materials-logo

Journal Browser

Journal Browser

Advances in Biomaterials: Synthesis, Characteristics and Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 10 July 2024 | Viewed by 7545

Special Issue Editor


E-Mail Website
Guest Editor
Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 05-110 Jabłonna, Poland
Interests: nanoparticles; coumarin derivatives, oxidative stress in gram negative and positive bacteria; smart and multifunctional properties of ionic liquids and peptidomimetics; DNA etheno and prophano adducts
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Multidisciplinary convergence research between biology, medicine, biochemistry, bioengineering, biomaterials, biofabrication, nanotechnology, and bioelectronics is growing to tackle scientific challenges for improving human healthcare and quality of life. In recent decades, biomaterials have been widely incorporated with various biofabrication approaches to develop advanced biomedical devices, tissue engineering implants, and antibacterial material.

In this Special Issue, ‘Advances in Biomaterials: Synthesis, Characteristics and Applications’, we invite submissions exploring up-to-date findings and research related to biofabrication (e.g., nano- and micro-fabrication and 3D bioprinting), biomaterials (e.g., decellularized extracellular matrix, conductive hydrogels, and graphene), and electronic technologies for bio/healthcare application (e.g., implantable biosensors, drug delivery systems, organoids, organ-on-a-chips, bioelectronics, and wearable electronics). Communications and reviews are also welcomed.

Prof. Dr. Paweł Kowalczyk
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomaterials
  • antibacterial material
  • human health
  • medical device
  • future medicine

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

11 pages, 6036 KiB  
Article
Pilot Study Investigating Effects of Changing Process Variables on Elastic and Energy-Absorbing Characteristics in Polyurethane/Agglomerated Cork Mix for Use in Micro-Transport Helmet
by David E. White, Hyun Chan Kim, Mohammad Al-Rawi, Xiaowen Yuan and Tony Sojan
Materials 2024, 17(8), 1925; https://doi.org/10.3390/ma17081925 - 22 Apr 2024
Viewed by 222
Abstract
This pilot investigation identifies the influence that changing the process variables of curing pressure, curing temperature, and mix ratio of a polyurethane/agglomerated cork matrix has on the mechanical properties of energy absorption, Young’s modulus of elasticity, and spring stiffness in safety helmets intended [...] Read more.
This pilot investigation identifies the influence that changing the process variables of curing pressure, curing temperature, and mix ratio of a polyurethane/agglomerated cork matrix has on the mechanical properties of energy absorption, Young’s modulus of elasticity, and spring stiffness in safety helmets intended for micro-transport riders. The results are compared to expanded polystyrene, a material commonly used in micro-transport helmets. Mechanical testing of the various samples found that, over the range tested, curing pressure had no effect on any of the mechanical properties, while increasing amounts of resin caused a stiffer structure, and increasing curing temperature led to increased energy absorption. Consistent with the elastic modulus findings, all polyurethane/agglomerated cork test samples demonstrated higher median levels of spring stiffness, ranging from 7.1% to 61.9% greater than those found for expanded polystyrene. The sample mixed at a 1.5:1 binder/cork ratio and cured at 40 °C displayed the closest spring stiffness to EPS. While the mechanical properties of the eco-friendly polyurethane/agglomerated cork matrix did not match those of expanded polystyrene, the difference in performance found in this study is promising. Further investigation into process variables could characterise this more ecologically based matrix with equivalent energy-absorbing and structural characteristics, making it equivalent to currently used expanded polystyrene and suitable for use in micro-transport helmets. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

14 pages, 7158 KiB  
Article
Design and Material Characterization of an Inflatable Vaginal Dilator
by Po-Han Chen, Yu Ming Li, Karcher Morris, Milan T. Makale, Jyoti Mayadev and Frank E. Talke
Materials 2024, 17(5), 1050; https://doi.org/10.3390/ma17051050 - 24 Feb 2024
Viewed by 585
Abstract
There are more than 13,000 new cases of cervical cancer each year in the United States and approximately 245,000 survivors. External beam radiation and brachytherapy are the front-line treatment modalities, and 60% of patients develop vaginal damage and constriction, i.e., stenosis of the [...] Read more.
There are more than 13,000 new cases of cervical cancer each year in the United States and approximately 245,000 survivors. External beam radiation and brachytherapy are the front-line treatment modalities, and 60% of patients develop vaginal damage and constriction, i.e., stenosis of the vaginal vault, greatly impeding sexual function. The incidence of vaginal stenosis (VS) following radiotherapy (RT) for anorectal cancer is 80%. VS causes serious quality of life (QoL) and psychological issues, and while standard treatment using self-administered plastic dilators is effective, acceptance and compliance are often insufficient. Based on published patient preferences, we have pursued the design of a soft inflatable dilator for treating radiotherapy-induced vaginal stenosis (VS). The critical component of the novel device is the dilator balloon wall material, which must be compliant yet able to exert therapeutic lateral force levels. We selected a commercially available silicone elastomer and characterized its stress–strain characteristics and hyperelastic properties. These parameters were quantified using uniaxial tensile testing and digital image correlation (DIC). Dilator inflation versus internal pressure was modeled and experimentally validated in order to characterize design parameters, particularly the dilator wall thickness. Our data suggest that an inflatable silicone elastomer-based vaginal dilator warrants further development in the context of a commercially available, well-tolerated, and effective device for the graded, controlled clinical management of radiotherapy-induced VS. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

16 pages, 4173 KiB  
Article
The Added Value of a Collagenated Thermosensitive Bone Substitute as a Scaffold for Bone Regeneration
by Charlotte Jeanneau, Jean-Hugues Catherine, Thomas Giraud, Romain Lan and Imad About
Materials 2024, 17(3), 625; https://doi.org/10.3390/ma17030625 - 27 Jan 2024
Viewed by 706
Abstract
A pre-hydrated thermosensitive collagenated biomaterial which sets at body temperature and maintains the space of the missing alveolar bone volume, OsteoBiol GTO® (GTO), has been released as a bone substitute. This study was designed to check its angiogenic and osteogenic potentials compared [...] Read more.
A pre-hydrated thermosensitive collagenated biomaterial which sets at body temperature and maintains the space of the missing alveolar bone volume, OsteoBiol GTO® (GTO), has been released as a bone substitute. This study was designed to check its angiogenic and osteogenic potentials compared to OsteoBiol Gen-Os® (Gen-Os) and Geistlich Bio-Oss® (Bio-Oss). Samples of materials were incubated in culture media to obtain the extracts. Collagen release was measured in the extracts, which were used to investigate human periodontal ligament (hPDL) cell proliferation (MTT), colonization (Scratch assays) and growth factor release (ELISA). The effects on endothelial cell proliferation (MTT) and organization (Matrigel® assays) were also studied. Finally, endothelial and mesenchymal Stem Cell (hMSC) recruitment (Boyden Chambers) were investigated, and hMSC Alkaline Phosphatase (ALP) activity was measured. A higher collagen concentration was found in GTO extract, which led to significantly higher hPDL cell proliferation/colonization. All materials increased VEGF/FGF-2 growth factor secretion, endothelial cell recruitment, proliferation, and organization, but the increase was highest with GTO. All materials increased hMSC recruitment and ALP activity. However, the increase was highest with collagenated GTO and Gen-Os, which enhanced C5a and BMP-2 secretion. Overall, GTO has higher angiogenic/osteogenic potentials than the collagenated Gen-Os and the anorganic Bio-Oss. It provides a suitable scaffold for endothelial and mesenchymal stem cell recruitment, which represent essential bone regeneration requirements. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

17 pages, 3049 KiB  
Article
Depth-Dependent Strain Model (1D) for Anisotropic Fibrils in Articular Cartilage
by Syeda Batool, Bradley J. Roth and Yang Xia
Materials 2024, 17(1), 238; https://doi.org/10.3390/ma17010238 - 01 Jan 2024
Viewed by 1129
Abstract
The mechanical response of articular cartilage (AC) under compression is anisotropic and depth-dependent. AC is osmotically active, and its intrinsic osmotic swelling pressure is balanced by its collagen fibril network. This mechanism requires the collagen fibers to be under a state of tensile [...] Read more.
The mechanical response of articular cartilage (AC) under compression is anisotropic and depth-dependent. AC is osmotically active, and its intrinsic osmotic swelling pressure is balanced by its collagen fibril network. This mechanism requires the collagen fibers to be under a state of tensile pre-strain. A simple mathematical model is used to explain the depth-dependent strain calculations observed in articular cartilage under 1D axial compression (perpendicular to the articular surface). The collagen fibers are under pre-strain, influenced by proteoglycan concentration (fixed charged density, FCD) and collagen stiffness against swelling stress. The stiffness is introduced in our model as an anisotropic modulus that varies with fibril orientation through tissue depth. The collagen fibers are stiffer to stretching parallel to their length than perpendicular to it; when combined with depth-varying FCD, the model successfully predicts how tissue strains decrease with depth during compression. In summary, this model highlights that the mechanical properties of cartilage depend not only on proteoglycan concentration but also on the intrinsic properties of the pre-strained collagen network. These properties are essential for the proper functioning of articular cartilage. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

21 pages, 12494 KiB  
Article
Development, Processing and Aging of Novel Zn-Ag-Cu Based Biodegradable Alloys
by Alexander Heiss, Venkat Sai Thatikonda, Andreas Richter, Lisa-Yvonn Schmitt, Daesung Park and Ulrich E. Klotz
Materials 2023, 16(8), 3198; https://doi.org/10.3390/ma16083198 - 18 Apr 2023
Cited by 2 | Viewed by 1158
Abstract
The use of biodegradable materials for implants is a promising strategy to overcome known long-term clinical complications related to permanent implants. Ideally, biodegradable implants support the damaged tissue for a certain period and then degrade, while the physiological function of the surrounding tissue [...] Read more.
The use of biodegradable materials for implants is a promising strategy to overcome known long-term clinical complications related to permanent implants. Ideally, biodegradable implants support the damaged tissue for a certain period and then degrade, while the physiological function of the surrounding tissue is restored. Although Mg-based alloys nearly ideally lend themselves to biodegradable implants, a few critical shortcomings promoted the development of alternative alloy systems. Due to their reasonably good biocompatibility, moderate corrosion rate without hydrogen evolution and adequate mechanical properties, increasing attention has been paid to Zn alloys. In this work, precipitation-hardening alloys in the system Zn-Ag-Cu were developed relying on thermodynamic calculations. After casting the alloys, their microstructures were refined by thermomechanical treatment. The processing was tracked and directed, respectively, by routine investigations of the microstructure, associated with hardness assessments. Although microstructure refinement increased the hardness, the material proved to be susceptible to aging as the homologous temperature of zinc is at 0.43 Tm. Besides mechanical performance and corrosion rate, long-term mechanical stability is another crucial factor that must be taken into consideration to ensure the safety of the implant and thus requires a profound understanding of the aging process. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Graphical abstract

15 pages, 2374 KiB  
Article
Cork Porous Biocomposites with Polyurethane Matrix Modified with Polyol Based on Used Cooking Oil
by Maria Kurańska, Mariusz Ptak, Elżbieta Malewska, Aleksander Prociak, Mateusz Barczewski, Mateusz Dymek, Fábio A. O. Fernandes, Ricardo Alves de Sousa, Krzysztof Polaczek, Karolina Studniarz and Katarzyna Uram
Materials 2023, 16(8), 3032; https://doi.org/10.3390/ma16083032 - 12 Apr 2023
Cited by 1 | Viewed by 1589
Abstract
Renewable materials are materials that are replenished naturally and can be used again and again. These materials include things such as bamboo, cork, hemp, and recycled plastic. The use of renewable components helps to reduce the dependence on petrochemical resources and reduce waste. [...] Read more.
Renewable materials are materials that are replenished naturally and can be used again and again. These materials include things such as bamboo, cork, hemp, and recycled plastic. The use of renewable components helps to reduce the dependence on petrochemical resources and reduce waste. Adopting these materials in various industries such as construction, packaging, and textiles can lead to a more sustainable future and decrease the carbon footprint. The presented research describes new porous polyurethane biocomposites based on used cooking oil polyol (50 per hundred polyol—php) modified with cork (3, 6, 9, and 12 php). The research described here demonstrated that it is possible to replace some petrochemical raw materials with raw materials of renewable origin. This was achieved by replacing one of the petrochemical components used for the synthesis of the polyurethane matrix with a waste vegetable oil component. The modified foams were analyzed in terms of their apparent density, coefficient of thermal conductivity, compressive strength at 10% of deformation, brittleness, short-term water absorption, thermal stability, and water vapor permeability, while their morphology was examined using scanning electron microscopy and the content of closed cells. After the successful introduction of a bio-filler, it was found that the thermal insulation properties of the modified biomaterials were comparable to those of the reference material. It was concluded that it is possible to replace some petrochemical raw materials with raw materials of renewable origin. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

26 pages, 5584 KiB  
Article
Plasma-Polymerised Antibacterial Coating of Ovine Tendon Collagen Type I (OTC) Crosslinked with Genipin (GNP) and Dehydrothermal-Crosslinked (DHT) as a Cutaneous Substitute for Wound Healing
by Ibrahim N. Amirrah, Izzat Zulkiflee, M. F. Mohd Razip Wee, Asad Masood, Kim S. Siow, Antonella Motta and Mh Busra Fauzi
Materials 2023, 16(7), 2739; https://doi.org/10.3390/ma16072739 - 29 Mar 2023
Cited by 3 | Viewed by 1542
Abstract
Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to [...] Read more.
Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to develop an acellular, ready-to-use ovine tendon collagen type I (OTC-I) bioscaffold with an antibacterial coating for the immediate treatment of skin wounds and to prevent infection post-implantation. Two types of crosslinkers, 0.1% genipin (GNP) and dehydrothermal treatment (DHT), were explored to optimise the material strength and biodegradability compared with a non-crosslinked (OTC) control. Carvone plasma polymerisation (ppCar) was conducted to deposit an antibacterial protective coating. Various parameters were performed to investigate the physicochemical properties, mechanical properties, microstructures, biodegradability, thermal stability, surface wettability, antibacterial activity and biocompatibility of the scaffolds on human skin cells between the different crosslinkers, with and without plasma polymerisation. GNP is a better crosslinker than DHT because it demonstrated better physicochemical properties (27.33 ± 5.69% vs. 43 ± 7.64% shrinkage), mechanical properties (0.15 ± 0.15 MPa vs. 0.07 ± 0.08 MPa), swelling (2453 ± 419.2% vs. 1535 ± 392.9%), biodegradation (0.06 ± 0.06 mg/h vs. 0.15 ± 0.16 mg/h), microstructure and biocompatibility. Similarly, its ppCar counterpart, GNPppCar, presents promising results as a biomaterial with enhanced antibacterial properties. Plasma-polymerised carvone on a crosslinked collagen scaffold could also support human skin cell proliferation and viability while preventing infection. Thus, GNPppCar has potential for the rapid treatment of healing wounds. Full article
(This article belongs to the Special Issue Advances in Biomaterials: Synthesis, Characteristics and Applications)
Show Figures

Figure 1

Back to TopTop