Feature Review Papers on Automation Systems

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Automation and Control Systems".

Deadline for manuscript submissions: closed (31 December 2022) | Viewed by 11598

Special Issue Editors


E-Mail Website
Guest Editor
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
Interests: robotics and mechatronics; high performance parallel robotic machine development; sustainable/green manufacturing systems; micro/nano manipulation and MEMS devices (sensors); micro mobile robots and control of multi-robot cooperation; intelligent servo control system for the MEMS based high-performance micro-robot; web-based remote manipulation; rehabilitation robot and rescue robot
Special Issues, Collections and Topics in MDPI journals

grade E-Mail Website
Guest Editor
School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
Interests: systems and control; intelligent systems; hybrid systems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Automation systems play a very important role in the field of mechanical engineering, which includes the use of various equipment and control systems such as machinery, processes in factories, boilers, heat-treating ovens, and the steering and stabilization of ships, aircraft, vehicles and other applications.

The goal of this Special Issue is to explore current trends in automation systems in mechanical engineering by collecting feature reviews by leading scientists and industrial experts. Topics of interest include, but are not limited to:

  • AI/robotics/autonomous systems;
  • Intelligent mechatronics devices;
  • Vehicle control applications;
  • Industrial automation;
  • Electronic automation;
  • Control theory and application;
  • Smart manufacturing systems;
  • Industrial informatics and digital twins;
  • Methodologies for digital twins of automation systems;
  • Digital-twin-driven approaches for automation systems;
  • Compliant mechanisms.

Prof. Dr. Dan Zhang
Prof. Dr. Peng Shi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • autonomous systems
  • mechatronics
  • industrial automation
  • vehicle control
  • smart manufacture
  • robotics
  • industrial informatics
  • digital twins
  • novel flexure hinges for compliant mechanisms

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Review

31 pages, 4118 KiB  
Review
Intelligent Mechatronics in the Measurement, Identification, and Control of Water Level Systems: A Review and Experiment
by Paweł Olejnik and Jan Awrejcewicz
Machines 2022, 10(10), 960; https://doi.org/10.3390/machines10100960 - 20 Oct 2022
Cited by 2 | Viewed by 3488
Abstract
In this paper, a unique overview of intelligent machines and mathematical methods designed and developed to measure and to control the water level in industrial or laboratory setups of coupled and cascaded configurations of tanks is made. A systematized and concise overview is [...] Read more.
In this paper, a unique overview of intelligent machines and mathematical methods designed and developed to measure and to control the water level in industrial or laboratory setups of coupled and cascaded configurations of tanks is made. A systematized and concise overview is made of the mechatronic systems used in the measurement, identification, and control of the water level enumerates, the software used in the associated scientific research, modern techniques and sensors, and mathematical models, as well as analysis and control strategies. The broad overview of applications of the last decade is finalized by a proposition of a control system that is based on a parameter estimation of a new experimental setup, an integral dynamic model of the system, a modern mechatronic machine such as the Watson-Marlow peristaltic pump, the Anderson Negele sensor of level, the NI cRIO-9074 controller, and LabVIEW virtual instrumentation. The results of real experimental tests, exploiting a hybrid proportional control, being improved by a numerically predicted water level, are obtained using a few tools, i.e., the static characteristics, the classical step response, and a new pyramid-shaped step function of a discontinuous path-following reference input, being introduced to evaluate the effectiveness and robustness of the regulation of the level height. Full article
(This article belongs to the Special Issue Feature Review Papers on Automation Systems)
Show Figures

Figure 1

17 pages, 6208 KiB  
Review
Tracked Locomotion Systems for Ground Mobile Robots: A Review
by Luca Bruzzone, Shahab Edin Nodehi and Pietro Fanghella
Machines 2022, 10(8), 648; https://doi.org/10.3390/machines10080648 - 04 Aug 2022
Cited by 26 | Viewed by 5290
Abstract
The paper discusses the state-of-the-art of locomotion systems for ground mobile robots comprising tracks. Tracked locomotion, due to the large contact surface with the ground, is particularly suitable for tackling soft, yielding, and irregular terrains, but is characterized by lower speed and energy [...] Read more.
The paper discusses the state-of-the-art of locomotion systems for ground mobile robots comprising tracks. Tracked locomotion, due to the large contact surface with the ground, is particularly suitable for tackling soft, yielding, and irregular terrains, but is characterized by lower speed and energy efficiency than wheeled locomotion, and lower obstacle-climbing capability than legged locomotion. Therefore, in recent years academic and industrial researchers have designed a wide variety of hybrid solutions, combining tracks with legs and wheels. The paper proposes three possible parallel taxonomies, based on body architecture, track profile, and track type, to help designers select the most suitable architecture on the basis of the operative necessities. Moreover, modeling, simulation, and design methodologies for tracked ground mobile robots are recalled. Full article
(This article belongs to the Special Issue Feature Review Papers on Automation Systems)
Show Figures

Figure 1

23 pages, 2549 KiB  
Review
A Review of Key Technologies for Friction Nonlinearity in an Electro-Hydraulic Servo System
by Bingwei Gao, Wei Shen, Lintao Zheng, Wei Zhang and Hongjian Zhao
Machines 2022, 10(7), 568; https://doi.org/10.3390/machines10070568 - 14 Jul 2022
Cited by 7 | Viewed by 2013
Abstract
In a high-precision servo system, the nonlinear friction link is the key factor affecting the system performance. Reasonable solving of the friction link in servo systems has become a focus of current research. This paper summarizes the friction nonlinearity that affects the control [...] Read more.
In a high-precision servo system, the nonlinear friction link is the key factor affecting the system performance. Reasonable solving of the friction link in servo systems has become a focus of current research. This paper summarizes the friction nonlinearity that affects the control performance of servo systems. First, the characteristics of friction are summarized, and the advantages and disadvantages of typical friction models in recent years are analyzed. Subsequently, existing friction model parameter identification methods are introduced and evaluated. On this basis, the development level of the friction nonlinear control strategy is analyzed from three aspects: friction model-based control, friction model-free control, and compound control. Finally, the objective advantages and disadvantages of the existing technology are summarized, and the future development direction of the friction model and selection reference for the nonlinear friction control strategy are comprehensively discussed. Full article
(This article belongs to the Special Issue Feature Review Papers on Automation Systems)
Show Figures

Figure 1

Back to TopTop