Project Collection "Feature Papers in Microbiology"

A project collection of Life (ISSN 2075-1729). This project collection belongs to the section "Microbiology".

Papers displayed on this page all arise from the same project. Editorial decisions were made independently of project staff and handled by the Editor-in-Chief or qualified Editorial Board members.

Viewed by 33121

Editors

Experimental Laboratory of Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, RS, Brazil
Interests: microbiome; molecular microbiology; metagenomics; omics; next-generation sequencing; microbial ecology; bioinformatics; biotechnology; system biology; grand challenges
* Section Editor-in-Chief
Special Issues, Collections and Topics in MDPI journals

Project Overview

Dear colleagues,

Microbiology has never been more exciting or important than it is today. Powerful new technologies, including high-throughput sequencing (also known as next-generation sequencing), as well as all the recent advances in omics technologies, nanotechnology, and massive computational capabilities, have converged to make it possible for scientists to delve into inquiries that many thought would never be approachable. As a result, hardly a day goes by without another discovery that points to the fundamental importance of microbes in all aspects of our life. As never before, advances in microbiology hold tremendous promise for surmounting many of the grand challenges currently faced by our society, with the ongoing coronavirus pandemic (COVID-19) as one of the best examples.

This Special Issue aims to collect articles in cutting-edge fields of microbiology, with a special focus on those which can contribute towards solutions for the major global ecological, environmental, and health challenges using innovative ideas and rigorous scientific methodologies. In the case of review articles, they should provide syntheses of ideas and have the potential to challenge existing paradigms and create new frameworks that will advance our understanding of the microbial world. We encourage Editorial Board Members of the Microbiology section of life to contribute feature papers which reflect the latest progress in their research field, or to invite leading experts to do so.

Prof. Dr. Milan Kolar
Prof. Dr. Pabulo H. Rampelotto
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Life is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • antimicrobials
  • agricultural microbiology
  • biomining and bioremediation
  • clinical microbiology
  • environmental microbiology
  • food microbiology
  • geomicrobiology
  • host–microbe interaction
  • industrial microbiology
  • marine microbiology
  • microbial biochemistry
  • microbial biofilms
  • microbial biofuel and bioenergy
  • microbial biotechnology
  • microbial ecology
  • microbial evolution
  • microbial genetics
  • microbial metabolism
  • microbial omics
  • microbial pathogenesis
  • microbial physiology
  • microbial symbioses
  • pharmaceutical microbiology
  • probiotics, prebiotics and synbiotics
  • space microbiology
  • systems microbiology
  • terrestrial microbiology
  • veterinary microbiology

Published Papers (23 papers)

2023

Jump to: 2022

16 pages, 1624 KiB  
Systematic Review
Why Does Your Uterus Become Malignant? The Impact of the Microbiome on Endometrial Carcinogenesis
Life 2023, 13(12), 2269; https://doi.org/10.3390/life13122269 - 28 Nov 2023
Viewed by 362
Abstract
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation [...] Read more.
The aim of this review was to describe the uterine microbiome composition that has been analyzed so far and describe potential pathways in the carcinogenesis of the endometrium. The microbiome in the uterine environment is involved in apoptosis and proliferation during the menstruation cycle, pregnancy maintenance, and immune system support. However, bacteria in the uterus could stimulate inflammation, which when chronic results in malignancy. An altered gut microbiota initiates an inflammatory response through microorganism-associated molecular patterns, which leads to intensified steroidogenesis in the ovaries and cancers. Moreover, intestinal bacteria secreting the enzyme β-glucuronidase may increase the level of circulating estrogen and, as a result, be influential in gynecological cancers. Both the uterine and the gut microbiota play a pivotal role in immune modulation, which is why there is a demand for further investigation from both the diagnostic and the therapeutic perspectives. Full article
Show Figures

Figure 1

14 pages, 4461 KiB  
Article
Biocontrol Potential of Serratia Marcescens (B8) and Bacillus sp. (B13) Isolated from Urban Mangroves in Raposa, Brazil
Life 2023, 13(10), 2036; https://doi.org/10.3390/life13102036 - 11 Oct 2023
Viewed by 609
Abstract
This study analyzed the antifungal potential of 16 bacterial strains isolated from mangrove sediment. Bacterial selection was conducted in a solid medium. This was followed by the production and extraction of metabolites using ethyl acetate to evaluate chitinase production, antifungal activity, and toxicity [...] Read more.
This study analyzed the antifungal potential of 16 bacterial strains isolated from mangrove sediment. Bacterial selection was conducted in a solid medium. This was followed by the production and extraction of metabolites using ethyl acetate to evaluate chitinase production, antifungal activity, and toxicity toward Allium cepa and Tenebrio molitor. Bacterial strains B8, B11, and B13 produced the largest inhibition halos (>30 mm) toward Fusarium solani, Fusarium oxysporum, and Rhizoctonia solani fungi. Strains B1, B3, B6, B8, B11, B13, B14, and B16 produced chitinases. In assays using liquid media, B8 and B13 produced the largest inhibition halos. Exposing the fungal inocula to metabolic extracts of strains B6, B8, B11, B13, B14, B15, and B16 caused micromorphological alterations in the inocula, culminating in the inhibition of R. solani sporulation and spore germination. Toxicity tests using Allium cepa and Tenebrio molitor revealed that the metabolites showed low toxicity. Six of the bacterial strains were molecularly identified to species levels, and a further two to genus level. These included Serratia marcescens (B8), which exhibited activity in all tests. Mangroves provide a useful resource for the isolation of microorganisms for biocontrol. Among the isolates, Serratia marcescens and Bacillus spp. showed the greatest potential to produce metabolites for use as biocontrol agents in agriculture. Full article
Show Figures

Figure 1

22 pages, 3698 KiB  
Systematic Review
The Role of Bifidobacterium in COVID-19: A Systematic Review
Life 2023, 13(9), 1847; https://doi.org/10.3390/life13091847 - 31 Aug 2023
Cited by 1 | Viewed by 1461
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using “Bifidobacterium” and “COVID-19” or “SARS-CoV-2” as key terms to assess the [...] Read more.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, mainly causes respiratory and intestinal symptoms and changes in the microbiota of patients. We performed a systematic search in major databases using “Bifidobacterium” and “COVID-19” or “SARS-CoV-2” as key terms to assess the relationship of the genus to COVID-19. After the selection steps, 25 articles were analyzed. Of these, eighteen were observational, and seven were interventional articles that evaluated the use of Bifidobacterium alone or in mix as probiotics for additional treatment of patients with COVID-19. All stages and severities were contemplated, including post-COVID-19 patients. Overall, Bifidobacterium was associated with both protective effects and reduced abundance in relation to the disease. The genus has been found to be abundant in some cases and linked to disease severity. The studies evaluating the use of Bifidobacterium as probiotics have demonstrated the potential of this genus in reducing symptoms, improving pulmonary function, reducing inflammatory markers, alleviating gastrointestinal symptoms, and even contributing to better control of mortality. In summary, Bifidobacterium may offer protection against COVID-19 through its ability to modulate the immune response, reduce inflammation, compete with pathogenic microbes, and maintain gut barrier function. The findings provide valuable insights into the relationship between the disease and the genus Bifidobacterium, highlighting the potential of microbiota modulation in the treatment of COVID-19. Full article
Show Figures

Figure 1

15 pages, 2592 KiB  
Article
Demodex Species and Culturable Microorganism Co-Infestations in Patients with Blepharitis
Life 2023, 13(9), 1827; https://doi.org/10.3390/life13091827 - 29 Aug 2023
Viewed by 757
Abstract
We aimed to determine the prevalence of Demodex spp. and bacterial infection in patients with blepharitis and also to investigate the relationship between culturable microorganisms and Demodex spp. in this study. The study included patients diagnosed with blepharitis (n = 128) and [...] Read more.
We aimed to determine the prevalence of Demodex spp. and bacterial infection in patients with blepharitis and also to investigate the relationship between culturable microorganisms and Demodex spp. in this study. The study included patients diagnosed with blepharitis (n = 128) and volunteers without ocular problems (n = 113). Eyelash sampling was performed by epilating eight lashes, which were then tested for Demodex spp. using a light microscope. The examination consisted of assessing the patient’s vision with and without ocular correction and tonus in both eyes and a careful examination of the anterior segment of both eyes. Bacterial identification was performed based on morphological, physiological, and biochemical methods. The prevalence of Demodex spp. was 8.0% in patients from the control group and all patients with blepharitis. Isolated forms of Demodex spp. were detected in all infested patients in the control group and in 58% of patients with blepharitis. A total of 35% of patients with blepharitis had from three to nine forms of Demodex spp., and 7% of patients with blepharitis had more than 10 mites in every field of vision. We found a statistically significant relationship between Demodex spp. infestation and the occurrence of eye dryness and sensations of burning and tearing, redness of the conjunctiva, feeling of a foreign body, loss of eyelashes, Meibomian gland dysfunction, and cylindrical dandruff. There were statistically significant relationships between Demodex sp. infestation and the presence of hyperopia, Meibomian cysts, chronic eyelid inflammation, and the use of eyeglasses. There was also a statistically significant relationship between the occurrence of Demodex spp. and seborrheic dermatitis and diabetes mellitus. Culturable microorganisms of the ocular surface were found in 8.7% of participants who were uninfested and in all patients infested with D. folliculorum. We isolated Staphylococcus aureus, Acinetobacter baumannii, Streptococcus pneumoniae, Klebsiella oxytoca, and Bacillus spp. from the conjunctival sac only in patients infested with D. folliculorum. This indicates an increased probability of colonization by pathogenic bacteria in patients with demodicosis. Therefore, patients infested with D. folliculorum should undergo a microbiological examination of conjunctival swabs. Full article
Show Figures

Figure 1

7 pages, 686 KiB  
Opinion
The Hypothesis of a “Living Pulse” in Cells
Life 2023, 13(7), 1506; https://doi.org/10.3390/life13071506 - 04 Jul 2023
Viewed by 664
Abstract
Motility is a great biosignature and its pattern is characteristic for specific microbes. However, motion does also occur within the cell by the myriads of ongoing processes within the cell and the exchange of gases and nutrients with the outside environment. Here, we [...] Read more.
Motility is a great biosignature and its pattern is characteristic for specific microbes. However, motion does also occur within the cell by the myriads of ongoing processes within the cell and the exchange of gases and nutrients with the outside environment. Here, we propose that the sum of these processes in a microbial cell is equivalent to a pulse in complex organisms and suggest a first approach to measure the “living pulse” in microorganisms. We emphasize that if a “living pulse” can be shown to exist, it would have far-reaching applications, such as for finding life in extreme environments on Earth and in extraterrestrial locations, as well as making sure that life is not present where it should not be, such as during medical procedures and in the food processing industry. Full article
Show Figures

Figure 1

8 pages, 922 KiB  
Brief Report
Real-Life Assessment of the Ability of an Ultraviolet C Lamp (SanificaAria 200, Beghelli) to Inactivate Airborne Microorganisms in a Healthcare Environment
Life 2023, 13(5), 1221; https://doi.org/10.3390/life13051221 - 20 May 2023
Cited by 1 | Viewed by 898
Abstract
Airborne-mediated microbial diseases represent one of the major challenges to public health. Ultraviolet C radiation (UVC) is among the different sanitation techniques useful to reduce the risk of infection in healthcare facilities. Previous studies about the germicidal activity of UVC were mainly performed [...] Read more.
Airborne-mediated microbial diseases represent one of the major challenges to public health. Ultraviolet C radiation (UVC) is among the different sanitation techniques useful to reduce the risk of infection in healthcare facilities. Previous studies about the germicidal activity of UVC were mainly performed in artificial settings or in vitro models. This study aimed to assess the sanitizing effectiveness of a UVC device (SanificaAria 200, Beghelli, Valsamoggia, Bologna, Italy) in ‘real-life’ conditions by evaluating its ability to reduce microbial loads in several hospital settings during routine daily activities. The efficacy of the UVC lamp in reducing the bacterial component was evaluated by microbial culture through the collection of air samples in different healthcare settings at different times (30 min–24 h) after turning on the device. To assess the anti-viral activity, air samplings were carried out in a room where a SARS-CoV-2-positive subject was present. The UVC device showed good antibacterial properties against a wide range of microbial species after 6 h of activity. It was effective against possible multi-drug resistant microorganisms (e.g., Pseudomonas spp., Acinetobacter spp.) and spore-forming bacteria (e.g., Bacillus spp.). In addition, the UVC lamp was able to inactivate SARS-CoV-2 in just one hour. Thanks to its effectiveness and safety, SanificaAria 200 could be useful to inactivate airborne pathogens and reduce health risks. Full article
Show Figures

Figure 1

12 pages, 1180 KiB  
Article
Comparative Susceptibility of Pathogenic Methicillin-Resistant and Methicillin-Susceptible Staphylococcus pseudintermedius to Empirical Co-Trimoxazole for Canine Pyoderma
Life 2023, 13(5), 1210; https://doi.org/10.3390/life13051210 - 18 May 2023
Viewed by 1293
Abstract
The prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) that causes pyoderma has been gradually shifting, according to many surveillance studies, with annual changes. The empirical co-trimoxazole regimen remains interesting, but research on co-trimoxazole susceptibility to MRSP is limited. The objective of this study was [...] Read more.
The prevalence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) that causes pyoderma has been gradually shifting, according to many surveillance studies, with annual changes. The empirical co-trimoxazole regimen remains interesting, but research on co-trimoxazole susceptibility to MRSP is limited. The objective of this study was to evaluate the susceptibility of co-trimoxazole to canine pyoderma MRSP isolates. Sixty isolates of S. pseudintermedius were identified as 16 MRSP and 44 methicillin-susceptible S. pseudintermedius (MSSP) using an oxacillin disk diffusion test and VITEK 2 system with VITEK GP card. Using the VITEK 2 system with a VITEK AST-GP81 card, the susceptibility rates of MRSP (15.00%) and MSSP (35.00%) to co-trimoxazole was observed. The median MIC of co-trimoxazole on MSSP (median, ≤10; IQR, 10–320) was lower than that of MRSP (median, ≥320; IQR, 10–320) (p = 0.5889, Mann-Whitney test). Percent attainment of PK/PD targets in MRSP (q 12 h, 43.75; q 8 h, 43.75) were lower than that of MSSP (q 12 h, 52.27; q 8 h, 52.27) (p = 0.7710). These findings show the moderately phenotypic co-trimoxazole susceptibilities of both MRSP and MSSP. Further study is required to develop clinical trials examining the use of co-trimoxazole in dogs with pyoderma. Full article
Show Figures

Figure 1

13 pages, 2845 KiB  
Article
Molecular Characterization of Influenza A/H3N2 Virus Isolated from Indonesian Hajj and Umrah Pilgrims 2013 to 2014
Life 2023, 13(5), 1100; https://doi.org/10.3390/life13051100 - 27 Apr 2023
Viewed by 983
Abstract
The Hajj and Umrah are the annual mass gatherings of Muslims in Saudi Arabia and increase the transmission risk of acute respiratory infection. This study describes influenza infection among pilgrims upon arrival in Indonesia and the genetic characterization of imported influenza A/H3N2 virus. [...] Read more.
The Hajj and Umrah are the annual mass gatherings of Muslims in Saudi Arabia and increase the transmission risk of acute respiratory infection. This study describes influenza infection among pilgrims upon arrival in Indonesia and the genetic characterization of imported influenza A/H3N2 virus. In total, 251 swab samples with influenza-like illness were tested using real-time RT-PCR for Middle East Respiratory Syndrome Coronavirus (MERS-CoV) and influenza viruses. Complete sequences of influenza A/H3N2 HA and NA genes were obtained using DNA sequencing and plotted to amino acid and antigenicity changes. Phylogenetic analysis was performed using a neighbour-joining method including the WHO vaccine strains and influenza A/H3N2 as references. The real-time RT-PCR test detected 100 (39.5%) samples positive with influenza with no positivity of MERS-CoV. Mutations in the HA gene were mainly located within the antigenic sites A, B, and D, while for the NA gene, no mutations related to oseltamivir resistance were observed. Phylogenetic analysis revealed that these viruses grouped together with clades 3C.2 and 3C.3; however, they were not closely grouped with the WHO-recommended vaccine (clades 3C.1). Sequences obtained from Hajj and Umrah pilgrims were also not grouped together with viruses from Middle East countries but clustered according to years of collection. This implies that the influenza A/H3N2 virus mutates continually across time. Full article
Show Figures

Figure 1

11 pages, 1853 KiB  
Communication
Understanding the Diurnal Oscillation of the Gut Microbiota Using Microbial Culture
Life 2023, 13(3), 831; https://doi.org/10.3390/life13030831 - 19 Mar 2023
Viewed by 1169
Abstract
The composition of the gut microbiota oscillates according to the light–dark cycle. However, the existing literature demonstrates these oscillations only by molecular methods. Microbial cultures are an interesting method for studying metabolically active microorganisms. In this work, we aimed to understand the diurnal [...] Read more.
The composition of the gut microbiota oscillates according to the light–dark cycle. However, the existing literature demonstrates these oscillations only by molecular methods. Microbial cultures are an interesting method for studying metabolically active microorganisms. In this work, we aimed to understand the diurnal oscillation of the intestinal microbiota in Wistar male rats through microbial culture analysis. Over a 24 h period, three animals were euthanized every 6 h. Intestinal segments were dissected immediately after euthanasia and diluted in phosphate-buffered saline (PBS) for plating in different culture media. The CFU/mL counts in feces samples cultured in the Brucella medium were significantly higher at ZT0, followed by ZT6, ZT18, and ZT12 (p = 0.0156), which demonstrated the diurnal oscillation of metabolically active anaerobic bacteria every 6 h using microbial culture. In addition, quantitative differences were demonstrated in anaerobic bacteria and fungi in different gastrointestinal tract tissues. Full article
Show Figures

Figure 1

12 pages, 1187 KiB  
Review
Host–Parasite Coevolution in Primates
Life 2023, 13(3), 823; https://doi.org/10.3390/life13030823 - 17 Mar 2023
Viewed by 1754
Abstract
Organisms adapt to their environment through evolutionary processes. Environments consist of abiotic factors, but also of other organisms. In many cases, two or more species interact over generations and adapt in a reciprocal way to evolutionary changes in the respective other species. Such [...] Read more.
Organisms adapt to their environment through evolutionary processes. Environments consist of abiotic factors, but also of other organisms. In many cases, two or more species interact over generations and adapt in a reciprocal way to evolutionary changes in the respective other species. Such coevolutionary processes are found in mutualistic and antagonistic systems, such as predator–prey and host–parasite (including pathogens) relationships. Coevolution often results in an “arms race” between pathogens and hosts and can significantly affect the virulence of pathogens and thus the severity of infectious diseases, a process that we are currently witnessing with SARS-CoV-2. Furthermore, it can lead to co-speciation, resulting in congruent phylogenies of, e.g., the host and parasite. Monkeys and other primates are no exception. They are hosts to a large number of pathogens that have shaped not only the primate immune system but also various ecological and behavioral adaptions. These pathogens can cause severe diseases and most likely also infect multiple primate species, including humans. Here, we briefly review general aspects of the coevolutionary process in its strict sense and highlight the value of cophylogenetic analyses as an indicator for coevolution. Full article
Show Figures

Figure 1

16 pages, 1869 KiB  
Article
Antifouling Potential of Ethyl Acetate Extract of Marine Bacteria Pseudomonas aeruginosa Strain RLimb
Life 2023, 13(3), 802; https://doi.org/10.3390/life13030802 - 15 Mar 2023
Cited by 1 | Viewed by 1209
Abstract
Biofouling is defined as the excessive colonization process of epibiotic organisms, ranging from microfoulers to macrofoulers, on any submerged surface in water. Previous research has attempted to explore the antifouling activity of bacterial isolates due to the biofouling problems occurring worldwide. One solution [...] Read more.
Biofouling is defined as the excessive colonization process of epibiotic organisms, ranging from microfoulers to macrofoulers, on any submerged surface in water. Previous research has attempted to explore the antifouling activity of bacterial isolates due to the biofouling problems occurring worldwide. One solution is to inhibit the early stage of fouling using secondary metabolites produced by marine bacteria. This study aims to determine the antifouling activities of the marine microorganism P. aeruginosa and to characterize the bacteria isolated as a potential anti-biofouling agent. The bacterial isolate was cultured and isolated on a media culture. The bacteria culture extract was extracted using ethyl acetate and concentrated prior to the bioassay method. It was screened for antibacterial activities against Gram-positive and Gram-negative bacteria, such as Bacillus cereus, Streptococcus uberis, Pseudomonas sp., and Vibrio parahaemolyticus, using the disk diffusion technique. The extract was investigated to verify its bioactivity in the prevention of biofilm formation following the crystal violet assay and aquarium test. The results indicated the inhibition of activity through biofilm formation, with the highest percentage at 83% of biofilm inhibition at a concentration of 0.1563 mg/mL. The bacterial isolate at a concentration of 5% showed the highest reduction in bacteria colonies in the aquarium test (161.8 × 103 CFU/mL compared to 722.5 × 103 CFU/mL for the blank sample). The bacterial isolate was characterized through phenotypic and genotypic tests for species identification. It was identified as a Gram-stain-negative, aerobic, and long-rod-shaped bacteria, designated as RLimb. Based on the 16S rDNA gene sequencing analysis, RLimb was identified as Pseudomonas aeruginosa (accession number: OP522351), exhibiting a similarity of 100% to the described neighbor P. aeruginosa strain DSM 50071. These results indicated that these isolated bacteria can potentially be used as a substitute for toxic antifoulants to prevent the formation of microfoulers. Full article
Show Figures

Figure 1

21 pages, 1875 KiB  
Article
Carbon Fixation in the Chemolithoautotrophic Bacterium Aquifex aeolicus Involves Two Low-Potential Ferredoxins as Partners of the PFOR and OGOR Enzymes
Life 2023, 13(3), 627; https://doi.org/10.3390/life13030627 - 23 Feb 2023
Cited by 1 | Viewed by 1342
Abstract
Aquifex aeolicus is a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO2 via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of [...] Read more.
Aquifex aeolicus is a microaerophilic hydrogen- and sulfur -oxidizing bacterium that assimilates CO2 via the reverse tricarboxylic acid cycle (rTCA). Key enzymes of this pathway are pyruvate:ferredoxin oxidoreductase (PFOR) and 2-oxoglutarate:ferredoxin oxidoreductase (OGOR), which are responsible, respectively, for the reductive carboxylation of acetyl-CoA to pyruvate and of succinyl-CoA to 2-oxoglutarate, two energetically unfavorable reactions that require a strong reduction potential. We have confirmed, by biochemistry and proteomics, that A. aeolicus possesses a pentameric version of these enzyme complexes ((αβγδε)2) and that they are highly abundant in the cell. In addition, we have purified and characterized, from the soluble fraction of A. aeolicus, two low redox potential and oxygen-stable [4Fe-4S] ferredoxins (Fd6 and Fd7, E0 = −440 and −460 mV, respectively) and shown that they can physically interact and exchange electrons with both PFOR and OGOR, suggesting that they could be the physiological electron donors of the system in vivo. Shotgun proteomics indicated that all the enzymes assumed to be involved in the rTCA cycle are produced in the A. aeolicus cells. A number of additional enzymes, previously suggested to be part of a putative partial Wood-Ljungdahl pathway used for the synthesis of serine and glycine from CO2 were identified by mass spectrometry, but their abundance in the cell seems to be much lower than that of the rTCA cycle. Their possible involvement in carbon assimilation is discussed. Full article
Show Figures

Figure 1

18 pages, 2927 KiB  
Article
Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus
Life 2023, 13(2), 558; https://doi.org/10.3390/life13020558 - 16 Feb 2023
Cited by 2 | Viewed by 1117
Abstract
High broth viscosity due to the accumulation of hyaluronic acid (HA) causes a limited yield of HA. It is a major problem of HA production using Streptococcus zooepidemicus. Extractive fermentation via in situ product recovery (ISPR) was utilized to enhance the HA [...] Read more.
High broth viscosity due to the accumulation of hyaluronic acid (HA) causes a limited yield of HA. It is a major problem of HA production using Streptococcus zooepidemicus. Extractive fermentation via in situ product recovery (ISPR) was utilized to enhance the HA production. Resins from Amberlite: IRA400 Cl; IRA900 Cl; IRA410 Cl; IRA402 Cl; and IRA67 were tested for the HA adsorption. IRA67 showed high adsorption capacity on HA. The study of the adsorption via a 2 L stirred tank bioreactor of S. zooepidemicus fermentation was investigated to elucidate the adsorption of HA onto IRA67 in dispersed and integrated internal column systems. The application of a dispersed IRA67 improved the HA production compared to the fermentation without resin addition by 1.37-fold. The HA production was further improved by 1.36-fold with an internal column (3.928 g/L) over that obtained with dispersed IRA67. The cultivation with an internal column shows the highest reduction of viscosity value after the addition of IRA67 resin: from 58.8 to 23.7 (mPa·s), suggesting the most effective ISPR of HA. The improved biosynthesis of HA indicated that an extractive fermentation by ISPR adsorption is effective and may streamline the HA purification. Full article
Show Figures

Figure 1

11 pages, 6771 KiB  
Article
Sugarcane Wax Metabolites and Their Toxicity to Silkworms
Life 2023, 13(2), 286; https://doi.org/10.3390/life13020286 - 19 Jan 2023
Viewed by 923
Abstract
Sugarcane wax has the potential to be utilized as a novel natural insecticide, which could help to reduce the large yield losses caused by agricultural pests. By employing the gas chromatography–mass spectrometry (GC-MS) approach, we conducted a study to analyze the composition of [...] Read more.
Sugarcane wax has the potential to be utilized as a novel natural insecticide, which could help to reduce the large yield losses caused by agricultural pests. By employing the gas chromatography–mass spectrometry (GC-MS) approach, we conducted a study to analyze the composition of epicuticular wax from the rind of the sugarcane variety YT71210. A total of 157 metabolites, categorized into 15 classes, were identified, with naphthalene, a metabolite with insect-resistant properties, being the most prevalent. The feeding trial experiment suggested that sugarcane wax is toxic to silkworms by impacting the internal organs. Intestinal microbial diversity analysis suggested that the abundance of Enterococcus genus was significantly increased in both ordure and gut of silkworm after wax treatment. The results indicated that the feeding of wax has an adverse effect on the gut microbial composition of silkworms. Our findings lay a foundation for the efficacy of sugarcane waxes as a valuable natural insecticide and for the prediction of promising sugarcane varieties with insect resistance. Full article
Show Figures

Figure 1

20 pages, 2729 KiB  
Article
Taxonomic Assignment-Based Genome Reconstruction from Apical Periodontal Metagenomes to Identify Antibiotic Resistance and Virulence Factors
Life 2023, 13(1), 194; https://doi.org/10.3390/life13010194 - 09 Jan 2023
Cited by 1 | Viewed by 1375
Abstract
Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and [...] Read more.
Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin. Full article
Show Figures

Figure 1

2022

Jump to: 2023

13 pages, 701 KiB  
Article
Resistance to Some New Drugs and Prevalence of ESBL- and MBL-Producing Enterobacteriaceae Uropathogens Isolated from Diabetic Patients
Life 2022, 12(12), 2125; https://doi.org/10.3390/life12122125 - 16 Dec 2022
Cited by 3 | Viewed by 1324
Abstract
Diabetes is a leading non-communicable disease and a risk factor for relapsing infections. The current study was aimed at investigating the prevalence and antibiotic susceptibility of carbapenem-resistant (CR) uropathogens of the family Enterobacteriaceae in diabetic patients. The data of 910 bacterial isolates was [...] Read more.
Diabetes is a leading non-communicable disease and a risk factor for relapsing infections. The current study was aimed at investigating the prevalence and antibiotic susceptibility of carbapenem-resistant (CR) uropathogens of the family Enterobacteriaceae in diabetic patients. The data of 910 bacterial isolates was collected from diagnostic laboratories during January 2018 to December 2018. The bacterial isolates were identified using traditional methods including colonial characteristics, biochemical tests, and API (20E). Antimicrobial susceptibility and phenotypic characterization of ESBL, MBLs, and KPC was determined by utilizing CLSI recommended methods. The phenotypically positive isolates were further analyzed for resistance-encoding genes by manual PCR and Check-MDR CT103XL microarray. Susceptibility to colistin and cefiderocol was tested in accordance with CLSI guidelines. The data revealed that most of the patients were suffering from type 2 diabetes for a duration of more than a year and with uncontrolled blood sugar levels. Escherichia coli and Klebsiella pneumoniae were the most frequently encountered pathogens, followed by Enterobacter cloacae and Proteus mirabilis. More than 50% of the isolates showed resistance to 22 antibiotics, with the highest resistance (>80%) against tetracycline, ampicillin, and cefazolin. The uropathogens showed less resistance to non-β-lactam antibiotics, including amikacin, fosfomycin, and nitrofurantoin. In the phenotypic assays, 495 (54.3%) isolates were found to be ESBL producers, while ESBL-TEM and -PER were the most prevalent ESBL types. The resistance to carbapenems was slightly less (250; 27.5%) than ESBL producers, yet more common amongst E. coli isolates. MBL production was a common feature in carbapenem-resistant isolates (71.2%); genotypic characterization also validated this trend. The isolates were found to be sensitive against the new drugs, cefiderocol and eravacycline. with 7–28% resistance, except for P. mirabilis which had 100% resistance against eravacycline. This study concludes that a few types of ESBL and carbapenemases are common in the uropathogens isolated from the diabetic patients, and antibiotic stewardship programs need to be revisited, particularly to cure UTIs in diabetic patients. Full article
Show Figures

Figure 1

28 pages, 3500 KiB  
Systematic Review
Novel Virus Identification through Metagenomics: A Systematic Review
Life 2022, 12(12), 2048; https://doi.org/10.3390/life12122048 - 07 Dec 2022
Cited by 6 | Viewed by 2848
Abstract
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery [...] Read more.
Metagenomic Next Generation Sequencing (mNGS) allows the evaluation of complex microbial communities, avoiding isolation and cultivation of each microbial species, and does not require prior knowledge of the microbial sequences present in the sample. Applications of mNGS include virome characterization, new virus discovery and full-length viral genome reconstruction, either from virus preparations enriched in culture or directly from clinical and environmental specimens. Here, we systematically reviewed studies that describe novel virus identification through mNGS from samples of different origin (plant, animal and environment). Without imposing time limits to the search, 379 publications were identified that met the search parameters. Sample types, geographical origin, enrichment and nucleic acid extraction methods, sequencing platforms, bioinformatic analytical steps and identified viral families were described. The review highlights mNGS as a feasible method for novel virus discovery from samples of different origins, describes which kind of heterogeneous experimental and analytical protocols are currently used and provides useful information such as the different commercial kits used for the purification of nucleic acids and bioinformatics analytical pipelines. Full article
Show Figures

Figure 1

23 pages, 1217 KiB  
Review
Gut Microbiota and Cardiovascular System: An Intricate Balance of Health and the Diseased State
Life 2022, 12(12), 1986; https://doi.org/10.3390/life12121986 - 28 Nov 2022
Cited by 7 | Viewed by 2055
Abstract
Gut microbiota encompasses the resident microflora of the gut. Having an intricate relationship with the host, it plays an important role in regulating physiology and in the maintenance of balance between health and disease. Though dietary habits and the environment play a critical [...] Read more.
Gut microbiota encompasses the resident microflora of the gut. Having an intricate relationship with the host, it plays an important role in regulating physiology and in the maintenance of balance between health and disease. Though dietary habits and the environment play a critical role in shaping the gut, an imbalance (referred to as dysbiosis) serves as a driving factor in the occurrence of different diseases, including cardiovascular disease (CVD). With risk factors of hypertension, diabetes, dyslipidemia, etc., CVD accounts for a large number of deaths among men (32%) and women (35%) worldwide. As gut microbiota is reported to have a direct influence on the risk factors associated with CVDs, this opens up new avenues in exploring the possible role of gut microbiota in regulating the gross physiological aspects along the gut–heart axis. The present study elaborates on different aspects of the gut microbiota and possible interaction with the host towards maintaining a balance between health and the occurrence of CVDs. As the gut microbiota makes regulatory checks for these risk factors, it has a possible role in shaping the gut and, as such, in decreasing the chances of the occurrence of CVDs. With special emphasis on the risk factors for CVDs, this paper includes information on the prominent bacterial species (Firmicutes, Bacteriodetes and others) towards an advance in our understanding of the etiology of CVDs and an exploration of the best possible therapeutic modules for implementation in the treatment of different CVDs along the gut–heart axis. Full article
Show Figures

Figure 1

9 pages, 1446 KiB  
Article
Characterization of Cross-Species Transmission of Drosophila melanogaster Nora Virus
Life 2022, 12(11), 1913; https://doi.org/10.3390/life12111913 - 17 Nov 2022
Viewed by 1380
Abstract
Drosophila melanogaster Nora virus (DmNV) is a novel picorna-like virus first characterized in 2006. Since then, Nora virus has been detected in several non-Drosophila species, including insects in the Orders Hymenoptera, Lepidoptera, Coleoptera, and Orthoptera. The objective of this study was to [...] Read more.
Drosophila melanogaster Nora virus (DmNV) is a novel picorna-like virus first characterized in 2006. Since then, Nora virus has been detected in several non-Drosophila species, including insects in the Orders Hymenoptera, Lepidoptera, Coleoptera, and Orthoptera. The objective of this study was to determine if DmNV could infect individuals of other species of invertebrates besides D. melanogaster. The presence of DmNV in native invertebrates and commercially available stocks was determined. Laboratory-reared D. yakuba, D. mercatorum, Gryllodes sigillatus, Tenebrio molitor, Galleria mellonella, and Musca domestica were intentionally infected with DmNV. In addition, native invertebrates were collected and D. melanogaster stocks were purchased and screened for DmNV presence using reverse transcription-polymerase chain reaction (RT-PCR) before being intentionally infected for study. All Drosophila species and other invertebrates, except M. domestica, that were intentionally infected with DmNV ended up scoring positive for the virus via RT-PCR. DmNV infection was also detected in three native invertebrates (Spilosoma virginica, Diplopoda, and Odontotaenius disjunctus) and all commercially available stocks tested. These findings suggest that DmNV readily infects individuals of other species of invertebrates, while also appearing to be an endemic virus in both wild and laboratory D. melanogaster populations. The detection of DmNV in commercially available stocks presents a cautionary message for scientists using these stocks in studies of virology and immunology. Full article
Show Figures

Figure 1

23 pages, 6409 KiB  
Article
Fungal Biodeterioration of a Historical Manuscript Dating Back to the 14th Century: An Insight into Various Fungal Strains and Their Enzymatic Activities
Life 2022, 12(11), 1821; https://doi.org/10.3390/life12111821 - 08 Nov 2022
Cited by 13 | Viewed by 1822
Abstract
This study aims to assess the deterioration aspects of a historical manuscript dating back to the 14th century that was deposited in the Library of the Arabic Language Academy, Cairo, Egypt. The study aims at the exploration of the role of various fungal [...] Read more.
This study aims to assess the deterioration aspects of a historical manuscript dating back to the 14th century that was deposited in the Library of the Arabic Language Academy, Cairo, Egypt. The study aims at the exploration of the role of various fungal strains that had colonized this deteriorated manuscript in its biodeterioration through their efficacy in the secretion of various hydrolytic enzymes. To evaluate the deterioration, various techniques, including visual inspection, attenuated total reflectance Fourier transform infrared (ATR-FTIR), scanning electron microscopy (SEM), X-Ray diffraction analysis (XRD), color change, and pH value, were utilized. The fungal strains linked to the historical document were isolated, identified, and evaluated for their deterioration activities. The findings demonstrate that the manuscript exhibits a variety of deterioration signs including color change, brittleness and weakness, erosion, and removal of the grain surface pattern in leather binding. According to the ATR-FTIR, the chemical composition of the historical paper and leather underwent some alterations. The historical paper has a lower level of cellulose crystallinity than the control sample. Penicillium chrysogenum (two isolates), P. citrinum (four isolates), Aspergillus ustus (three isolates), A. terreus (two isolates), A. chinensis (one isolate), Paecilomyces sp. (one isolate), and Induratia sp. (one isolate) were among the fourteen fungal strains identified as being associated with the historical manuscript. These fungal strains produced several hydrolytic enzymes with high activity, such as cellulase, amylase, gelatinase, and pectinase, which play a key role in biodegradation. Full article
Show Figures

Figure 1

25 pages, 2695 KiB  
Review
Evaluating Risk: Benefit Ratio of Fat-Soluble Vitamin Supplementation to SARS-CoV-2-Infected Autoimmune and Cancer Patients: Do Vitamin–Drug Interactions Exist?
Life 2022, 12(10), 1654; https://doi.org/10.3390/life12101654 - 20 Oct 2022
Cited by 1 | Viewed by 1826
Abstract
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with [...] Read more.
COVID-19 is a recent pandemic that mandated the scientific society to provide effective evidence-based therapeutic approaches for the prevention and treatment for such a global threat, especially to those patients who hold a higher risk of infection and complications, such as patients with autoimmune diseases and cancer. Recent research has examined the role of various fat-soluble vitamins (vitamins A, D, E, and K) in reducing the severity of COVID-19 infection. Studies showed that deficiency in fat-soluble vitamins abrogates the immune system, thus rendering individuals more susceptible to COVID-19 infection. Moreover, another line of evidence showed that supplementation of fat-soluble vitamins during the course of infection enhances the viral clearance episode by promoting an adequate immune response. However, more thorough research is needed to define the adequate use of vitamin supplements in cancer and autoimmune patients infected with COVID-19. Moreover, it is crucial to highlight the vitamin–drug interactions of the COVID-19 therapeutic modalities and fat-soluble vitamins. With an emphasis on cancer and autoimmune patients, the current review aims to clarify the role of fat-soluble vitamins in SARS-CoV-2 infection and to estimate the risk-to-benefit ratio of a fat-soluble supplement administered to patients taking FDA-approved COVID-19 medications such as antivirals, anti-inflammatory, receptor blockers, and monoclonal antibodies. Full article
Show Figures

Figure 1

21 pages, 2858 KiB  
Article
Aeromonas allosaccharophila Strain AE59-TE2 Is Highly Antagonistic towards Multidrug-Resistant Human Pathogens, What Does Its Genome Tell Us?
Life 2022, 12(10), 1492; https://doi.org/10.3390/life12101492 - 26 Sep 2022
Viewed by 1664
Abstract
Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were [...] Read more.
Multidrug-resistant bacteria are of critical importance and a problem for human health and food preservation; the discovery of new antimicrobial substances to control their proliferation is part of the solution. This work reports on 57 antagonistic Aeromonas strains, of which 38 strains were antagonistic towards problematic human pathogens. The genome of the most antagonistic strain was sequenced and identified as Aeromonas allosaccharophila. Its genome was fully annotated and mined for genes that might explain that activity. Strain AE59-TE was antagonistic toward clinically relevant gram-negative and gram-positive multidrug-resistant bacteria, including Klebsiella pneumoniae KPC, Escherichia coli ESBL, Salmonella typhimurium, and Staphylococcus aureus MRSA. Strain AE59-TE2 was identified by multilocus sequence analysis. Genome mining identified four genes homologous to the bacteriocin, zoocin A from Streptococcus equi and a gene 98% similar to cvpA linked to colicin V production. A. allosaccharophila strain AE59-TE2 produced antimicrobial activity against a broad range of bacteria, including important gram-negative bacteria, not typically targeted by bacteriocins. Herewere described novel zoocin genes that are promising for industrial applications in the food and health sectors. Interesting and important antagonistic activity is described combined with the first detailed genomic analysis of the species Aeromonas allosaccharophila. Full article
Show Figures

Figure 1

38 pages, 2616 KiB  
Review
Probiotic Mechanisms Affecting Glucose Homeostasis: A Scoping Review
Life 2022, 12(8), 1187; https://doi.org/10.3390/life12081187 - 03 Aug 2022
Cited by 4 | Viewed by 2708
Abstract
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host [...] Read more.
The maintenance of a healthy status depends on the coexistence between the host organism and the microbiota. Early studies have already focused on the nutritional properties of probiotics, which may also contribute to the structural changes in the gut microbiota, thereby affecting host metabolism and homeostasis. Maintaining homeostasis in the body is therefore crucial and is reflected at all levels, including that of glucose, a simple sugar molecule that is an essential fuel for normal cellular function. Despite numerous clinical studies that have shown the effect of various probiotics on glucose and its homeostasis, knowledge about the exact function of their mechanism is still scarce. The aim of our review was to select in vivo and in vitro studies in English published in the last eleven years dealing with the effects of probiotics on glucose metabolism and its homeostasis. In this context, diverse probiotic effects at different organ levels were highlighted, summarizing their potential mechanisms to influence glucose metabolism and its homeostasis. Variations in results due to different methodological approaches were discussed, as well as limitations, especially in in vivo studies. Further studies on the interactions between probiotics, host microorganisms and their immunity are needed. Full article
Show Figures

Figure 1

Back to TopTop