materials-logo

Journal Browser

Journal Browser

An Overview of Recent Materials for Targeted Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Materials Characterization".

Deadline for manuscript submissions: closed (20 June 2022) | Viewed by 7005

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemical Engineering, Materials and Environment, Sapienza University of Rome, 00184 Rome, Italy
Interests: fatigue and fracture behavior of materials; mechanical characterization; structural integrity of conventional and innovative materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Recently new materials have been developed for different purposes. Advanced recent manufacturing techniques allow to create and fabricate materials and structures that can achieve multi-functional characteristics for a large variety of applications. Some processes allow to control the material structure at different scale from micro to nano allowing a very wide of new materials to be created. Aim of the special issue is to show the recent state of the art in this field providing a useful overview to the readers of the journal. Materials employed in the field of energy storage and transport as well as those used in biomedical applications will be considered here showing the high potential we have nowadays to tune material structures for targeted applications.

Prof. Dr. Filippo Berto
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced manufacturing
  • innovative materials
  • nanoscale
  • energy storage
  • biomedical applications
  • aerospace

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 23847 KiB  
Article
Ligustrum lucidum Leaf Extract-Assisted Green Synthesis of Silver Nanoparticles and Nano-Adsorbents Having Potential in Ultrasound-Assisted Adsorptive Removal of Methylene Blue Dye from Wastewater and Antimicrobial Activity
by Mujaddad Sultan, Maria Siddique, Romana Khan, Ahmed M. Fallatah, Nighat Fatima, Irum Shahzadi, Ummara Waheed, Muhammad Bilal, Asmat Ali and Arshad Mehmood Abbasi
Materials 2022, 15(5), 1637; https://doi.org/10.3390/ma15051637 - 22 Feb 2022
Cited by 10 | Viewed by 2776
Abstract
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were [...] Read more.
Present study was conducted to investigate the adsorption and ultrasound-assisted adsorption potential of silver nanoparticles (AgNPs) and silver nanoparticles loaded on chitosan (AgCS composite) as nano-adsorbents for methylene blue (MB) removal. AgNPs were synthesized using leaf extract of Ligustrum lucidum, which were incorporated on the chitosan’s surface for modification. UV–Vis Spectroscopy, FTIR, XRD, SEM, and EDX techniques were used to confirm the synthesis and characterization of nanomaterials. Batch adsorption and sono-adsorption experiments for the removal of MB were executed under optimal conditions; for fitting the experimental equilibrium data, Langmuir and Freundlich’s isotherm models were adopted. In addition, the antimicrobial potential of the AgNPs and AgCS were examined against selected bacterial and fungal strains. UV–Vis spectroscopy confirmed AgNPs synthesis from the leaf extract of L. lucidum used as a reducer, which was spherical as exposed in the SEM analysis. The FTIR spectrum illustrated phytochemicals in the leaf extract of L. lucidum functioning as stabilizing agents around AgNPs and AgCS. Whereas, corresponding crystalline peaks of nanomaterial, including a signal peak at 3 keV indicating the presence of silver, were confirmed by XRD and EDX. The Langmuir model was chosen as an efficient model for adsorption and sono-adsorption, which exposed that under optimum conditions (pH = 6, dye initial concentration = 5 mg L−1, adsorbents dosage = 0.005 g, time = 120 min, US power 80 W), MB removal efficiency of AgNPs was >70%, using ultrasound-assisted adsorption compared to the non-sonicated adsorption. Furthermore, AgNPs exhibited promising antibacterial potential against Staphylococcus aureus with the maximum zone of inhibition (14.67 ± 0.47 mm). It was concluded that the green synthesis approach for the large-scale production of metallic nanoparticles is quite effective and can be recommended for efficient and cost-effective way to eradicate dyes, particularly from textile wastewater. Full article
(This article belongs to the Special Issue An Overview of Recent Materials for Targeted Applications)
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 15952 KiB  
Review
Friction Stir Welding/Processing of Mg-Based Alloys: A Critical Review on Advancements and Challenges
by Farzad Badkoobeh, Hossein Mostaan, Mahdi Rafiei, Hamid Reza Bakhsheshi-Rad and Filippo Berto
Materials 2021, 14(21), 6726; https://doi.org/10.3390/ma14216726 - 08 Nov 2021
Cited by 28 | Viewed by 3337
Abstract
Friction stir welding (FSW) and friction stir processing (FSP) are two of the most widely used solid-state welding techniques for magnesium (Mg) and magnesium alloys. Mg-based alloys are widely used in the railway, aerospace, nuclear, and marine industries, among others. Their primary advantage [...] Read more.
Friction stir welding (FSW) and friction stir processing (FSP) are two of the most widely used solid-state welding techniques for magnesium (Mg) and magnesium alloys. Mg-based alloys are widely used in the railway, aerospace, nuclear, and marine industries, among others. Their primary advantage is their high strength-to-weight ratio and usefulness as a structural material. Due to their properties, it is difficult to weld using traditional gas- or electric-based processes; however, FSW and FSP work very well for Mg and its alloys. Recently, extensive studies have been carried out on FSW and FSP of Mg-based alloys. This paper reviews the context of future areas and existing constraints for FSW/FSP. In addition, in this review article, in connection with the FSW and FSP of Mg alloys, research advancement; the influencing parameters and their influence on weld characteristics; applications; and evolution related to the microstructure, substructure, texture and phase formations as well as mechanical properties were considered. The mechanisms underlying the joining and grain refinement during FSW/FSP of Mg alloys-based alloys are discussed. Moreover, this review paper can provide valuable and vital information regarding the FSW and FSP of these alloys for different sectors of relevant industries. Full article
(This article belongs to the Special Issue An Overview of Recent Materials for Targeted Applications)
Show Figures

Figure 1

Back to TopTop