materials-logo

Journal Browser

Journal Browser

Microstructure, Characteristics, and Failure Behaviors of Cementitious Composites

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Construction and Building Materials".

Deadline for manuscript submissions: closed (10 March 2024) | Viewed by 6434

Special Issue Editors


E-Mail Website
Guest Editor
School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China
Interests: low-carbon cementitious composites; high-performance nano-modification of cement
Special Issues, Collections and Topics in MDPI journals
School of Materials Science and Engineering, Southeast University, Nanjing, China
Interests: cementitious composites; nano-reinforcement; machine learning
Yellow River Laboratory, Zhengzhou University, Zhengzhou, China
Interests: cementitious nanocomposites; fiber-reinforced concrete; microstructures

Special Issue Information

Dear Colleagues,

The microstructural properties and failure behaviors of cementitious composites provide essential information about the underlying causes of their mechanical performance and durability. A systematic understanding of the microstructure and failure behaviors of cementitious composites can assist not only in better analyzing their mechanics and durability, but also in optimizing materials during fabrication processes. Many advanced technologies are currently applied to characterizing the microstructure and failure behaviors of cement-based materials, including X-ray diffraction (XRD), scanning electron microscopy (SEM), mercury intrusion measurement (MIP), energy-dispersive X-ray spectroscopy (EDS), acoustic emission (AE) and digital photography. These methods have the potential to enable better investigation and assist in the manufacturing of high-performance cementitious composites. This Special Issue covers the microstructural and failure behavior characterization of cementitious composites, as well as investigation of their mechanical properties, permeability and durability. We expect that the publication of this Special Issue will provide useful information for future studies on cementitious composite design.

Dr. Yuan Gao
Dr. Junlin Lin
Dr. Xupei Yao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microstructural properties
  • characterization
  • failure performance
  • mechanical behavior
  • durability
  • cementitious composites

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3264 KiB  
Article
Prediction of Hydration Heat for Diverse Cementitious Composites through a Machine Learning-Based Approach
by Liqun Lu, Yingze Li, Yuncheng Wang, Fengjuan Wang, Zeyu Lu, Zhiyong Liu and Jinyang Jiang
Materials 2024, 17(3), 715; https://doi.org/10.3390/ma17030715 - 02 Feb 2024
Viewed by 504
Abstract
Hydration plays a crucial role in cement composites, but the traditional methods for measuring hydration heat face several limitations. In this study, we propose a machine learning-based approach to predict hydration heat at specific time points for three types of cement composites: ordinary [...] Read more.
Hydration plays a crucial role in cement composites, but the traditional methods for measuring hydration heat face several limitations. In this study, we propose a machine learning-based approach to predict hydration heat at specific time points for three types of cement composites: ordinary Portland cement pastes, fly ash cement pastes, and fly ash–metakaolin cement composites. By adjusting the model architecture and analyzing the datasets, we demonstrate that the optimized artificial neural network model not only performs well during the learning process but also accurately predicts hydration heat for various cement composites from an extra dataset. This approach offers a more efficient way to measure hydration heat for cement composites, reducing the need for labor- and time-intensive sample preparation and testing. Furthermore, it opens up possibilities for applying similar machine learning approaches to predict other properties of cement composites, contributing to efficient cement research and production. Full article
Show Figures

Figure 1

18 pages, 6995 KiB  
Article
Efficiency and Mechanism of Surface Reinforcement for Recycled Coarse Aggregates via Magnesium Phosphate Cement
by Siyao Wang, Jingtao Hu, Zhiyuan Sun, Yuan Gao, Xiao Yan and Xiang Xue
Materials 2024, 17(1), 122; https://doi.org/10.3390/ma17010122 - 26 Dec 2023
Viewed by 818
Abstract
Recycled aggregate concrete (RAC) exhibits inferior mechanical and durability properties owing to the deterioration of the recycled coarse aggregate (RCA) surface quality. To improve the surface properties of RCA, the reinforcement efficiency of RAC, and the maneuverability of the surface treatment method, this [...] Read more.
Recycled aggregate concrete (RAC) exhibits inferior mechanical and durability properties owing to the deterioration of the recycled coarse aggregate (RCA) surface quality. To improve the surface properties of RCA, the reinforcement efficiency of RAC, and the maneuverability of the surface treatment method, this study used magnesium phosphate cement (MPC), a clinker-free low-carbon cement with excellent bonding properties, to precoat RCA under three-day pre-conditioning. Moreover, variable amounts of fly ash (FA) or granulated blast furnace slag (GBFS) were utilized to partly substitute MPC to enhance the compressive strength and chloride ion penetration resistance. Subsequently, FA–MPC and GBFS–MPC hybrid slurries with the best comprehensive performance were selected to coat the RCA for optimal reinforcement. The crushing value and water absorption of RCA, as well as the mechanical strengths and durability of RAC, were investigated, and microstructures around interfaces were studied via BSE-EDS and microhardness analysis to reveal the strengthening mechanism. The results indicated that the comprehensive property of strengthening paste was enhanced significantly through substituting MPC with 10% FA or GBFS. Surface coating resulted in a maximum reduction of 8.15% in the crushing value, while the water absorption barely changed. In addition, modified RAC outperformed untreated RAC regarding compressive strength, splitting tensile strength, and chloride ion penetration resistance with maximum optimization efficiencies of 31.58%, 49.75%, and 43.11%, respectively. It was also evidenced that the improved MPC paste properties enhanced the performance of modified RAC. Microanalysis revealed that MPC pastes exhibited an excellent bond with RCA or new mortar, and the newly formed interfacial transition zone between MPC and the fresh mortar exhibited a dense microstructure and outstanding micro-mechanical properties supported with an increase in the average microhardness value of 30.2–33.4%. Therefore, MPC pastes incorporating an appropriate mineral admixture have enormous potential to be utilized as effective RCA surface treatment materials and improve the operability of RCA application in practice. Full article
Show Figures

Figure 1

13 pages, 3725 KiB  
Article
Influence of Nano-SiO2 Content on Cement Paste and the Interfacial Transition Zone
by Shaofeng Zhang, Ronggui Liu, Chunhua Lu, Junqing Hong, Chunhong Chen and Jiajing Xu
Materials 2023, 16(18), 6310; https://doi.org/10.3390/ma16186310 - 20 Sep 2023
Cited by 1 | Viewed by 724
Abstract
Nano-SiO2 (NS) is widely used in cement-based materials due to its excellent physical properties. To study the influence of NS content on a cement paste and the interfacial transition zone (ITZ), cement paste samples containing nano content ranging from 0 to 2% [...] Read more.
Nano-SiO2 (NS) is widely used in cement-based materials due to its excellent physical properties. To study the influence of NS content on a cement paste and the interfacial transition zone (ITZ), cement paste samples containing nano content ranging from 0 to 2% (by weight of cement) were prepared, and digital image correlation (DIC) technology was applied to test the mechanical properties. Finally, the optimal NS content was obtained with statistical analysis. The mini-slump cone test showed that, with the help of superplasticizer and ultrasonic treatment, the flowability decreased continuously, as the NS content increased. The DIC experimental results showed that NS could effectively improve the mechanical properties of the cement paste and the ITZ. Specifically, at the content level of 1%, the elastic modulus of cement paste and ITZ was 20.95 GPa and 3.20 GPa, respectively. When compared to that without nanomaterials, the increased amplitude was 73.50% and 90.50%, respectively. However, with the further increase in NS content, the mechanical properties decreased, which was mainly caused by the agglomeration of nanomaterials. Additionally, the NS content did not exhibit a significant effect on the thickness of the ITZ, and its value was maintained at 76.91–91.38 μm. SEM confirmed that NS would enhance the microstructure of both cement paste and ITZ. Full article
Show Figures

Figure 1

14 pages, 6250 KiB  
Article
Influence of the Graphene Oxide on the Pore-Throat Connection of Cement Waste Rock Backfill
by Zhangjianing Cheng, Junying Wang, Junxiang Hu, Shuaijie Lu, Yuan Gao, Jun Zhang and Siyao Wang
Materials 2023, 16(14), 4953; https://doi.org/10.3390/ma16144953 - 11 Jul 2023
Viewed by 959
Abstract
The pore-throat characteristics significantly affect the consolidated properties, such as the mechanical and permeability-related performance of the cementitious composites. By virtue of the nucleation and pore-infilling effects, graphene oxide (GO) has been proven as a great additive in reinforcing cement-based materials. However, the [...] Read more.
The pore-throat characteristics significantly affect the consolidated properties, such as the mechanical and permeability-related performance of the cementitious composites. By virtue of the nucleation and pore-infilling effects, graphene oxide (GO) has been proven as a great additive in reinforcing cement-based materials. However, the quantitative characterization reports of GO on the pore-throat connection are limited. This study applied advanced metal intrusion and backscattered electron (BSE) microscopy scanning technology to investigate the pore-throat connection characteristics of the cement waste rock backfill (CWRB) specimens before and after GO modification. The results show that the microscopic pore structure of CWRB is significantly improved by the GO nanosheets, manifested by a decrease in the total porosity up to 31.2%. With the assistance of the GO, the transfer among internal pores is from large equivalent pore size distribution to small equivalent pore size distribution. The fitting relationship between strength enhancement and pore reinforcement efficiency under different pore-throat characteristics reveals that the 1.70 μm pore-throat owns the highest correlation in the CWRB specimens, implying apply GO nanosheets to optimizing the pore-throat under this interval is most efficient. Overall, this research broadens our understanding of the pore-throat connection characteristics of CWRB and stimulates the potential application of GO in enhancing the mechanical properties and microstructure of CWRB. Full article
Show Figures

Figure 1

11 pages, 5930 KiB  
Article
The Constituent Phases and Micromechanical Properties of Steel Corrosion Layers Generated by Hyperbaric-Oxygen Accelerated Corrosion Test
by Baozhen Jiang, Kotaro Doi and Koichi Tsuchiya
Materials 2023, 16(13), 4521; https://doi.org/10.3390/ma16134521 - 22 Jun 2023
Cited by 1 | Viewed by 840
Abstract
Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-indentation tests, [...] Read more.
Hyperbaric oxygen-accelerated corrosion testing (HOACT) is a newly developed method to study in the labor the corrosion behavior of steel bars in concrete. This work aimed to intensively investigate the mechanical properties and microstructures of HOACT-generated corrosion products by means of nano-indentation tests, Raman micro-spectrometry, and scanning electron microscopy. The local elastic modulus and nanohardness varied over wide ranges of 6.8–75.2 GPa and 0.38–4.44 GPa, respectively. Goethite, lepidocrocite, maghemite, magnetite, and akageneite phases were identified in the corrosion products. Most regions of the rust layer were composed of a complex and heterogeneous mix of different phases, while some regions were composed of maghemite or akageneite only. The relationship between the micromechanical properties and typical microstructural features is finally discussed at the micro-scale level. It was found that the porosity of corrosion products can significantly influence their micromechanical properties. Full article
Show Figures

Figure 1

28 pages, 16046 KiB  
Article
Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions
by Zofia Szweda, Justyna Kuziak, Liwia Sozańska-Jędrasik and Dominik Czachura
Materials 2023, 16(10), 3889; https://doi.org/10.3390/ma16103889 - 22 May 2023
Cited by 2 | Viewed by 1056
Abstract
This study presents a comparison of the protective properties of three concretes of similar composition on the effect of chloride ions. To determine these properties, the values of the diffusion and migration coefficients of chloride ions in concrete were determined using both standard [...] Read more.
This study presents a comparison of the protective properties of three concretes of similar composition on the effect of chloride ions. To determine these properties, the values of the diffusion and migration coefficients of chloride ions in concrete were determined using both standard methods and the thermodynamic ion migration model. We tested a comprehensive method for checking the protective properties of concrete against chlorides. This method can not only be used in various concretes, even those with only small differences in composition, but also in concretes with various types of admixtures and additives, such as PVA fibers. The research was carried out to address the needs of a manufacturer of prefabricated concrete foundations. The aim was to find a cheap and effective method of sealing the concrete produced by the manufacturer in order to carry out projects in coastal areas. Earlier diffusion studies showed good performance when replacing ordinary CEM I cement with metallurgical cement. The corrosion rates of the reinforcing steel in these concretes were also compared using the following electrochemical methods: linear polarization and impedance spectroscopy. The porosities of these concretes, determined using X-ray computed tomography for pore-related characterization, were also compared. Changes in the phase composition of corrosion products occurring in the steel–concrete contact zone were compared using scanning electron microscopy with a micro-area chemical analysis capability, in addition to X-ray microdiffraction, to study the microstructure changes. Concrete with CEM III cement was the most resistant to chloride ingress and therefore provided the longest period of protection against chloride-initiated corrosion. The least resistant was concrete with CEM I, for which, after two 7-day cycles of chloride migration in the electric field, steel corrosion started. The additional use of a sealing admixture can cause a local increase in the volume of pores in the concrete, and at the same time, a local weakening of the concrete structure. Concrete with CEM I was characterized as having the highest porosity at 140.537 pores, whereas concrete with CEM III (characterized by lower porosity) had 123.015 pores. Concrete with sealing admixture, with the same open porosity, had the highest number of pores, at 174.880. According to the findings of this study, and using a computed tomography method, concrete with CEM III showed the most uniform distribution of pores of different volumes, and had the lowest total number of pores. Full article
Show Figures

Figure 1

13 pages, 7748 KiB  
Article
Shear Damage Simulations of Rock Masses Containing Fissure-Holes Using an Improved SPH Method
by Shuyang Yu, Xuekai Yang, Xuhua Ren, Jixun Zhang, Yuan Gao and Tao Zhang
Materials 2023, 16(7), 2640; https://doi.org/10.3390/ma16072640 - 27 Mar 2023
Viewed by 887
Abstract
Fissures and holes widely exist in rock mechanics engineering, and, at present, their failure mechanisms under complex compress and shear stress states have not been well recognized. In our work, a fracture mark, ξ, is introduced, and the kernel function of the [...] Read more.
Fissures and holes widely exist in rock mechanics engineering, and, at present, their failure mechanisms under complex compress and shear stress states have not been well recognized. In our work, a fracture mark, ξ, is introduced, and the kernel function of the smoothed-particle hydrodynamics (SPH) is then re-written, thus realizing the fracture modelling of the rock media. Then, the numerical models containing the fissures and holes are established, and their progressive failure processes under the compress and shear stress states are simulated, with the results showing that: (1) the improved SPH method can reflect the dynamic crack propagation processes of the rock masses, and the numerical results are in good agreement with the previous experimental results. Meanwhile, the improved SPH method can get rid of the traditional mesh re-division problems, which can be well-applied to rock failure modeling; (2) the hole shapes, fissure angles, fissure lengths, fissure numbers, and confining pressure all have great impacts on the final failure modes and peak strengths of the model; and (3) in practical engineering, the rock masses are in the 3D stress state, therefore, developing a high performance 3D SPH program and applying it to engineering in practice will be of great significance. Full article
Show Figures

Figure 1

Back to TopTop