materials-logo

Journal Browser

Journal Browser

Corrosion and Mechanical Behavior of Metal Materials (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 May 2024 | Viewed by 3612

Special Issue Editor

Shaanxi Provincial Key Laboratory of Corrosion and Protection, School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
Interests: corrosion; SCC; corrosion fatigue
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Many structural metal materials work under the coupling condition of the load and corrosion environment. Therefore, it is necessary to study the corrosion and mechanical behavior of metal structural materials. The corrosion behaviors of metals under the coupling condition of the mechanics and corrosion environment mainly include stress corrosion cracking, hydrogen-induced cracking, corrosion fatigue, erosion corrosion, wear corrosion, etc. From the macroscopic or microscopic point of view, these corrosion damages all involve the fracture process, and fractures are caused by environmental factors, also known as environmental fractures. Thus, this Special Issue, the second volume of "Corrosion and Mechanical Behavior of Metal Materials”, will still focus on the environmental fracture behavior of metal materials. We hope that colleagues in the relevant field can contribute to the topic, including but not limited to experimental, computational, or theoretical studies on environmental corrosion fracture of high-strength metal materials.

Dr. Ming Liu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stress corrosion cracking
  • hydrogen-induced cracking
  • corrosion fatigue
  • erosion corrosion
  • wear corrosion

Related Special Issue

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 9734 KiB  
Article
Microstructure and Chlorine Ion Corrosion Performance in Bronze Earring Relics
by Zhiqiang Song and Ojiyed Tegus
Materials 2024, 17(8), 1734; https://doi.org/10.3390/ma17081734 - 10 Apr 2024
Viewed by 251
Abstract
Chlorine ions play an important role in the corrosion of bronzeware. This study employs techniques such as XRD, OM, SEM, EBSD, and electrochemical testing to analyze the microstructure, crystal structure, chemical composition, and corrosion performance of bronze earrings unearthed at the Xindianzi site [...] Read more.
Chlorine ions play an important role in the corrosion of bronzeware. This study employs techniques such as XRD, OM, SEM, EBSD, and electrochemical testing to analyze the microstructure, crystal structure, chemical composition, and corrosion performance of bronze earrings unearthed at the Xindianzi site in Inner Mongolia. The results indicate the presence of work-hardened structures, including twinning and equiaxed crystals, on the earrings’ surface. With an increase in chloride ion concentration in NaCl solutions from 10−3 mol/L to 1 mol/L, the corrosion current density of the bronze earrings increased from 2.372 × 10−7 A/cm2 to 9.051 × 10−7 A/cm2, demonstrating that the alloy’s corrosion rate escalates with chloride ion concentration. A 3-day immersion test in 0.5% NaCl solution showed the formation of a passivation layer of metal oxides on the earrings’ surface. These findings underscore the significance of the impact chloride ions have on the corrosion of copper alloys, suggesting that activating the alloy’s reactive responses can accelerate the corrosion process and provide essential insights into the corrosion mechanisms of bronze artifacts in chloride-containing environments. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

17 pages, 5697 KiB  
Article
Effects of C and Al Alloying on Constitutive Model Parameters and Hot Deformation Behavior of Medium-Mn Steels
by Guangshun Guo, Mingming Wang, Hongchao Ji, Xiaoyan Zhang, Dongdong Li, Chenyang Wei and Fucheng Zhang
Materials 2024, 17(3), 732; https://doi.org/10.3390/ma17030732 - 03 Feb 2024
Viewed by 513
Abstract
Single-pass isothermal hot compression tests on four medium-Mn steels with different C and Al contents were conducted using a Gleeble-3500 thermal simulation machine at varying deformation temperatures (900–1150 °C) and strain rates (0.01–5 s−1). Based on friction correction theory, the friction [...] Read more.
Single-pass isothermal hot compression tests on four medium-Mn steels with different C and Al contents were conducted using a Gleeble-3500 thermal simulation machine at varying deformation temperatures (900–1150 °C) and strain rates (0.01–5 s−1). Based on friction correction theory, the friction of the test stress–strain data was corrected. On this basis, the Arrhenius constitutive model of experimental steels considering Al content and strain compensation and hot processing maps of different experimental steels at a strain of 0.9 were established. Moreover, the effects of C and Al contents on constitutive model parameters and hot processing performance were analyzed. The results revealed that the increase in C content changed the trend of the thermal deformation activation energy Q with the true strain. The Q value of 2C7Mn3Al increased by about 50 KJ/mol compared with 7Mn3Al at a true strain greater than 0.4. In contrast, increasing the Al content from 0 to 1.14 wt.% decreased the activation energy of thermal deformation in the true strain range of 0.4–0.9. Continuing to increase to 3.30 wt.% increased the Q of 7Mn3Al over 7Mn by about 65 KJ/mol over the full strain range. In comparison, 7Mn1Al exhibited the best hot processing performance under the deformation temperature of 975–1125 °C and strain rate of 0.2–5 s−1. This is due to the addition of C element reduces the δ-ferrite volume fraction, which leads to the precipitation of κ-carbides and causes the formation of microcracks; an increase in Al content from 0 to 1.14 wt.% reduces the austenite stability and improves the hot workability, but a continued increase in the content up to 3.30 wt.% results in the emergence of δ-ferrite in the microstructure, which slows down the austenite DRX and not conducive to the hot processing performance. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

16 pages, 3440 KiB  
Article
Prediction of Crack Width in RC Piles Exposed to Local Corrosion in Chloride Environment
by Wei Shao, Xiaoqing He, Danda Shi and Wenjin Zhu
Materials 2023, 16(19), 6403; https://doi.org/10.3390/ma16196403 - 26 Sep 2023
Viewed by 630
Abstract
A novel prediction model for crack development of reinforced concrete (RC) piles with localized chloride corrosion in the marine environment is proposed. A discrete method is used to solve the corrosion pit radius model and a crack extension model is developed to investigate [...] Read more.
A novel prediction model for crack development of reinforced concrete (RC) piles with localized chloride corrosion in the marine environment is proposed. A discrete method is used to solve the corrosion pit radius model and a crack extension model is developed to investigate the initiation and extension of cracks. The maximum corrosion degree of the reinforced concrete pile is predicted according to the limit crack criterion, and finally, a sensitivity analysis is carried out on the important parameters of crack extension. The results show that the radius of the corrosion pit, the depth corrosion pit, and the cross-sectional area loss of reinforcement gradually increase as the corrosion level increases. The loss of the local reinforcement section at crack initiation increases with the increase in the ratio of concrete cover to initial diameter and increases with the increase in the pitting factor. The required pit depth for reinforcement cracking increases with the increase in the ratio of concrete cover thickness to diameter. The loss of the cross-sectional area of reinforcement and the radius of the corrosion pit increase with the increase in the initial diameter of reinforcement. Increasing the pitting factor can reduce the pit depth and make the crack width develop faster before reaching the limit crack width. Increasing the concrete cover thickness can provide an improvement in the propagation of cracks. A comparative analysis shows that the localized corrosion pattern is more in conformity with marine engineering practice. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

15 pages, 5737 KiB  
Article
On the Change in Hydrogen Diffusion and Trapping Behaviour of Pearlitic Rail Steel at Different Stages of Production
by Matthias Eichinger, Bernd Loder, Michael Tkadletz, Holger Schnideritsch, Gerald Klösch and Gregor Mori
Materials 2023, 16(17), 5780; https://doi.org/10.3390/ma16175780 - 23 Aug 2023
Cited by 1 | Viewed by 739
Abstract
To avoid hydrogen flaking in rail production, it is of crucial importance to understand the differences in hydrogen diffusion and trapping between different production steps. Therefore, as-cast unfinished material was compared with two finished rails, hot-rolled and head-hardened, using electron backscattered diffraction (EBSD), [...] Read more.
To avoid hydrogen flaking in rail production, it is of crucial importance to understand the differences in hydrogen diffusion and trapping between different production steps. Therefore, as-cast unfinished material was compared with two finished rails, hot-rolled and head-hardened, using electron backscattered diffraction (EBSD), electrochemical permeation, and thermal desorption spectroscopy (TDS). A significant increase in dislocation density was in the head-hardened rail compared with the other material states. This leads to an effective hydrogen diffusion coefficient of 5.8 × 10−7 cm2/s which is lower by a factor of four than the diffusion coefficients examined in the other states. Thermal desorption spectroscopy analyses show a clear difference between unfinished and finished rail materials. While a peak in activation energy between 32 and 38 kJ/mol is present at all states, only as-cast unfinished material shows a second peak with an activation energy of 47 kJ/mol, which is related to microvoids. The results show that in the investigated material, the effect of increasing dislocation density has a stronger influence on the effective diffusion coefficient than the presence of a second active trapping site. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

Review

Jump to: Research

44 pages, 14513 KiB  
Review
Hydrogen Impact: A Review on Diffusibility, Embrittlement Mechanisms, and Characterization
by Qidong Li, Hesamedin Ghadiani, Vahid Jalilvand, Tahrim Alam, Zoheir Farhat and Md. Aminul Islam
Materials 2024, 17(4), 965; https://doi.org/10.3390/ma17040965 - 19 Feb 2024
Cited by 1 | Viewed by 944
Abstract
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed, HE may lead to catastrophic environmental failures in vessels containing hydrogen, such as pipelines and storage tanks. HE can affect the mechanical properties of materials such [...] Read more.
Hydrogen embrittlement (HE) is a broadly recognized phenomenon in metallic materials. If not well understood and managed, HE may lead to catastrophic environmental failures in vessels containing hydrogen, such as pipelines and storage tanks. HE can affect the mechanical properties of materials such as ductility, toughness, and strength, mainly through the interaction between metal defects and hydrogen. Various phenomena such as hydrogen adsorption, hydrogen diffusion, and hydrogen interactions with intrinsic trapping sites like dislocations, voids, grain boundaries, and oxide/matrix interfaces are involved in this process. It is important to understand HE mechanisms to develop effective hydrogen resistant strategies. Tensile, double cantilever beam, bent beam, and fatigue tests are among the most common techniques employed to study HE. This article reviews hydrogen diffusion behavior, mechanisms, and characterization techniques. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop