Bioactive Product from Marine Cyanobacteria

A special issue of Marine Drugs (ISSN 1660-3397). This special issue belongs to the section "Marine Pharmacology".

Deadline for manuscript submissions: closed (31 December 2023) | Viewed by 14993

Special Issue Editors


E-Mail Website
Guest Editor
1. School of Health (ESS|P.PORTO), Polytechnic Institute of Porto, Porto, Portugal
2. Interdisciplinary Center of Marine and Environmental Research (CIIMAR), University of Porto, Porto, Portugal
Interests: cyanobacteria; pharmacology; toxicity; biotechnology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. Faculdade de Ciências da Universidade do Porto, 4169-007 Porto, Portugal
2. CIIMAR, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208 Porto, Portugal
Interests: cyanobacteria; toxins; cyanotoxins; marine biotechnology; secondary metabolites; cyanobacterial blooms; ecotoxicology; environmental contamination
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,                

Cyanobacteria, as ancient photosynthetic prokaryotic organisms, produce a wide variety of secondary metabolites, including proteins, lipids, fatty acids, pigments or polysaccharides with proven biotechnological value, namely, in highly debilitating diseases such as cancer and obesogenic diseases, but also in processes such as photoprotection, antioxidation and inflammation. These secondary metabolites originating from cyanobacteria are widely employed in industries such as cosmetics, nutraceuticals, food, biomedicine, and green chemistry.

As the Guest Editors for this Special Issue, we would like to invite you to submit your valuable research results on “Bioactive Product from Marine Cyanobacteria”. This Special Issue invites original contributions and reviews.

Prof. Dr. Martins Rosario
Prof. Dr. Vitor Vasconcelos
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Marine Drugs is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2900 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cyanobacteria
  • secondary metabolites
  • natural products
  • biological activity
  • synthesis

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 2589 KiB  
Article
Chlorinated Enyne Fatty Acid Amides from a Marine Cyanobacterium: Discovery of Taveuniamides L-M and Pharmacological Characterization of Taveuniamide F as a GPCR Antagonist with CNR1 Selectivity
by Lobna A. Elsadek, Emma K. Ellis, Gustavo Seabra, Valerie J. Paul and Hendrik Luesch
Mar. Drugs 2024, 22(1), 28; https://doi.org/10.3390/md22010028 - 30 Dec 2023
Viewed by 1562
Abstract
NMR and MS/MS-based metabolomics of a cyanobacterial extract from Piti Bomb Holes, Guam, indicated the presence of unique enyne-containing halogenated fatty acid amides. We isolated three new compounds of this class, taveuniamides L-N (13), along with the previously [...] Read more.
NMR and MS/MS-based metabolomics of a cyanobacterial extract from Piti Bomb Holes, Guam, indicated the presence of unique enyne-containing halogenated fatty acid amides. We isolated three new compounds of this class, taveuniamides L-N (13), along with the previously reported taveuniamide F (4), which was the most abundant analog. The planar structures of the new compounds were established using 1D and 2D NMR as well as mass spectrometry. We established the configuration of this chemical class to be R at C-8 via Mosher’s analysis of 4 after reduction of the carboxamide group. Our biological investigations with 4 revealed that the compound binds to the cannabinoid receptor CNR1, acting as an antagonist/inverse agonist in the canonical G-protein signaling pathways. In selectivity profiling against 168 GPCR targets using the β-arrestin functional assay, we found that 4 antagonizes GPR119, NPSR1b, CCR9, CHRM4, GPR120, HTR2A, and GPR103, in addition to CNR1. Interestingly, 4 showed a 6.8-fold selectivity for CNR1 over CNR2. The binding mode of 4 to CNR1 was investigated using docking and molecular dynamics simulations with both natural and unnatural stereoisomers, revealing important CNR1 residues for the interaction and also providing a possible reasoning for the observed CNR1/CNR2 selectivity. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Graphical abstract

15 pages, 2185 KiB  
Article
High Structural Diversity of Aeruginosins in Bloom-Forming Cyanobacteria of the Genus Planktothrix as a Consequence of Multiple Recombination Events
by Elisabeth Entfellner, Kathrin B. L. Baumann, Christine Edwards and Rainer Kurmayer
Mar. Drugs 2023, 21(12), 638; https://doi.org/10.3390/md21120638 - 13 Dec 2023
Viewed by 1515
Abstract
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the [...] Read more.
Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Graphical abstract

13 pages, 1898 KiB  
Article
Metabolite Profile Characterization of Cyanobacterial Strains with Bioactivity on Lipid Metabolism Using In Vivo and In Vitro Approaches
by Tiago Ribeiro, Kristín Jónsdóttir, Rene Hernandez-Bautista, Natália Gonçalves Silva, Begoña Sánchez-Astráin, Afshin Samadi, Finnur F. Eiriksson, Margrét Thorsteinsdóttir, Siegfried Ussar and Ralph Urbatzka
Mar. Drugs 2023, 21(9), 498; https://doi.org/10.3390/md21090498 - 19 Sep 2023
Viewed by 1414
Abstract
Cyanobacteria have demonstrated their therapeutic potential for many human diseases. In this work, cyanobacterial extracts were screened for lipid reducing activity in zebrafish larvae and in fatty-acid-overloaded human hepatocytes, as well as for glucose uptake in human hepatocytes and ucp1 mRNA induction in [...] Read more.
Cyanobacteria have demonstrated their therapeutic potential for many human diseases. In this work, cyanobacterial extracts were screened for lipid reducing activity in zebrafish larvae and in fatty-acid-overloaded human hepatocytes, as well as for glucose uptake in human hepatocytes and ucp1 mRNA induction in murine brown adipocytes. A total of 39 cyanobacteria strains were grown and their biomass fractionated, resulting in 117 chemical fractions. Reduction of neutral lipids in zebrafish larvae was observed for 12 fractions and in the human hepatocyte steatosis cell model for five fractions. The induction of ucp1 expression in murine brown adipocytes was observed in six fractions, resulting in a total of 23 bioactive non-toxic fractions. All extracts were analyzed by untargeted UPLC-Q-TOF-MS mass spectrometry followed by multivariate statistical analysis to prioritize bioactive strains. The metabolite profiling led to the identification of two markers with lipid reducing activity in zebrafish larvae. Putative compound identification using mass spectrometry databases identified them as phosphatidic acid and aromatic polyketides derivatives—two compound classes, which were previously associated with effects on metabolic disorders. In summary, we have identified cyanobacterial strains with promising lipid reducing activity, whose bioactive compounds needs to be identified in the future. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Graphical abstract

14 pages, 2301 KiB  
Article
Barbamide Displays Affinity for Membrane-Bound Receptors and Impacts Store-Operated Calcium Entry in Mouse Sensory Neurons
by Andrea Hough, Connor Criswell, Asef Faruk, Jane E. Cavanaugh, Benedict J. Kolber and Kevin J. Tidgewell
Mar. Drugs 2023, 21(2), 110; https://doi.org/10.3390/md21020110 - 02 Feb 2023
Viewed by 1819
Abstract
Marine cyanobacteria are a rich source of bio-active metabolites that have been utilized as leads for drug discovery and pharmacological tools for basic science research. Here, we describe the re-isolation of a well-known metabolite, barbamide, from Curaçao on three different occasions and the [...] Read more.
Marine cyanobacteria are a rich source of bio-active metabolites that have been utilized as leads for drug discovery and pharmacological tools for basic science research. Here, we describe the re-isolation of a well-known metabolite, barbamide, from Curaçao on three different occasions and the characterization of barbamide’s biological interactions with targets of the mammalian nervous system. Barbamide was originally discovered as a molluscicidal agent from a filamentous marine cyanobacterium. In our hands, we found little evidence of toxicity against mammalian cell cultures. However, barbamide showed several affinities when screened for binding affinity for a panel of 45 receptors and transporters known to be involved in nociception and sensory neuron activity. We found high levels of binding affinity for the dopamine transporter, the kappa opioid receptor, and the sigma receptors (sigma-1 and sigma-2 also known as transmembrane protein 97; TMEM97). We tested barbamide in vitro in isolated sensory neurons from female mice to explore its functional impact on calcium flux in these cells. Barbamide by itself had no observable impact on calcium flux. However, barbamide enhanced the effect of the TRPV1 agonist capsaicin and enhanced store-operated calcium entry (SOCE) responses after depletion of intracellular calcium. Overall, these results demonstrate the biological potential of barbamide at sensory neurons with implications for future drug development projects surrounding this molecule. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Figure 1

24 pages, 970 KiB  
Article
Cosmetic Application of Cyanobacteria Extracts with a Sustainable Vision to Skincare: Role in the Antioxidant and Antiaging Process
by Janaína Morone, Graciliana Lopes, João Morais, Jorge Neves, Vítor Vasconcelos and Rosário Martins
Mar. Drugs 2022, 20(12), 761; https://doi.org/10.3390/md20120761 - 02 Dec 2022
Cited by 7 | Viewed by 3230
Abstract
Nature-based and sustainably sourced cosmetics have been dominating the area of skincare products worldwide. Due to their antioxidant and antiaging properties, compounds from cyanobacteria, such as carotenoids and phycobiliproteins, may replace synthetic ingredients in cosmetic formulations and may be used in products such [...] Read more.
Nature-based and sustainably sourced cosmetics have been dominating the area of skincare products worldwide. Due to their antioxidant and antiaging properties, compounds from cyanobacteria, such as carotenoids and phycobiliproteins, may replace synthetic ingredients in cosmetic formulations and may be used in products such as sunscreens, skincare creams, and makeup. In this study, we evaluated the potential of acetonic and aqueous extracts from cyanobacteria strains of the genera Cyanobium and Leptothoe and from strains within Synechococcales and Oscillatoriales orders, for use in cosmetics. Extractions were sequentially performed with acetone and water. Extracts were firstly analyzed for their toxicity to keratinocytes, fibroblasts, and endothelial cells (HaCAT, 3T3L1 and hCMEC/D3, respectively). The non-cytotoxic extracts were characterized in terms of total proteins, carotenoids, chlorophyll, phenols, phycobiliproteins, and analyzed for their antioxidant potential against the superoxide anion radical (O2•−), and for their ability to inhibit key enzymes associated with the skin aging process. Aqueous extracts were richer in total proteins and phycobiliproteins. The aqueous extracts of Synechococcales cyanobacterium LEGE 181157 and Synechococcales cyanobacterium LEGE 181150 showed the highest value for total proteins (760.81 and 695.25 μg BSA mL−1dry extract, respectively) and the best values regarding O2•− scavenging (IC50 = 63.24 and 112.18 μg mL−1dry extract, respectively) with a significant negative correlation observed (p < 0.01). Moreover, aqueous extracts of Synechococcales cyanobacterium LEGE 181150 and Synechococcales cyanobacterium LEGE 181157 inhibited hyaluronidase, (IC50 of 483.86 and 645.06 μg mL−1dry extract, respectively), with a significant negative correlation with total proteins (p < 0.05), pointing out the contribution of these compounds to the biological activities observed. Acetonic extracts were richer in carotenoids and phenols. Zeaxanthin and β-carotene were predominant among all strains, being present in higher amount in Cyanobium sp. LEGE 07175 (53.08 μg mg−1) and Leptothoe sp. LEGE 181156 (47.89 μg mg−1), respectively. The same strains also showed the highest values for collagenase inhibition at 750 μg mL−1dry extract (32.88 and 36.61%, respectively). Furthermore, Leptothoe sp. LEGE 181156 exhibited the lowest IC50 value for tyrosinase inhibition (465.92 μg mL−1dry extract) and Synechococcales cyanobacterium LEGE 181157 presented the best values for elastase inhibition (IC50 of 380.50 and IC25 of 51.43 μg mL−1dry extract). In general, cyanobacteria extracts demonstrated potential for being used for antiaging purposes, with aqueous extracts being more efficient at free radicals scavenging and acetonic ones at avoiding degradation of dermal matrix components. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 3975 KiB  
Review
Review of Marine Cyanobacteria and the Aspects Related to Their Roles: Chemical, Biological Properties, Nitrogen Fixation and Climate Change
by Hesham R. El-Seedi, Mohamed F. El-Mallah, Nermeen Yosri, Muaaz Alajlani, Chao Zhao, Muhammad A. Mehmood, Ming Du, Hammad Ullah, Maria Daglia, Zhiming Guo, Shaden A. M. Khalifa and Qiyang Shou
Mar. Drugs 2023, 21(8), 439; https://doi.org/10.3390/md21080439 - 03 Aug 2023
Cited by 2 | Viewed by 4720
Abstract
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper [...] Read more.
Marine cyanobacteria are an ancient group of photosynthetic microbes dating back to 3.5 million years ago. They are prolific producers of bioactive secondary metabolites. Over millions of years, natural selection has optimized their metabolites to possess activities impacting various biological targets. This paper discusses the historical and existential records of cyanobacteria, and their role in understanding the evolution of marine cyanobacteria through the ages. Recent advancements have focused on isolating and screening bioactive compounds and their respective medicinal properties, and we also discuss chemical property space and clinical trials, where compounds with potential pharmacological effects, such as cytotoxicity, anticancer, and antiparasitic properties, are highlighted. The data have shown that about 43% of the compounds investigated have cytotoxic effects, and around 8% have anti-trypanosome activity. We discussed the role of different marine cyanobacteria groups in fixing nitrogen percentages on Earth and their outcomes in fish productivity by entering food webs and enhancing productivity in different agricultural and ecological fields. The role of marine cyanobacteria in the carbon cycle and their outcomes in improving the efficiency of photosynthetic CO2 fixation in the chloroplasts of crop plants, thus enhancing the crop plant’s yield, was highlighted. Ultimately, climate changes have a significant impact on marine cyanobacteria where the temperature rises, and CO2 improves the cyanobacterial nitrogen fixation. Full article
(This article belongs to the Special Issue Bioactive Product from Marine Cyanobacteria)
Show Figures

Figure 1

Back to TopTop