State-of-the-Art of Membrane Technology in the Asia-Pacific Region

A special issue of Membranes (ISSN 2077-0375).

Deadline for manuscript submissions: closed (30 April 2019)

Special Issue Editors


E-Mail Website
Guest Editor
School of Chemistry, The University of Melbourne, Melbourne, VIC 3010, Australia
Interests: ion-exchange and liquid membranes; membrane applications in passive sampling; flow analysis; water treatment; chemical sensing; synthesis of metal nanoparticles
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Chemistry, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
Interests: membrane extraction based on polymer inclusion membranes; membrane-based passive sampling; paper-based microfluidics; flow analysis; environmental monitoring and clean-up
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Institute for Frontier Materials, Deakin University, Waurn Ponds, VIC 3216, Australia
Interests: nanostructured membranes; porous materials; membrane characterization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue aims to provide a comprehensive overview of the state-of-the-art of membrane technology in the Asia-Pacific region and will include both original research articles and reviews covering novel approaches in membrane manufacturing and characterization and membrane applications in the manufacturing of goods, energy conversion, waste management, and environmental engineering.

Prof. Spas D. Kolev
Dr. M. Inês G. S. Almeida
Prof. Dr. Lingxue Kong
Prof. Dr. Yingchao Dong
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Membranes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2487 KiB  
Article
Study of Gases Permeation in Necklace-Shaped Dimethylsiloxane Polymers Bearing POSS Cages
by Roman Selyanchyn, Shigenori Fujikawa, Naohiro Katsuta, Kazuya Suwa and Masashi Kunitake
Membranes 2019, 9(4), 54; https://doi.org/10.3390/membranes9040054 - 16 Apr 2019
Cited by 3 | Viewed by 3929
Abstract
The transport of small gases (H2, CO2, N2, O2) through a series of novel membranes based on necklace-shaped inorganic polymers (DMS@POSS), in which a polyhedral oligomeric silsesquioxane (POSS) cage unit and soft chains of oligo-dimethyl [...] Read more.
The transport of small gases (H2, CO2, N2, O2) through a series of novel membranes based on necklace-shaped inorganic polymers (DMS@POSS), in which a polyhedral oligomeric silsesquioxane (POSS) cage unit and soft chains of oligo-dimethyl siloxane (DMS) were alternately connected, was investigated. The influence of the DMS chain length and crosslinking density of the DMS@POSS on membrane properties were studied. The membranes revealed characteristic structure-property relation towards both glass transition and gases transport. Specifically, clear dependence of properties from the length of DMS units (or overall siloxane content) was revealed. Gas transport properties, when compared to state-of-art polydimethylsiloxane and commercial silicone rubber, demonstrated significantly higher selectivity of DMS@POSS for carbon dioxide (in CO2/N2), hydrogen (in H2/N2) and oxygen (in O2/N2) but lowered permeability, proportional to the amount of POSS in the material. With a precise control over mechanical and thermal properties compared to conventional silicone rubbers, described materials could be considered as materials of choice in niche gas separation or other applications. Full article
(This article belongs to the Special Issue State-of-the-Art of Membrane Technology in the Asia-Pacific Region)
Show Figures

Graphical abstract

Back to TopTop