materials-logo

Journal Browser

Journal Browser

Welding, Joining, and Additive Manufacturing of Metals and Alloys

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 June 2024 | Viewed by 8987

Special Issue Editors


E-Mail
Guest Editor
Faculty of Mechanical Engineering, University of Ljubljana, Aškerčeva 6, 1000 Ljubljana, Slovenia
Interests: additive manufacturing; characterization of weld joints; ultrasonic welding; laser welding; friction stir welding; friction welding; resistance spot welding; arc welding technologies; adhesive bonding
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Materials Engineering, KU Leuven, Campus De Nayer, 2860 Sint-Katelijne Waver, Belgium
Interests: welding engineering; process modelling; additive manufacturing; sustainable manufacturing; friction stir welding

E-Mail Website
Guest Editor
WMG, International Manufacturing Centre, The University of Warwick, Coventry CV4 7AL, UK
Interests: light alloys; dissimilar metals joining; advanced characterization

Special Issue Information

Dear Colleagues,

The constant development of new materials and products also promotes the research and development of welding, joining and build-up welding technologies as well as additive manufacturing technologies. These investigations are multidisciplinary, and include processes, materials, the weldability and joinability of materials and alloys, the design of products and joints, and numerical simulations to comprehensively understand physical and metallurgical phenomena. A successful understanding of these phenomena enables the development of solutions to overcome these problems. This Special Issue aims to report basic and applied research results as well as case studies related to the weldability and joinability of materials and additive manufacturing.

The potential topics for the Special Issues include, but are not limited to:

  • Micro and nano joining;
  • Diffusion bonding;
  • Adhesive bonding;
  • Hybrid welding and additive manufacturing;
  • Laser welding;
  • Welding with mechanical energy;
  • Weldability of similar and dissimilar materials;
  • Advanced material characterization;
  • Residual stress and distortion;
  • Numerical modeling and simulation;
  • Additive manufacturing processes (DED, powder bed fusion, binder jetting, etc.);
  • Additive manufacturing of new materials, multi-materials and functionally graded materials;
  • Improvement of materials using weld surfacing and additive manufacturing;
  • Repair welding and repair additive manufacturing of products.

Dr. Damjan Klobcar
Dr. Abhay Sharma
Dr. Prakash Srirangam
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • welding and joining technologies
  • brazing and soldering
  • additive manufacturing
  • adhesive bonding
  • weldability of materials

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5925 KiB  
Article
Microstructure and Mechanical Properties of Ti-6Al-4V Welds Produced with Different Processes
by Sakari Tolvanen, Robert Pederson and Uta Klement
Materials 2024, 17(4), 782; https://doi.org/10.3390/ma17040782 - 06 Feb 2024
Viewed by 488
Abstract
The effect of defects and microstructure on the mechanical properties of Ti-6Al-4V welds produced by tungsten inert gas welding; plasma arc welding; electron beam welding; and laser beam welding was studied in the present work. The mechanical properties of different weld types were [...] Read more.
The effect of defects and microstructure on the mechanical properties of Ti-6Al-4V welds produced by tungsten inert gas welding; plasma arc welding; electron beam welding; and laser beam welding was studied in the present work. The mechanical properties of different weld types were evaluated with respect to micro hardness; yield strength; ultimate tensile strength; ductility; and fatigue at room temperature and at elevated temperatures (200 °C and 250 °C). Metallographic investigation was carried out to characterize the microstructures of different weld types, and fractographic investigation was conducted to relate the effect of defects on fatigue performance. Electron and laser beam welding produced welds with finer microstructure, higher tensile ductility, and better fatigue performance than tungsten inert gas welding and plasma arc welding. Large pores, and pores located close to the specimen surface, were found to be most detrimental to fatigue life. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

13 pages, 12227 KiB  
Article
Microstructure and Mechanical Properties of the Joints from Coarse- and Ultrafine-Grained Al-Mg-Si Alloy Obtained via Friction Stir Welding
by Marta Lipińska
Materials 2023, 16(18), 6287; https://doi.org/10.3390/ma16186287 - 19 Sep 2023
Viewed by 661
Abstract
In the present study, the welding of coarse- (CG) and ultrafine-grained (UFG) Al-Mg-Si alloy using friction stir welding (FSW) was attempted. The purpose of welding the UFG material was to check the possibility of applying FSW to materials with a thermally unstable microstructure, [...] Read more.
In the present study, the welding of coarse- (CG) and ultrafine-grained (UFG) Al-Mg-Si alloy using friction stir welding (FSW) was attempted. The purpose of welding the UFG material was to check the possibility of applying FSW to materials with a thermally unstable microstructure, which is achieved by severe plastic deformation. This group of materials has significant potential due to the enhanced mechanical properties as a result of the elevated number of structural defects. The CG sample was also examined in order to assess whether there is an influence of the base material microstructure on the weld microstructure and properties. To refine the microstructure, incremental equal channel angular pressing was used. Plastic deformation resulted in grain refinement from 23 µm to 1.5 µm. It caused an increase in the microhardness from 105 HV0.1 to 125 HV0.1 and the tensile strength from 320 MPa to 394 MPa. Similar welds obtained using an FSW method exhibited good quality and grain size in a stir zone of 5 µm. For both welds, a decrease in the microhardness occurred in the stir zone. However, for the weld of UFG Al-Mg-Si, the microhardness distribution was homogeneous, while for the weld of the CG, it was inhomogeneous, which was caused by different characteristics of the second-phase precipitates. The tensile strength of the welds was lowered and equaled 269 MPa and 220 MPa for the CG and UFG welds, respectively. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

15 pages, 5661 KiB  
Article
Ni-Al Bronze in Molten Carbonate Manufactured by LPBF: Effect of Porosity Design on Mechanical Properties and Oxidation
by Camila Arcos, Carolina Guerra, Jorge A. Ramos-Grez and Mamié Sancy
Materials 2023, 16(10), 3893; https://doi.org/10.3390/ma16103893 - 22 May 2023
Cited by 3 | Viewed by 1187
Abstract
Fuel cell technology has developed due to diminishing dependence on fossil fuels and carbon footprint production. This work focuses on a nickel–aluminum bronze alloy as an anode produced by additive manufacturing as bulk and porous samples, studying the effect of designed porosity and [...] Read more.
Fuel cell technology has developed due to diminishing dependence on fossil fuels and carbon footprint production. This work focuses on a nickel–aluminum bronze alloy as an anode produced by additive manufacturing as bulk and porous samples, studying the effect of designed porosity and thermal treatment on mechanical and chemical stability in molten carbonate (Li2CO3-K2CO3). Micrographs showed a typical morphology of the martensite phase for all samples in as-built conditions and a spheroid structure on the surface after the heat treatment, possibly revealing the formation of molten salt deposits and corrosion products. FE-SEM analysis of the bulk samples showed some pores with a diameter near 2–5 μm in the as-built condition, which varied between 100 and −1000 μm for the porous samples. After exposure, the cross-section images of porous samples revealed a film composed principally of Cu and Fe, Al, followed by a Ni-rich zone, whose thickness was approximately 1.5 µm, which depended on the porous design but was not influenced significantly by the heat treatment. Additionally, by incorporating porosity, the corrosion rate of NAB samples increased slightly. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

12 pages, 7663 KiB  
Article
The Influence of MSR-B Mg Alloy Surface Preparation on Bonding Properties
by Katarzyna Łyczkowska, Damian Miara, Beata Rams, Janusz Adamiec and Katarzyna Baluch
Materials 2023, 16(10), 3887; https://doi.org/10.3390/ma16103887 - 22 May 2023
Viewed by 1030
Abstract
Nowadays, industrial adhesives are replacing conventional bonding methods in many industries, including the automotive, aviation, and power industries, among others. The continuous development of joining technology has promoted adhesive bonding as one of the basic methods of joining metal materials. This article presents [...] Read more.
Nowadays, industrial adhesives are replacing conventional bonding methods in many industries, including the automotive, aviation, and power industries, among others. The continuous development of joining technology has promoted adhesive bonding as one of the basic methods of joining metal materials. This article presents the influence of surface preparation of magnesium alloys on the strength properties of a single-lap adhesive joint using a one-component epoxy adhesive. The samples were subjected to shear strength tests and metallographic observations. The lowest properties of the adhesive joint were obtained on samples degreased with isopropyl alcohol. The lack of surface treatment before joining led to destruction by adhesive and mixed mechanisms. Higher properties were obtained for samples ground with sandpaper. The depressions created as a result of grinding increased the contact area of the adhesive with the magnesium alloys. The highest properties were noticed for samples after sandblasting. This proved that the development of the surface layer and the formation of larger grooves increased both the shear strength and the resistance of the adhesive bonding to fracture toughness. It was found that the method of surface preparation had a significant influence on the resulting failure mechanism, and the adhesive bonding of the casting of magnesium alloy QE22 can be used successfully. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

20 pages, 10818 KiB  
Article
Influence of Microstructure and Mechanical Properties of Dissimilar Rotary Friction Welded Inconel to Stainless Steel Joints
by Akhil Reddy Beeravolu, Nagumothu Kishore Babu, Mahesh Kumar Talari, Ateekh Ur Rehman and Prakash Srirangam
Materials 2023, 16(8), 3049; https://doi.org/10.3390/ma16083049 - 12 Apr 2023
Cited by 3 | Viewed by 1334
Abstract
The present study aims to evaluate the microstructure, grain size, and mechanical properties of the dissimilar AISI 316L/Inconel 718 (IN 718) rotary friction welded joints under both the as-welded and post-weld heat treatment (PWHT) conditions. Because of reduced flow strength at elevated temperatures, [...] Read more.
The present study aims to evaluate the microstructure, grain size, and mechanical properties of the dissimilar AISI 316L/Inconel 718 (IN 718) rotary friction welded joints under both the as-welded and post-weld heat treatment (PWHT) conditions. Because of reduced flow strength at elevated temperatures, the AISI 316L and IN 718 dissimilar weldments exhibited more flash formation on the AISI 316L side. At higher rotating speeds during friction welding, an intermixing zone was created at the weld joint interface due to the material softening and squeezing. The dissimilar welds exhibited distinctive regions, including the fully deformed zone (FDZ), heat-affected zone (HAZ), thermo-mechanically affected zone (TMAZ), and the base metal (BM), located on either side of the weld interface. The dissimilar friction welds, AISI 316L/IN 718 ST and AISI 316L/IN 718 STA, exhibited yield strength (YS) of 634 ± 9 MPa and 602 ± 3 MPa, ultimate tensile strength (UTS) of 728 ± 7 MPa and 697± 2 MPa, and % elongation (% El) of 14 ± 1.5 and 17 ± 0.9, respectively. Among the welded samples, PWHT samples exhibited high strength (YS = 730 ± 2 MPa, UTS = 828 ± 5 MPa, % El = 9 ± 1.2), and this may be attributed to the formation of precipitates. Dissimilar PWHT friction weld samples resulted in the highest hardness among all the conditions in the FDZ due to the formation of precipitates. On the AISI 316L side, prolonged exposure to high temperatures during PWHT resulted in grain growth and decreased hardness. During the tensile test at ambient temperature, both the as-welded and PWHT friction weld joints failed in the HAZ regions of the AISI 316L side. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

19 pages, 7623 KiB  
Article
Effect of Heat Treatment on the Microstructure and Mechanical Properties of Rotary Friction Welded AA7075 and AA5083 Dissimilar Joint
by Aditya M. Mahajan, Nagumothu Kishore Babu, Mahesh Kumar Talari, Ateekh Ur Rehman and Prakash Srirangam
Materials 2023, 16(6), 2464; https://doi.org/10.3390/ma16062464 - 20 Mar 2023
Cited by 2 | Viewed by 1108
Abstract
The present work aims to investigate the changes in the microstructural and mechanical properties of various pre- and post weld heat treatments (PWHTs) on rotary friction welded dissimilar (AA7075 and AA5083) aluminum alloys. The investigation focused on the evolution of weld macro- and [...] Read more.
The present work aims to investigate the changes in the microstructural and mechanical properties of various pre- and post weld heat treatments (PWHTs) on rotary friction welded dissimilar (AA7075 and AA5083) aluminum alloys. The investigation focused on the evolution of weld macro- and microstructures, as well as the changes in hardness and tensile properties resulting from friction welding. The joint integrity was studied through various characterization techniques, and no cracks or incomplete bonding was observed. The study found that the dissimilar joints of the AA7075 and AA5083 alloys displayed higher flash formation on the AA7075 side, which has a lower melting temperature compared to the AA5083 alloy. Various zones were identified in the weld region, including the dynamic recrystallized zone (DRZ), the thermomechanically affected zone (TMAZ) consisting of TMAZ-1 (elongated grains) and TMAZ-2 (compressed/distorted grains), the heat-affected zone (HAZ), and the base metal (BM) zone. The rotary friction welded sample AA5083/AA7075-PWHT joint exhibited the highest strength (yield strength (YS): 195 ± 3 MPa, ultimate tensile strength (UTS): 387 ± 2 MPa) among all the other welded conditions, and this may be attributed to the major strengthening precipitates MgZn2 (of AA7075) formed during postweld aging. All dissimilar welds failed in the HAZ region of the AA5083 side due to the formation of coarse grains, indicating the weakest region. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 12255 KiB  
Review
A Review on Multiplicity in Multi-Material Additive Manufacturing: Process, Capability, Scale, and Structure
by Ayush Verma, Angshuman Kapil, Damjan Klobčar and Abhay Sharma
Materials 2023, 16(15), 5246; https://doi.org/10.3390/ma16155246 - 26 Jul 2023
Cited by 3 | Viewed by 2311
Abstract
Additive manufacturing (AM) has experienced exponential growth over the past two decades and now stands on the cusp of a transformative paradigm shift into the realm of multi-functional component manufacturing, known as multi-material AM (MMAM). While progress in MMAM has been more gradual [...] Read more.
Additive manufacturing (AM) has experienced exponential growth over the past two decades and now stands on the cusp of a transformative paradigm shift into the realm of multi-functional component manufacturing, known as multi-material AM (MMAM). While progress in MMAM has been more gradual compared to single-material AM, significant strides have been made in exploring the scientific and technological possibilities of this emerging field. Researchers have conducted feasibility studies and investigated various processes for multi-material deposition, encompassing polymeric, metallic, and bio-materials. To facilitate further advancements, this review paper addresses the pressing need for a consolidated document on MMAM that can serve as a comprehensive guide to the state of the art. Previous reviews have tended to focus on specific processes or materials, overlooking the overall picture of MMAM. Thus, this pioneering review endeavors to synthesize the collective knowledge and provide a holistic understanding of the multiplicity of materials and multiscale processes employed in MMAM. The review commences with an analysis of the implications of multiplicity, delving into its advantages, applications, challenges, and issues. Subsequently, it offers a detailed examination of MMAM with respect to processes, materials, capabilities, scales, and structural aspects. Seven standard AM processes and hybrid AM processes are thoroughly scrutinized in the context of their adaptation for MMAM, accompanied by specific examples, merits, and demerits. The scope of the review encompasses material combinations in polymers, composites, metals-ceramics, metal alloys, and biomaterials. Furthermore, it explores MMAM’s capabilities in fabricating bi-metallic structures and functionally/compositionally graded materials, providing insights into various scale and structural aspects. The review culminates by outlining future research directions in MMAM and offering an overall outlook on the vast potential of multiplicity in this field. By presenting a comprehensive and integrated perspective, this paper aims to catalyze further breakthroughs in MMAM, thus propelling the next generation of multi-functional component manufacturing to new heights by capitalizing on the unprecedented possibilities of MMAM. Full article
(This article belongs to the Special Issue Welding, Joining, and Additive Manufacturing of Metals and Alloys)
Show Figures

Figure 1

Back to TopTop