogenes. The human breast adenocarcinoma MDA-MB-231 cell line showed the best response for cultivar Lastovka bud extract (IC50 = 150 μg/mL) among three human cancer cell lines tested. These results demonstrate great chemical and biological potential that is hidden in olive buds and the need to increase research in the area of embryonic parts of plants. Full article
Show Figures

Figure 1

Article
Characterization of Peptaibols Produced by a Marine Strain of the Fungus Trichoderma endophyticum via Mass Spectrometry, Genome Mining and Phylogeny-Based Prediction
Metabolites 2023, 13(2), 221; https://doi.org/10.3390/metabo13020221 - 03 Feb 2023
Cited by 1 | Viewed by 1041
Abstract
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing [...] Read more.
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as “endophytins”. The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products. Full article
Show Figures

Figure 1

Article
Metabolite Profiling of Premium Civet Luwak Bio-Transformed Coffee Compared with Conventional Coffee Types, as Analyzed Using Chemometric Tools
Metabolites 2023, 13(2), 173; https://doi.org/10.3390/metabo13020173 - 24 Jan 2023
Viewed by 1073
Abstract
Luwak (civet) coffee is one of the most precious and exotic coffee commodities in the world. It has garnered an increasing reputation as the rarest and most expensive coffee, with an annual production. Many targeted analytical techniques have been reported for the discrimination [...] Read more.
Luwak (civet) coffee is one of the most precious and exotic coffee commodities in the world. It has garnered an increasing reputation as the rarest and most expensive coffee, with an annual production. Many targeted analytical techniques have been reported for the discrimination of specialty coffee commodities, such as Luwak coffee, from other ordinary coffee. This study presents the first comparative metabolomics approach for Luwak coffee analysis compared to other coffee products, targeting secondary and aroma metabolites using nuclear magnetic resonance (NMR), gas chromatography (GC), or liquid chromatography (LC) coupled with mass spectrometry (MS). Chemometric modeling of these datasets showed significant classification among all samples and aided in identifying potential novel markers for Luwak coffee from other coffee samples. Markers have indicated that C. arabica was the source of Luwak coffee, with several new markers being identified, including kahweol, chlorogenic acid lactones, and elaidic acid. Aroma profiling using solid-phase micro-extraction (SPME) coupled with GC/MS revealed higher levels of guaiacol derivatives, pyrazines, and furans in roasted Luwak coffee compared with roasted C. arabica. Quantification of the major metabolites was attempted using NMR for Luwak coffee to enable future standardization. Lower levels of alkaloids (caffeine 2.85 µg/mg, trigonelline 0.14 µg/mg, and xanthine 0.03 µg/mg) were detected, compared with C. arabica. Other metabolites that were quantified in civet coffee included kahweol and difurfuryl ether at 1.37 and 0.15 µg/mg, respectively. Full article
Show Figures

Figure 1

Article
Chemical Composition, Biomolecular Analysis, and Nuclear Magnetic Resonance Spectroscopic Fingerprinting of Posidonia oceanica and Ascophyllum nodosum Extracts
Metabolites 2023, 13(2), 170; https://doi.org/10.3390/metabo13020170 - 24 Jan 2023
Cited by 1 | Viewed by 904
Abstract
A detailed analysis of the elemental and molecular composition of Posidonia oceanica (PO) and Ascophyllum nodosum (AN) is presented. In particular, an in-depth study of the molecular identification via NMR spectroscopy of aqueous and organic extracts of PO and AN was carried out, [...] Read more.
A detailed analysis of the elemental and molecular composition of Posidonia oceanica (PO) and Ascophyllum nodosum (AN) is presented. In particular, an in-depth study of the molecular identification via NMR spectroscopy of aqueous and organic extracts of PO and AN was carried out, exploiting 2D COSY and pseudo-2D DOSY data to aid in the assignment of peaks in complex 1D proton NMR spectra. Many metabolites were identified, such as carbohydrates, amino acids, organic acids, fatty acids, and polyphenols, with NMR complementing the characterization of the two species by standard elemental analysis, HPLC analysis, and colorimetric testing. For PO, different parts of the live plant (roots, rhizomes, and leaves) were analysed, as well as the residues of the dead plant which typically deposit along the coasts. The combination of the various studies made it possible to recognize bioactive compounds naturally present in the two plant species and, in particular, in the PO residues, opening the door for their possible recycling and use in, for example, fertilizer. Furthermore, NMR is proven to be a powerful tool for the metabolomic study of plant species as it allows for the direct identification of specific biomarkers as well as providing a molecular fingerprint of the plant variety. Full article
Show Figures

Figure 1

Article
Molecular and Biological Investigation of Isolated Marine Fungal Metabolites as Anticancer Agents: A Multi-Target Approach
Metabolites 2023, 13(2), 162; https://doi.org/10.3390/metabo13020162 - 21 Jan 2023
Viewed by 830
Abstract
Cancer is the leading cause of death globally, with an increasing number of cases being annually reported. Nature-derived metabolites have been widely studied for their potential programmed necrosis, cytotoxicity, and anti-proliferation leading to enrichment for the modern medicine, particularly within the last couple [...] Read more.
Cancer is the leading cause of death globally, with an increasing number of cases being annually reported. Nature-derived metabolites have been widely studied for their potential programmed necrosis, cytotoxicity, and anti-proliferation leading to enrichment for the modern medicine, particularly within the last couple of decades. At a more rapid pace, the concept of multi-target agents has evolved from being an innovative approach into a regular drug development procedure for hampering the multi-fashioned pathophysiology and high-resistance nature of cancer cells. With the advent of the Red Sea Penicillium chrysogenum strain S003-isolated indole-based alkaloids, we thoroughly investigated the molecular aspects for three major metabolites: meleagrin (MEL), roquefortine C (ROC), and isoroquefortine C (ISO) against three cancer-associated biological targets Cdc-25A, PTP-1B, and c-Met kinase. The study presented, for the first time, the detailed molecular insights and near-physiological affinity for these marine indole alkaloids against the assign targets through molecular docking-coupled all-atom dynamic simulation analysis. Findings highlighted the superiority of MEL’s binding affinity/stability being quite in concordance with the in vitro anticancer activity profile conducted via sulforhodamine B bioassay on different cancerous cell lines reaching down to low micromolar or even nanomolar potencies. The advent of lengthy structural topologies via the metabolites’ extended tetracyclic cores and aromatic imidazole arm permitted multi-pocket accommodation addressing the selectivity concerns. Additionally, the presence decorating polar functionalities on the core hydrophobic tetracyclic ring contributed compound’s pharmacodynamic preferentiality. Introducing ionizable functionality with more lipophilic characters was highlighted to improve binding affinities which was also in concordance with the conducted drug-likeness/pharmacokinetic profiling for obtaining a balanced pharmacokinetic/dynamic profile. Our study adds to the knowledge regarding drug development and optimization of marine-isolated indole-based alkaloids for future iterative synthesis and pre-clinical investigations as multi-target anticancer agents. Full article
Show Figures

Figure 1

Article
Anti-Heliobacter pylori and Anti-Inflammatory Potential of Salvia officinalis Metabolites: In Vitro and In Silico Studies
Metabolites 2023, 13(1), 136; https://doi.org/10.3390/metabo13010136 - 16 Jan 2023
Cited by 1 | Viewed by 1127
Abstract
Due to its rising antibiotic resistance and associated inflammations, Helicobacter pylori poses a challenge in modern medicine. Salvia officinalis, a member of the Lamiaceae family, is a promising medicinal herb. In this regard, a phytochemical screening followed by GC-MS and LC-MS was [...] Read more.
Due to its rising antibiotic resistance and associated inflammations, Helicobacter pylori poses a challenge in modern medicine. Salvia officinalis, a member of the Lamiaceae family, is a promising medicinal herb. In this regard, a phytochemical screening followed by GC-MS and LC-MS was done to evaluate the chemical profile of the total ethanolic extract (TES) and the essential oil, respectively. The anti-H. pylori and the anti-inflammatory activities were evaluated by a micro-well dilution technique and COX-2 inhibition assay. Potential anti-H. pylori inhibitors were determined by an in silico study. The results revealed that the main metabolites were flavonoids, sterols, volatile oil, saponins, and carbohydrates. The LC-MS negative ionization mode demonstrated 12 compounds, while GC-MS showed 21 compounds. Carnosic acid (37.66%), epirosmanol (20.65%), carnosol1 (3.3%), and 12-O-methyl carnosol (6.15%) were predominated, while eucalyptol (50.04%) and camphor (17.75%) were dominant in LC-MS and GC-MS, respectively. TES exhibited the strongest anti-H. pylori activity (3.9 µg/mL) asymptotic to clarithromycin (0.43 µg/mL), followed by the oil (15.63 µg/mL). Carnosic acid has the best-fitting energy to inhibit H. pylori (−46.6769 Kcal/mol). TES showed the highest reduction in Cox-2 expression approaching celecoxib with IC50 = 1.7 ± 0.27 µg/mL, followed by the oil with IC50 = 5.3 ± 0.62 µg/mL. Our findings suggest that S. officinalis metabolites with anti-inflammatory capabilities could be useful in H. pylori management. Further in vivo studies are required to evaluate and assess its promising activity. Full article
Show Figures

Graphical abstract

Article
Investigation of Chemical Composition and Biological Activities of Ajuga pyramidalis—Isolation of Iridoids and Phenylethanoid Glycosides
Metabolites 2023, 13(1), 128; https://doi.org/10.3390/metabo13010128 - 14 Jan 2023
Viewed by 663
Abstract
Despite several studies on the Ajuga L. genus, the chemical composition of Ajuga pyramidalis, an alpine endemic species, is still largely unknown. The purpose of this study was to therefore deeper describe it, particularly from the phytochemistry and bioactivity perspectives. In that [...] Read more.
Despite several studies on the Ajuga L. genus, the chemical composition of Ajuga pyramidalis, an alpine endemic species, is still largely unknown. The purpose of this study was to therefore deeper describe it, particularly from the phytochemistry and bioactivity perspectives. In that respect, A. pyramidalis was investigated and 95% of the extracted mass of the plant was characterized by chromatography and mass spectrometry. Apart from the already determined chemical compounds, namely, harpagide and 8-O-acetylharpagide, two iridoids, and neoajugapyrin A, a neo-clerodane diterpene, and three polyphenols (echinacoside, verbascoside and teupoloside) were identified for the first time in A. pyramidalis. Incidentally, the first RX structure of a harpagoside derivative is also described in this paper. The extracts and isolated compounds were then evaluated for various biochemical or biological activities; notably a targeted action on the renewal of the epidermis was highlighted with potential applications in the cosmetic field for anti-aging. Full article
Show Figures

Graphical abstract

Article
A Study of the Interaction between Xanthine Oxidase and Its Inhibitors from Chrysanthemum morifolium Using Computational Simulation and Multispectroscopic Methods
Metabolites 2023, 13(1), 113; https://doi.org/10.3390/metabo13010113 - 09 Jan 2023
Viewed by 740
Abstract
The current therapeutic approach for gout is through the inhibition of the xanthine oxidase (XO) enzyme. Allopurinol, a clinically used XO inhibitor, causes many side effects. This study aimed to investigate the interaction between XO and inhibitors identified from Chrysanthemum morifolium by using [...] Read more.
The current therapeutic approach for gout is through the inhibition of the xanthine oxidase (XO) enzyme. Allopurinol, a clinically used XO inhibitor, causes many side effects. This study aimed to investigate the interaction between XO and inhibitors identified from Chrysanthemum morifolium by using computational simulation and multispectroscopic methods. The crude extract, petroleum ether, ethyl acetate (EtOAc), and residual fractions were subjected to an XO inhibitory assay and 1H NMR analysis. The EtOAc fraction was shown to be strongly correlated to the XO inhibitory activity by using PLS biplot regression analysis. Kaempferol, apigenin, homovanillic acid, and trans-cinnamic acid were suggested to contribute to the XO inhibitory activity. Molecular docking showed that kaempferol and apigenin bound to the active site of XO with their benzopyran moiety sandwiched between Phe914 and Phe1009, interacting with Thr1010 and Arg880 by hydrogen bonding. Kaempferol showed the lowest binding energy in molecular dynamic simulation. The residues that contributed to the binding energy were Glu802, Arg880, Phe 914, and Phe 1009. A fluorescence quenching study showed a combination of static and dynamic quenching for all four inhibitors binding to XO. Circular dichroism spectroscopy revealed that there was no major change in XO conformation after binding with each inhibitor. Full article
Show Figures

Figure 1

Article
The Combined Effect of Licorice Extract and Bone Marrow Mesenchymal Stem Cells on Cisplatin-Induced Hepatocellular Damage in Rats
Metabolites 2023, 13(1), 94; https://doi.org/10.3390/metabo13010094 - 06 Jan 2023
Viewed by 914
Abstract
Drug-induced liver damage is a life-threatening disorder, and one major form of it is the hepatotoxicity induced by the drug cisplatin. In folk medicine, Licorice (Glycyrrhiza glabra (is used for detoxification and is believed to be a potent antioxidant. Currently, the magically [...] Read more.
Drug-induced liver damage is a life-threatening disorder, and one major form of it is the hepatotoxicity induced by the drug cisplatin. In folk medicine, Licorice (Glycyrrhiza glabra (is used for detoxification and is believed to be a potent antioxidant. Currently, the magically self-renewable potential of bone marrow mesenchymal stem cells (BM-MSCs) has prompted us to explore their hepatoregenerative capability. The impact of G. glabra extract (GGE) and BM-MSCs alone and, in combination, on protecting against hepatotoxicity was tested on cisplatin-induced liver injury in rats. Hepatic damage, as revealed by liver histopathology and increased levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and malondialdehyde (MDA), was elevated in rats by received 7 mg/kg of cisplatin intraperitoneally. The combination of GGE and BM-MSCs returned the enzyme levels to near the normal range. It also improved levels of liver superoxide dismutase (SOD) and glutathione (GSH) and reduced MDA levels. Additionally, it was found that when GGE and BM-MSCs were used together, they significantly downregulated caspase9 (Casp9), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), and interleukin-1β (IL-1β), which are involved in severe proinflammatory and apoptotic signaling cascades in the liver. Moreover, combining GGE and BM-MSCs led to the normal result of hepatocytes in several examined liver histological sections. Therefore, our findings suggest that GGE may have protective effects against oxidative liver damage and the promising regenerative potential of BM-MSCs. Full article
Show Figures

Figure 1

Article
Identification of Potential Leishmania N-Myristoyltransferase Inhibitors from Withania somnifera (L.) Dunal: A Molecular Docking and Molecular Dynamics Investigation
Metabolites 2023, 13(1), 93; https://doi.org/10.3390/metabo13010093 - 06 Jan 2023
Cited by 1 | Viewed by 1410
Abstract
Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict [...] Read more.
Leishmaniasis is a group of infectious diseases caused by Leishmania protozoa. The ineffectiveness, high toxicity, and/or parasite resistance of the currently available antileishmanial drugs has created an urgent need for safe and effective leishmaniasis treatment. Currently, the molecular-docking technique is used to predict the proper conformations of small-molecule ligands and the strength of the contact between a protein and a ligand, and the majority of research for the development of new drugs is centered on this type of prediction. Leishmania N-myristoyltransferase (NMT) has been shown to be a reliable therapeutic target for investigating new anti-leishmanial molecules through this kind of virtual screening. Natural products provide an incredible source of affordable chemical scaffolds that serve in the development of effective drugs. Withania somnifera leaves, roots, and fruits have been shown to contain withanolide and other phytomolecules that are efficient anti-protozoal agents against Malaria, Trypanosoma, and Leishmania spp. Through a review of previously reported compounds from W. somnifera-afforded 35 alkaloid, phenolic, and steroid compounds and 132 withanolides/derivatives, typical of the Withania genus. These compounds were subjected to molecular docking screening and molecular dynamics against L. major NMT. Calycopteretin-3-rutinoside and withanoside IX showed the highest affinity and binding stability to L. major NMT, implying that these compounds could be used as antileishmanial drugs and/or as a scaffold for the design of related parasite NMT inhibitors with markedly enhanced binding affinity. Full article
Show Figures

Figure 1

Article
How Does Allium Leafy Parts Metabolome Differ in Context to Edible or Inedible Taxa? Case Study in Seven Allium Species as Analyzed Using MS-Based Metabolomics
Metabolites 2023, 13(1), 18; https://doi.org/10.3390/metabo13010018 - 22 Dec 2022
Cited by 2 | Viewed by 1159
Abstract
Genus Allium (F. Amaryllidaceae) includes a wide variety of edible foods widely consumed for their nutritive as well as health benefits. Seven Allium species, viz., chives, Egyptian leek, French leek, red garlic, white garlic, red onion, and white onion aerial parts were assessed [...] Read more.
Genus Allium (F. Amaryllidaceae) includes a wide variety of edible foods widely consumed for their nutritive as well as health benefits. Seven Allium species, viz., chives, Egyptian leek, French leek, red garlic, white garlic, red onion, and white onion aerial parts were assessed for metabolome heterogeneity targeting both aroma and nutrients phytochemicals. A headspace solid-phase microextraction (HS-SPME) and gas chromatography–mass spectrometry (GC–MS) were employed. Results revealed extensive variation in volatiles and nutrients profile among the seven Allium species represented by a total of 77 nutrients and 148 volatiles. Among edible Allium species, French leek encompassed high levels of nutrients, viz., sugars, fatty acids/esters, organic acids, and amino acids, compared to Egyptian leek. Sulfur aroma compounds appeared as the most discriminatory among Allium, taxa accounting for its distinct flavor. Furthermore, chemometric analysis of both datasets showed clear discrimination of the seven Allium species according to several key novel markers. This study provides the first comparative approach between edible and inedible aerial leafy parts of Allium species providing novel insight into their use as functional foods based on such holistic profiling. Full article
Show Figures

Figure 1

Article
Mangosteen Metabolites as Promising Alpha-Amylase Inhibitor Candidates: In Silico and In Vitro Evaluations
Metabolites 2022, 12(12), 1229; https://doi.org/10.3390/metabo12121229 - 07 Dec 2022
Cited by 1 | Viewed by 1226
Abstract
Diabetes is a chronic metabolic disorder characterized by raised glucose levels in the blood, resulting in grave damage over time to various body organs, including the nerves, heart, kidneys, eyes, and blood vessels. One of its therapeutic treatment approaches involves the inhibition of [...] Read more.
Diabetes is a chronic metabolic disorder characterized by raised glucose levels in the blood, resulting in grave damage over time to various body organs, including the nerves, heart, kidneys, eyes, and blood vessels. One of its therapeutic treatment approaches involves the inhibition of enzymes accountable for carbohydrate digestion and absorption. The present work is aimed at evaluating the potential of some reported metabolites from Garcinia mangostana (mangosteen, Guttiferae) as alpha-amylase inhibitors. Forty compounds were assessed for their capacity to inhibit alpha-amylase using in silico studies as well as in vitro assays. Molecular docking was carried out to analyze their binding capacities in the 3D structure of alpha-amylase (PDB ID: 4GQR). Among the tested compounds, 6-O-β-D-glucopyranosyl-2,4,6,3′,4′,6′-hexahydroxybenzophenone (8), aromadendrin-8-C-glucoside (5), epicatechin (6), rhodanthenone (4), and garcixanthone D (40) had a high XP G.score and a Glide G.score of −12.425, −11.855, −11.135, and −11.048 Kcal/mol, respectively. Compound 8 possessed the XP and Glide docking score of −12.425 Kcal/mol compared to the reference compounds myricetin and acarbose which had an XP and Glide docking score of −12.319 and 11.201 Kcal/mol, respectively. It interacted through hydrogen bond formations between its hydroxyl groups and the residues His 101, Asp 197, Glu 233, Asp 300, and His 305, in addition to water bridges and hydrophobic interactions. Molecular mechanics-generalized born surface area (MM-GBSA) was used to calculate the binding free energy and molecular dynamic studies that indicated the stability of the alpha-amylase-compound 8 complex during the 100 ns simulation in comparison with myricetin- and acarbose-alpha-amylase complexes. Additionally, the in vitro alpha-amylase inhibition assay findings validated the in silico study’s findings. This could further validate the potential of G. mangostana as a candidate for diabetes management. Full article
Show Figures

Figure 1

Review

Jump to: Research

Review
Centella asiatica and Its Metabolite Asiatic Acid: Wound Healing Effects and Therapeutic Potential
Metabolites 2023, 13(2), 276; https://doi.org/10.3390/metabo13020276 - 14 Feb 2023
Cited by 2 | Viewed by 1807
Abstract
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy [...] Read more.
An intense effort has been focused on new therapeutic approaches and the development of technologies for more efficient and rapid wound healing. The research for plants used for long time in traditional medicine in the treatment of wound has become a promising strategy to obtain drugs therapeutically useful in the acute and chronic wound management. In this context, Centella asiatica (Apiaceae) has been used to treat a variety of skin diseases, such as leprosy, lupus, varicose ulcers, eczema and psoriasis, in Asiatic traditional medicine for thousands of years. Studies have shown that Centella asiatica extracts (CAE) display activity in tissue regeneration, cell migration and wound repair process by promoting fibroblast proliferation and collagen synthesis. Preliminary findings have shown that the asiatic acid is one of the main active constituents of C. asiatica, directly associated with its healing activity. Thus, this study discusses aspects of the effects of Centella asiatica and its active component, asiatic acid, in different stages of the healing process of cutaneous wounds, including phytochemical and antimicrobial aspects that contribute to its therapeutic potential. Full article
Show Figures

Figure 1

Review
Callyspongia spp.: Secondary Metabolites, Pharmacological Activities, and Mechanisms
Metabolites 2023, 13(2), 217; https://doi.org/10.3390/metabo13020217 - 01 Feb 2023
Viewed by 750
Abstract
One of the most widespread biotas in the sea is the sponge. Callyspongia is a sponge genus found in the seas, making it easily available. In this review, the pharmacological activity and mechanism of action of the secondary metabolites of Callyspongia spp. are [...] Read more.
One of the most widespread biotas in the sea is the sponge. Callyspongia is a sponge genus found in the seas, making it easily available. In this review, the pharmacological activity and mechanism of action of the secondary metabolites of Callyspongia spp. are addressed, which may lead to the development of new drugs and targeted therapeutic approaches. Several scientific databases, such as Google Scholar, PubMed, ResearchGate, Science Direct, Springer Link, and Wiley Online Library, were mined to obtain relevant information. In the 41 articles reviewed, Callyspongia spp. was reported to possess pharmacological activities such as cytotoxicity against cancer cell lines (36%), antifungal (10%), anti-inflammatory (10%), immunomodulatory (10%), antidiabetic and antiobesity (6%), antimicrobial (8%), antioxidant (4%), antineurodegenerative (4%), antihypercholesterolemic (2%), antihypertensive (2%), antiparasitic (2%), antiallergic (2%), antiviral (2%), antiosteoporotic (2%), and antituberculosis (2%) activities. Of these, the antioxidant, antituberculosis, and anti-inflammatory activities of Callyspongia extract were weaker compared with that of the control drugs; however, other activities, particularly cytotoxicity, show promise, and the compounds responsible may be developed into new drugs. Full article
Show Figures

Figure 1

Back to TopTop