Fungi Nutrient Transportation

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Cell Biology, Metabolism and Physiology".

Deadline for manuscript submissions: closed (30 April 2022) | Viewed by 23650

Special Issue Editors


E-Mail Website
Guest Editor
CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: yeast biotechnology; protein engineering; plasma membrane transporters
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: nutrient transporters; protein trafficking, signaling and endocytosis; antifungal drug resistance
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Interests: transporter proteins; carboxylic acids; microbial cell factories; transporter engineering; structure-function studies; protein modelling
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

Nutrient sensing and transport across biological membranes is a vital process for cell homeostasis and long-term survival. Unravelling the molecular mechanisms underlying the control of solutes across biological membranes is an important focus of fundamental and applied research. Membrane nutrient transporters are involved in cell nutrition, signaling, stress response, and drug sensitivity. These features make fungal-specific transporters ideal to use as specific targets or gateways for drugs against prominent fungal pathogens (e.g., Candida albicans, Aspergillus fumigatus). Nutrient transporters are also important targets in the development and improvement of cell factories towards the biotechnological generation of value-added products. This Special Issue will focus on the transport of nutrients in fungal species, including the functional characterization of transport systems, transporter kinetics and energetics, signaling, expression, trafficking and regulation, structure–function analysis, transporter engineering, and phylogenetic classification.

Prof. Dr. Margarida Casal
Prof. Dr. Sandra Paiva
Dr. Isabel Soares-Silva
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • transport proteins
  • permeases
  • pumps
  • channels
  • carriers
  • trafficking
  • transporter engineering
  • structure–function studies

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2642 KiB  
Article
The Dicarboxylate Transporters from the AceTr Family and Dct-02 Oppositely Affect Succinic Acid Production in S. cerevisiae
by Toni Rendulić, Frederico Mendonça Bahia, Isabel Soares-Silva, Elke Nevoigt and Margarida Casal
J. Fungi 2022, 8(8), 822; https://doi.org/10.3390/jof8080822 - 06 Aug 2022
Cited by 4 | Viewed by 2471
Abstract
Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a Saccharomyces cerevisiae strain able to strongly overproduce succinic acid from glycerol and [...] Read more.
Membrane transporters are important targets in metabolic engineering to establish and improve the production of chemicals such as succinic acid from renewable resources by microbial cell factories. We recently provided a Saccharomyces cerevisiae strain able to strongly overproduce succinic acid from glycerol and CO2 in which the Dct-02 transporter from Aspergillus niger, assumed to be an anion channel, was used to export succinic acid from the cells. In a different study, we reported a new group of succinic acid transporters from the AceTr family, which were also described as anion channels. Here, we expressed these transporters in a succinic acid overproducing strain and compared their impact on extracellular succinic acid accumulation with that of the Dct-02 transporter. The results show that the tested transporters of the AceTr family hinder succinic acid accumulation in the extracellular medium at low pH, which is in strong contrast to Dct-02. Data suggests that the AceTr transporters prefer monovalent succinate, whereas Dct-02 prefers divalent succinate anions. In addition, the results provided deeper insights into the characteristics of Dct-02, showing its ability to act as a succinic acid importer (thus being bidirectional) and verifying its capability of exporting malate. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Graphical abstract

16 pages, 3840 KiB  
Article
Citrate Regulates the Saccharomyces cerevisiae Mitochondrial GDP/GTP Carrier (Ggc1p) by Triggering Unidirectional Transport of GTP
by Roberta Seccia, Silvia De Santis, Maria A. Di Noia, Ferdinando Palmieri, Daniela V. Miniero, Raffaele Marmo, Eleonora Paradies, Antonella Santoro, Ciro L. Pierri, Luigi Palmieri, Carlo M. T. Marobbio and Angelo Vozza
J. Fungi 2022, 8(8), 795; https://doi.org/10.3390/jof8080795 - 29 Jul 2022
Cited by 2 | Viewed by 1805
Abstract
The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1 [...] Read more.
The yeast mitochondrial transport of GTP and GDP is mediated by Ggc1p, a member of the mitochondrial carrier family. The physiological role of Ggc1p in S. cerevisiae is probably to transport GTP into mitochondria in exchange for GDP generated in the matrix. ggc1Δ cells exhibit lower levels of GTP and increased levels of GDP in mitochondria, are unable to grow on nonfermentable substrates and lose mtDNA. Because in yeast, succinyl-CoA ligase produces ATP instead of GTP, and the mitochondrial nucleoside diphosphate kinase is localized in the intermembrane space, Ggc1p is the only supplier of mitochondrial GTP required for the maturation of proteins containing Fe-S clusters, such as aconitase [4Fe-4S] and ferredoxin [2Fe-2S]. In this work, it was demonstrated that citrate is a regulator of purified and reconstituted Ggc1p by trans-activating unidirectional transport of GTP across the proteoliposomal membrane. It was also shown that the binding site of Ggc1p for citrate is different from the binding site for the substrate GTP. It is proposed that the citrate-induced GTP uniport (CIGU) mediated by Ggc1p is involved in the homeostasis of the guanine nucleotide pool in the mitochondrial matrix. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

22 pages, 2971 KiB  
Article
Yeast Trk1 Potassium Transporter Gradually Changes Its Affinity in Response to Both External and Internal Signals
by Jakub Masaryk and Hana Sychrová
J. Fungi 2022, 8(5), 432; https://doi.org/10.3390/jof8050432 - 22 Apr 2022
Cited by 6 | Viewed by 2125
Abstract
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, [...] Read more.
Yeasts need a high intracellular concentration of potassium to grow. The main K+ uptake system in Saccharomyces cerevisiae is the Trk1 transporter, a complex protein with four MPM helical membrane motifs. Trk1 has been shown to exist in low- or high-affinity modes, which reflect the availability of potassium in the environment. However, when and how the affinity changes, and whether the potassium availability is the only signal for the affinity switch, remains unknown. Here, we characterize the Trk1 kinetic parameters under various conditions and find that Trk1’s KT and Vmax change gradually. This gliding adjustment is rapid and precisely reflects the changes in the intracellular potassium content and membrane potential. A detailed characterization of the specific mutations in the P-helices of the MPM segments reveals that the presence of proline in the P-helix of the second and third MPM domain (F820P and L949P) does not affect the function of Trk1 in general, but rather specifically prevents the transporter’s transition to a high-affinity state. The analogous mutations in the two remaining MPM domains (L81P and L1115P) result in a mislocalized and inactive protein, highlighting the importance of the first and fourth P-helices in proper Trk1 folding and activity at the plasma membrane. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

14 pages, 14252 KiB  
Article
Novel Evolutionary Engineering Approach to Alter Substrate Specificity of Disaccharide Transporter Mal11 in Saccharomyces cerevisiae
by Sophie Claire de Valk and Robert Mans
J. Fungi 2022, 8(4), 358; https://doi.org/10.3390/jof8040358 - 30 Mar 2022
Viewed by 1997
Abstract
A major challenge in the research of transport proteins is to understand how single amino acid residues contribute to their structure and biological function. Amino acid substitutions that result in a selective advantage in adaptive laboratory evolution experiments can provide valuable hints at [...] Read more.
A major challenge in the research of transport proteins is to understand how single amino acid residues contribute to their structure and biological function. Amino acid substitutions that result in a selective advantage in adaptive laboratory evolution experiments can provide valuable hints at their role in transport proteins. In this study, we applied an evolutionary engineering strategy to alter the substrate specificity of the proton-coupled disaccharide transporter Mal11 in Saccharomyces cerevisiae, which has affinity for sucrose, maltose and glucose. The introduction of MAL11 in a strain devoid of all other sugar transporters and disaccharide hydrolases restored growth on glucose but rendered the strain highly sensitive to the presence of sucrose or maltose. Evolution in glucose-limited continuous cultures with pulse-wise addition of a concentrated sucrose solution at increasing frequency resulted in the enrichment of spontaneous mutant cells that were less sensitive to the presence of sucrose and maltose. Sequence analysis showed that in each of the two independent experiments, three mutations occurred in MAL11, which were found responsible for the disaccharide-insensitive phenotype via reverse engineering. Our work demonstrates how laboratory evolution with proton-motive force-driven uptake of a non-metabolizable substrate can be a powerful tool to provide novel insights into the role of specific amino acid residues in the transport function of Mal11. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Graphical abstract

17 pages, 2147 KiB  
Article
Strategies for Efficient Expression of Heterologous Monosaccharide Transporters in Saccharomyces cerevisiae
by Marilia M. Knychala, Angela A. dos Santos, Leonardo G. Kretzer, Fernanda Gelsleichter, Maria José Leandro, César Fonseca and Boris U. Stambuk
J. Fungi 2022, 8(1), 84; https://doi.org/10.3390/jof8010084 - 15 Jan 2022
Cited by 2 | Viewed by 2327
Abstract
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as [...] Read more.
In previous work, we developed a Saccharomyces cerevisiae strain (DLG-K1) lacking the main monosaccharide transporters (hxt-null) and displaying high xylose reductase, xylitol dehydrogenase and xylulokinase activities. This strain proved to be a useful chassis strain to study new glucose/xylose transporters, as SsXUT1 from Scheffersomyces stipitis. Proteins with high amino acid sequence similarity (78–80%) to SsXUT1 were identified from Spathaspora passalidarum and Spathaspora arborariae genomes. The characterization of these putative transporter genes (SpXUT1 and SaXUT1, respectively) was performed in the same chassis strain. Surprisingly, the cloned genes could not restore the ability to grow in several monosaccharides tested (including glucose and xylose), but after being grown in maltose, the uptake of 14C-glucose and 14C-xylose was detected. While SsXUT1 lacks lysine residues with high ubiquitinylation potential in its N-terminal domain and displays only one in its C-terminal domain, both SpXUT1 and SaXUT1 transporters have several such residues in their C-terminal domains. A truncated version of SpXUT1 gene, deprived of the respective 3′-end, was cloned in DLG-K1 and allowed growth and fermentation in glucose or xylose. In another approach, two arrestins known to be involved in the ubiquitinylation and endocytosis of sugar transporters (ROD1 and ROG3) were knocked out, but only the rog3 mutant allowed a significant improvement of growth and fermentation in glucose when either of the XUT permeases were expressed. Therefore, for the efficient heterologous expression of monosaccharide (e.g., glucose/xylose) transporters in S. cerevisiae, we propose either the removal of lysines involved in ubiquitinylation and endocytosis or the use of chassis strains hampered in the specific mechanism of membrane protein turnover. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

23 pages, 6108 KiB  
Article
Uncovering Novel Plasma Membrane Carboxylate Transporters in the Yeast Cyberlindnera jadinii
by Maria Sousa-Silva, Pedro Soares, João Alves, Daniel Vieira, Margarida Casal and Isabel Soares-Silva
J. Fungi 2022, 8(1), 51; https://doi.org/10.3390/jof8010051 - 05 Jan 2022
Cited by 3 | Viewed by 2614
Abstract
The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of [...] Read more.
The yeast Cyberlindnera jadinii has great potential in the biotechnology industry due to its ability to produce a variety of compounds of interest, including carboxylic acids. In this work, we identified genes encoding carboxylate transporters from this yeast species. The functional characterization of sixteen plasma membrane carboxylate transporters belonging to the AceTr, SHS, TDT, MCT, SSS, and DASS families was performed by heterologous expression in Saccharomyces cerevisiae. The newly identified C. jadinii transporters present specificity for mono-, di-, and tricarboxylates. The transporters CjAto5, CjJen6, CjSlc5, and CjSlc13-1 display the broadest substrate specificity; CjAto2 accepts mono- and dicarboxylates; and CjAto1,3,4, CjJen1-5, CjSlc16, and CjSlc13-2 are specific for monocarboxylic acids. A detailed characterization of these transporters, including phylogenetic reconstruction, 3D structure prediction, and molecular docking analysis is presented here. The properties presented by these transporters make them interesting targets to be explored as organic acid exporters in microbial cell factories. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Graphical abstract

16 pages, 5003 KiB  
Article
Yeast Plasma Membrane Fungal Oligopeptide Transporters Display Distinct Substrate Preferences despite Their High Sequence Identity
by Carmen Becerra-Rodríguez, Géraldine Taghouti, Perrine Portier, Sylvie Dequin, Margarida Casal, Sandra Paiva and Virginie Galeote
J. Fungi 2021, 7(11), 963; https://doi.org/10.3390/jof7110963 - 12 Nov 2021
Cited by 5 | Viewed by 2116
Abstract
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in [...] Read more.
Fungal Oligopeptide Transporters (Fot) Fot1, Fot2 and Fot3 have been found in Saccharomyces cerevisiae wine strains, but not in strains from other environments. In the S. cerevisiae wine strain EC1118, Fot1 and Fot2 are responsible for a broader range of oligopeptide utilization in comparison with strains not containing any Fot. This leads to better fermentation efficiency and an increased production of desirable organoleptic compounds in wine. Despite the benefits associated with Fot activity in S. cerevisiae within the wine environment, little is known about this family of transporters in yeast. The presence of Fot1, Fot2 and Fot3 in S. cerevisiae wine strains is due to horizontal gene transfer from the yeast Torulaspora microellipsoides, which harbors Fot2Tm, FotX and FotY proteins. Sequence analyses revealed that Fot family members have a high sequence identity in these yeast species. In this work, we aimed to further characterize the different Fot family members in terms of subcellular localization, gene expression in enological fermentation and substrate specificity. Using CRISPR/Cas9, we constructed S. cerevisiae wine strains containing each different Fot as the sole oligopeptide transporter to analyze their oligopeptide preferences by phenotype microarrays. The results of oligopeptide consumption show that Fot counterparts have different di-/tripeptide specificities, suggesting that punctual sequence divergence between FOT genes can be crucial for substrate recognition, binding and transport activity. FOT gene expression levels in different S. cerevisiae wine strains during enological fermentation, together with predicted binding motifs for transcriptional regulators in nitrogen metabolism, indicate that these transporters may be under the control of the Nitrogen Catabolite Repression (NCR) system. Finally, we demonstrated that Fot1 is located in the yeast plasma membrane. This work contributes to a better understanding of this family of oligopeptide transporters, which have demonstrated a key role in the utilization of oligopeptides by S. cerevisiae in enological fermentation. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

15 pages, 12494 KiB  
Article
Profile of Membrane Cargo Trafficking Proteins and Transporters Expressed under N Source Derepressing Conditions in Aspergillus nidulans
by Sofia Dimou, Xenia Georgiou, Eleana Sarantidi, George Diallinas and Athanasios K. Anagnostopoulos
J. Fungi 2021, 7(7), 560; https://doi.org/10.3390/jof7070560 - 14 Jul 2021
Cited by 6 | Viewed by 2284
Abstract
Solute and ion transporters are proteins essential for cell nutrition, detoxification, signaling, homeostasis and drug resistance. Being polytopic transmembrane proteins, they are co-translationally inserted and folded into the endoplasmic reticulum (ER) of eukaryotic cells and subsequently sorted to their final membrane destination via [...] Read more.
Solute and ion transporters are proteins essential for cell nutrition, detoxification, signaling, homeostasis and drug resistance. Being polytopic transmembrane proteins, they are co-translationally inserted and folded into the endoplasmic reticulum (ER) of eukaryotic cells and subsequently sorted to their final membrane destination via vesicular secretion. During their trafficking and in response to physiological/stress signals or prolonged activity, transporters undergo multiple quality control processes and regulated turnover. Consequently, transporters interact dynamically and transiently with multiple proteins. To further dissect the trafficking and turnover mechanisms underlying transporter subcellular biology, we herein describe a novel mass spectrometry-based proteomic protocol adapted to conditions allowing for maximal identification of proteins related to N source uptake in A. nidulans. Our analysis led to identification of 5690 proteins, which to our knowledge constitutes the largest protein dataset identified by omics-based approaches in Aspergilli. Importantly, we detected possibly all major proteins involved in basic cellular functions, giving particular emphasis to factors essential for membrane cargo trafficking and turnover. Our protocol is easily reproducible and highly efficient for unearthing the full A. nidulans proteome. The protein list delivered herein will form the basis for downstream systematic approaches and identification of protein–protein interactions in living fungal cells. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

18 pages, 2783 KiB  
Article
Impact of Membrane Lipids on UapA and AzgA Transporter Subcellular Localization and Activity in Aspergillus nidulans
by Mariangela Dionysopoulou and George Diallinas
J. Fungi 2021, 7(7), 514; https://doi.org/10.3390/jof7070514 - 28 Jun 2021
Cited by 1 | Viewed by 2261
Abstract
Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on [...] Read more.
Recent biochemical and biophysical evidence have established that membrane lipids, namely phospholipids, sphingolipids and sterols, are critical for the function of eukaryotic plasma membrane transporters. Here, we study the effect of selected membrane lipid biosynthesis mutations and of the ergosterol-related antifungal itraconazole on the subcellular localization, stability and transport kinetics of two well-studied purine transporters, UapA and AzgA, in Aspergillus nidulans. We show that genetic reduction in biosynthesis of ergosterol, sphingolipids or phosphoinositides arrest A. nidulans growth after germling formation, but solely blocks in early steps of ergosterol (Erg11) or sphingolipid (BasA) synthesis have a negative effect on plasma membrane (PM) localization and stability of transporters before growth arrest. Surprisingly, the fraction of UapA or AzgA that reaches the PM in lipid biosynthesis mutants is shown to conserve normal apparent transport kinetics. We further show that turnover of UapA, which is the transporter mostly sensitive to membrane lipid content modification, occurs during its trafficking and by enhanced endocytosis, and is partly dependent on autophagy and Hect-type HulARsp5 ubiquitination. Our results point out that the role of specific membrane lipids on transporter biogenesis and function in vivo is complex, combinatorial and transporter-dependent. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Figure 1

12 pages, 2524 KiB  
Article
The Potassium Transporter Hak1 in Candida Albicans, Regulation and Physiological Effects at Limiting Potassium and under Acidic Conditions
by Francisco J. Ruiz-Castilla, Elisa Rodríguez-Castro, Carmen Michán and José Ramos
J. Fungi 2021, 7(5), 362; https://doi.org/10.3390/jof7050362 - 06 May 2021
Cited by 2 | Viewed by 2265
Abstract
The three families of yeast plasma membrane potassium influx transporters are represented in Candida albicans: Trk, Acu, and Hak proteins. Hak transporters work as K+-H+ symporters, and the genes coding for Hak proteins are transcriptionally activated under potassium limitation. [...] Read more.
The three families of yeast plasma membrane potassium influx transporters are represented in Candida albicans: Trk, Acu, and Hak proteins. Hak transporters work as K+-H+ symporters, and the genes coding for Hak proteins are transcriptionally activated under potassium limitation. This work shows that C. albicans mutant cells lacking CaHAK1 display a severe growth impairment at limiting potassium concentrations under acidic conditions. This is the consequence of a defective capacity to transport K+, as indicated by potassium absorption experiments and by the kinetics parameters of Rb+ (K+) transport. Moreover, hak1 cells are more sensitive to the toxic cation lithium. All these phenotypes became much less robust or even disappeared at alkaline growth conditions. Finally, transcriptional studies demonstrate that the hak1− mutant, in comparison with HAK1+ cells, activates the expression of the K+/Na+ ATPase coded by CaACU1 in the presence of Na+ or in the absence of K+. Full article
(This article belongs to the Special Issue Fungi Nutrient Transportation)
Show Figures

Graphical abstract

Back to TopTop