materials-logo

Journal Browser

Journal Browser

Advanced Materials for Oral Application (3rd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 20 February 2025 | Viewed by 509

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy, Timisoara, Romania
Interests: oral medicine; oral pathology; dental materials; nanomaterials; biomaterials; oral microbiome; oral biofilm; oral cancer; nanomedicine; oral microenvironment; oral biomarkers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Enhancing the quality of life for dental patients can be achieved by the development and selection of biocompatible, durable, and high aesthetic materials, able to withstand the conditions of the oral environment for a long time. The physical and chemical properties must be considered to ensure high-resistant results, as well as the maintenance of the original characteristics of the material. The main treatment goal concerns either the regeneration of diseased tissues or their replacement with prosthesis.

The continuous development of dental materials enables dentists and dental technicians to choose from a wide variety. Recent advances enable tailoring dental materials to specific applications, resulting in progressive materials. The introduction of new aesthetic materials, digital devices, processing software, and manufacturing and prototyping tools have radically transformed the dental profession. Bioactive dental materials, which release specific ions, play an important role in the regenerative process, in preventive and restorative dentistry, as well as in endodontics, inducing cell differentiation and stimulation, hard tissue formation, and exerting antimicrobial actions. Smart materials are capable to react to pH changes and induce reparative processes in the oral environment.

Biocompatibility has to be considered, as dental materials must be well tolerated by the human organism. Bacterial colonization of the surface is also important, considering its etiopathogenetic role in initiating different oral pathologies.

This Special Issue “Advanced Materials for Oral Application (3rd Edition)” aims to focus on the advances in this attractive field of research, encouraging a multidisciplinary approach of the subject.

It is our pleasure to invite you to submit your work to this Special Issue. Research papers, reviews, and communications are welcome.

Prof. Dr. Lavinia Cosmina Ardelean
Prof. Dr. Laura-Cristina Rusu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dental materials
  • biocompatibility
  • toxicity
  • mutagenicity
  • carcinogens
  • restorative materials
  • endodontic materials
  • ceramics
  • polymers
  • alloys
  • 3D printing
  • CAD/CAM milling
  • oral lesions
  • oral cancer
  • properties
  • technologies
  • surface treatment
  • tissue engineering

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

10 pages, 1181 KiB  
Article
Trueness of Extraoral Digital Impressions for Full-Arch Implant Impressions—In Vitro Study
by Manuel António Sampaio-Fernandes, Ricardo Pinto, Paulo Rocha Almeida, Maria Margarida Sampaio-Fernandes, Duarte Marques and Maria Helena Figueiral
Materials 2024, 17(12), 2932; https://doi.org/10.3390/ma17122932 (registering DOI) - 15 Jun 2024
Abstract
Direct scanning of silicone impressions is a valid technique. However, studies in implant-supported rehabilitations are lacking. This in vitro study aims to compare the trueness of impressions obtained with two types of silicone and their corresponding stone casts, using two laboratory scanners in [...] Read more.
Direct scanning of silicone impressions is a valid technique. However, studies in implant-supported rehabilitations are lacking. This in vitro study aims to compare the trueness of impressions obtained with two types of silicone and their corresponding stone casts, using two laboratory scanners in a full-arch implant rehabilitation. A master cast with six dental implants was scanned with a 12-megapixel scanner to obtain a digital master cast. Ten implant impressions were made using two silicones (Zhermack and Coltene) with the open-tray technique. The impressions and stone casts were scanned by two extraoral scanners (Identica T500, Medit; and S600 ARTI, Zirkonzhan). Trueness was assessed by comparing linear and angular distances in digital casts with the master cast. A p < 0.05 significance level was considered. The results showed that for the linear measurements, 72% were higher than the master cast measurements, and no consistent pattern was observed in the angular measurements. The greatest deviations were detected between the most posterior implants, with mean values ranging between 173 and 314 µm. No significant differences were found between scanners. However, differences were observed in the distances between silicones (46.7%) and between impressions and stone casts (73.3%). This work demonstrates that the direct scanning of silicone impressions yields results comparable to those obtained from scanning gypsum casts in full-arch implant-supported rehabilitation. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Figure 1

20 pages, 6668 KiB  
Article
Highly Efficient Photoinitiation Systems Based on Dibenzo[a,c]phenazine Sensitivity to Visible Light for Dentistry
by Ilona Pyszka and Beata Jędrzejewska
Materials 2024, 17(11), 2597; https://doi.org/10.3390/ma17112597 - 28 May 2024
Viewed by 244
Abstract
In this work, photoinitiation systems based on dibenzo[a,c]phenazine sensitivity to visible light were designed for their potential application in dentistry. Modification of the structure of dibenzo[a,c]phenazine consisted of introducing electron-donating and electron-withdrawing substituents and heavy atoms into position 11. The synthesized compounds are [...] Read more.
In this work, photoinitiation systems based on dibenzo[a,c]phenazine sensitivity to visible light were designed for their potential application in dentistry. Modification of the structure of dibenzo[a,c]phenazine consisted of introducing electron-donating and electron-withdrawing substituents and heavy atoms into position 11. The synthesized compounds are able to absorb radiation emitted by dental lamps during photoinitiation of the polymerization process. In the presence of acrylates, dibenzo[a,c]phenazines show excellent photoinitiating abilities in systems containing an electron donor or a hydrogen-atom donor as a second component. The developed systems initiate the polymerization process comparable to a commercial photoinitiator, i.e., camphorquinone. Moreover, the performed studies showed a significant shortening of the polymerization time and a reduction in the amount of light absorber. This indicates that polymeric materials are obtained at a similar rate despite a significant reduction in the concentration of the newly developed two-component photoinitiating systems. Full article
(This article belongs to the Special Issue Advanced Materials for Oral Application (3rd Edition))
Show Figures

Figure 1

Back to TopTop