Fungi and Fungal Metabolites for the Improvement of Human and Animal Nutrition and Health

A special issue of Journal of Fungi (ISSN 2309-608X). This special issue belongs to the section "Fungal Cell Biology, Metabolism and Physiology".

Deadline for manuscript submissions: closed (31 October 2020) | Viewed by 120723

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editors


E-Mail Website1 Website2
Guest Editor
Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments, ESIROI Département Agroalimentaire, Université de La Réunion, 2 rue Joseph Wetzell, F‐97490 Sainte‐Clotilde, La Réunion, France
Interests: sustainable textile; microbial biotechnology; microbial production of pigments and colorants; fermentation; bioprocess engineering and fermentation technology
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Laboratory of Chemistry and Biotechnology of Natural Products, Faculty of Science and Technology, University of La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 09, 97744 Saint-Denis, France
Interests: microbiology; biotechnology; specialized metabolites; fermentations; pigments
Special Issues, Collections and Topics in MDPI journals
Laboratory of Chemistry of Natural Substances and Food Sciences (LCSNSA), University of Reunion, F-97490 Sainte-Clotilde, Reunion Island, France
Interests: fermentation; industrial biotechnology; marine fungi; fungal pigments; anthraquinones; chemistry of lipids; biodiesel
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Fungi comprise 1, 2, 3, ..., or maybe around 5.1 million species? Even scientists do not currently agree on how many fungi species may be found on planet Earth, with only around 120,000 of these having been described so far. Fungi have been classified as a separate Kingdom of organisms as complex and diverse as plants and animals, of which only a few percent have been named and described. Fungal biomasses and fungal metabolites share a long common history with human and animal nutrition and health. Macrofungi and filamentous fungi constitute a large portfolio of proteins, lipids, vitamins, minerals, oligo elements, pigments, colorants, bioactive compounds, antibiotics, pharmaceuticals, etc. For example, industrially important enzymes and microbial biomass proteins have been produced from fungi for more than 50 years. Some start-ups convert byproducts and side streams rich in carbohydrates into a protein-rich fungal biomass. This biomass can then be processed into a vegan meat substitute for food applications. In recent years, there has also been a significant increase (in fact, a significant revival) in the number of publications in the international literature dealing with the production of lipids by microbial sources (the single-cell oils (SCOs) that are produced by the so-called “oleaginous” microorganisms, including “oleaginous” fungi such as zygomycete species, e.g., Cunninghamella echinulata and Mortierella isabellina). Fungi are potential sources of polyunsaturated fatty acids (PUFAs) as these microorganisms can accumulate large amounts of high-valued PUFAs, such as gamma-linolenic acid (GLA) and arachidonic acid (ARA).

The purpose of this Special Issue of Journal of Fungi (MDPI) is not to provide a comprehensive overview of the vast arena of how fungi and fungal metabolites are able to improve human and animal nutrition and health; rather, we, as Guest Editors, wish to encourage authors working in this field to publish their most recent work in this rapidly growing journal in order for the large readership to appreciate the full potential of wonderful and beneficial fungi. Thus, this Special Issue welcomes scientific contributions on applications of fungi and fungal metabolites, such as bioactive fatty acids, pigments, polysaccharides, alkaloids, terpenoids, etc., with great potential in human and animal nutrition and health.

Prof. Dr. Laurent Dufossé
Dr. Mireille Fouillaud
Dr. Yanis Caro
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Fungi is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microfungi
  • macrofungi
  • filamentous fungi
  • antioxidant
  • Ganoderma
  • kombucha
  • anticancer
  • carotenoid
  • medicinal mushrooms
  • mycobiome
  • antimicrobial
  • antifungal
  • bioconversion
  • feed additive
  • cheese
  • dairy
  • Sclerotinia
  • secondary metabolites

Published Papers (24 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Editorial

Jump to: Research, Review

7 pages, 242 KiB  
Editorial
Fungi and Fungal Metabolites for the Improvement of Human and Animal Nutrition and Health
by Laurent Dufossé, Mireille Fouillaud and Yanis Caro
J. Fungi 2021, 7(4), 274; https://doi.org/10.3390/jof7040274 - 04 Apr 2021
Cited by 13 | Viewed by 3782
Abstract
Fungi: 1, 2, 3, [...] Full article

Research

Jump to: Editorial, Review

14 pages, 2258 KiB  
Article
Characterization of Sporidiobolus ruineniae A45.2 Cultivated in Tannin Substrate for Use as a Potential Multifunctional Probiotic Yeast in Aquaculture
by Apinun Kanpiengjai, Chartchai Khanongnuch, Saisamorn Lumyong, Aksarakorn Kummasook and Suwapat Kittibunchakul
J. Fungi 2020, 6(4), 378; https://doi.org/10.3390/jof6040378 - 18 Dec 2020
Cited by 15 | Viewed by 2405
Abstract
At present, few yeast species have been evaluated for their beneficial capabilities as probiotics. Sporidiobolus ruineniae A45.2, a carotenoid-producing yeast, was able to co-produce cell-associated tannase (CAT), gallic acid and viable cells with antioxidant activity when grown in a tannic acid substrate. The [...] Read more.
At present, few yeast species have been evaluated for their beneficial capabilities as probiotics. Sporidiobolus ruineniae A45.2, a carotenoid-producing yeast, was able to co-produce cell-associated tannase (CAT), gallic acid and viable cells with antioxidant activity when grown in a tannic acid substrate. The aim of this research study was to identify the potential uses of S. ruineniae A45.2 obtained from a co-production system as a potential feed additive for aquaculture. S. ruineniae A45.2 and its CAT displayed high tolerance in pH 2.0, pepsin, bile salts and pancreatin. Furthermore, its viable cells were characterized by moderate hydrophobicity, high auto-aggregation and moderate co-aggregation with Staphylococcus aureus, Salmonella ser. Thyphimurium and Streptococcus agalactiae. These attributes promoted S. ruineniae A45.2 as a multifunctional probiotic yeast. In addition, the intact cells possessed antioxidant activities in a 100–150 μg gallic acid equivalent (GAE)/mL culture. Remarkably, the fermentation broth demonstrated higher antioxidant activity of 9.2 ± 1.8, 9.0 ± 0.9, and 9.8 ± 0.7 mg GAE/mL culture after FRAP, DPPH and ABTS assays, respectively. Furthermore, higher antimicrobial activity was observed against Bacillus cereus, Staphylococcus aureus and Strep. agalactiae. Therefore, cultivation of S. ruineniae A45.2 with a tannic acid substrate displayed significant potential as an effective multifunctional feed additive. Full article
Show Figures

Figure 1

17 pages, 3298 KiB  
Article
Aqueous Two-Phase System Extraction of Polyketide-Based Fungal Pigments Using Ammonium- or Imidazolium-Based Ionic Liquids for Detection Purpose: A Case Study
by Juliana Lebeau, Thomas Petit, Mireille Fouillaud, Laurent Dufossé and Yanis Caro
J. Fungi 2020, 6(4), 375; https://doi.org/10.3390/jof6040375 - 18 Dec 2020
Cited by 10 | Viewed by 2535
Abstract
Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid–liquid extraction methods requiring large volumes [...] Read more.
Demand for microbial colorants is now becoming a competitive research topic for food, cosmetics and pharmaceutics industries. In most applications, the pigments of interest such as polyketide-based red pigments from fungal submerged cultures are extracted by conventional liquid–liquid extraction methods requiring large volumes of various organic solvents and time. To address this question from a different angle, we proposed, here, to investigate the use of three different aqueous two-phase extraction systems using either ammonium- or imidazolium-based ionic liquids. We applied these to four fermentation broths of Talaromyces albobiverticillius (deep red pigment producer), Emericella purpurea (red pigment producer), Paecilomyces marquandii (yellow pigment producer) and Trichoderma harzianum (yellow-brown pigment producer) to investigate their selective extraction abilities towards the detection of polyketide-based pigments. Our findings led us to conclude that (i) these alternative extraction systems using ionic liquids as greener extractant means worked well for this extraction of colored molecules from the fermentation broths of the filamentous fungi investigated here; (ii) tetrabutylammonium bromide, [N4444]Br-, showed the best pigment extraction ability, with a higher putative affinity for azaphilone red pigments; (iii) the back extraction and recovery of the fungal pigments from ionic liquid phases remained the limiting point of the method under our selected conditions for potential industrial applications. Nevertheless, these alternative extraction procedures appeared to be promising ways for the detection of polyketide-based colorants in the submerged cultures of filamentous fungi. Full article
Show Figures

Figure 1

16 pages, 693 KiB  
Article
Assimilation of Cholesterol by Monascus purpureus
by Theresa P. T. Nguyen, Margaret A. Garrahan, Sabrina A. Nance, Catherine E. Seeger and Christian Wong
J. Fungi 2020, 6(4), 352; https://doi.org/10.3390/jof6040352 - 09 Dec 2020
Cited by 7 | Viewed by 2625
Abstract
Monascus purpureus, a filamentous fungus known for its fermentation of red yeast rice, produces the metabolite monacolin K used in statin drugs to inhibit cholesterol biosynthesis. In this study, we show that active cultures of M. purpureus CBS 109.07, independent of secondary [...] Read more.
Monascus purpureus, a filamentous fungus known for its fermentation of red yeast rice, produces the metabolite monacolin K used in statin drugs to inhibit cholesterol biosynthesis. In this study, we show that active cultures of M. purpureus CBS 109.07, independent of secondary metabolites, use the mechanism of cholesterol assimilation to lower cholesterol in vitro. We describe collection, extraction, and gas chromatography-flame ionized detection (GC-FID) methods to quantify the levels of cholesterol remaining after incubation of M. purpureus CBS 109.07 with exogenous cholesterol. Our findings demonstrate that active growing M. purpureus CBS 109.07 can assimilate cholesterol, removing 36.38% of cholesterol after 48 h of incubation at 37 °C. The removal of cholesterol by resting or dead M. purpureus CBS 109.07 was not significant, with cholesterol reduction ranging from 2.75–9.27% throughout a 72 h incubation. Cholesterol was also not shown to be catabolized as a carbon source. Resting cultures transferred from buffer to growth media were able to reactivate, and increases in cholesterol assimilation and growth were observed. In growing and resting phases at 24 and 72 h, the production of the mycotoxin citrinin was quantified via high-performance liquid chromatography-ultraviolet (HPLC-UV) and found to be below the limit of detection. The results indicate that M. purpureus CBS 109.07 can reduce cholesterol content in vitro and may have a potential application in probiotics. Full article
Show Figures

Figure 1

20 pages, 1202 KiB  
Article
Yeasts in Liquid Swine Diets: Identification Methods, Growth Temperatures and Gas-Formation Potential
by Birgit Keller, Henrike Kuder, Christian Visscher, Ute Siesenop and Josef Kamphues
J. Fungi 2020, 6(4), 337; https://doi.org/10.3390/jof6040337 - 04 Dec 2020
Cited by 2 | Viewed by 1657
Abstract
Liquid feed is susceptible to microbiological growth. Yeasts are said to cause sudden death in swine due to intestinal gas formation. As not all animals given high yeast content feed fall ill, growth and gas formation potential at body temperature were investigated as [...] Read more.
Liquid feed is susceptible to microbiological growth. Yeasts are said to cause sudden death in swine due to intestinal gas formation. As not all animals given high yeast content feed fall ill, growth and gas formation potential at body temperature were investigated as possible causally required properties. The best identification method for these environmental yeasts should be tested beforehand. Yeasts derived from liquid diets without (LD − S) and liquid diets with maize silage (LD + S) were examined biochemically (ID32C-test) and with MALDI-TOF with direct smear (DS) and an extraction method (EX). Growth temperature and gas-forming potential were measured. With MALDI-EX, most yeast isolates were identified: Candida krusei most often in LD − S, and C. lambica most often in LD + S, significantly more than in LD − S. Larger colonies, 58.75% of all yeast isolates, were formed at 25 °C rather than at 37 °C; 17.5% of all isolates did not grow at 37 °C at all. Most C. krusei isolates formed high gas amounts within 24 h, whereas none of the C. lambica, C. holmii and most other isolates did. The gas pressure formed by yeast isolates varied more than tenfold. Only a minority of the yeasts were able to produce gas at temperatures common in the pig gut. Full article
Show Figures

Figure 1

18 pages, 947 KiB  
Article
Dietary Supplementation of a Live Yeast Product on Dairy Sheep Milk Performance, Oxidative and Immune Status in Peripartum Period
by Alexandros Mavrommatis, Christina Mitsiopoulou, Christos Christodoulou, Dimitris Karabinas, Valentin Nenov, George Zervas and Eleni Tsiplakou
J. Fungi 2020, 6(4), 334; https://doi.org/10.3390/jof6040334 - 03 Dec 2020
Cited by 19 | Viewed by 3249
Abstract
This study evaluated the dietary administration of Saccharomyces cerevisiae live yeast on milk performance and composition, oxidative status of both blood plasma and milk, and gene expression related to the immune system of lactating ewes during the peripartum period. Chios ewes were fed [...] Read more.
This study evaluated the dietary administration of Saccharomyces cerevisiae live yeast on milk performance and composition, oxidative status of both blood plasma and milk, and gene expression related to the immune system of lactating ewes during the peripartum period. Chios ewes were fed either a basal diet (BD) (Control, n = 51) or the BD supplemented with 2 g of a live yeast product/animal (ActiSaf, n = 53) from 6 weeks prepartum to 6 weeks postpartum. Fatty acid profile, oxidative, and immune status were assessed in eight ewes per treatment at 3 and 6 weeks postpartum. The β-hydroxybutyric acid concentration in blood of ActiSaf fed ewes was significantly lower in both pre- and postpartum periods. A numerical increase was found for the milk yield, fat 6% corrected milk (Fat corrected milk (FCM6%)), and energy corrected milk yield (ECM) in ActiSaf fed ewes, while daily milk fat production tended to increase. The proportions of C15:0, C16:1, C18:2n6t, and C18:3n3 fatty acids were increased in milk of ActiSaf fed ewes, while C18:0 was decreased. Glutathione reductase in blood plasma was increased (p = 0.004) in ActiSaf fed ewes, while total antioxidant capacity measured by 2,2′-Azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) method was decreased (p < 0.001). Higher ABTS values were found in the milk of the treated group. The relative transcript levels of CCL5, CXCL16, and IL8 were suppressed, while that of IL1B tended to decrease (p = 0.087) in monocytes of ActiSaf fed ewes. In conclusion, the dietary supplementation of ewes with S. cerevisiae, improved the energy utilization and tended to enhance milk performance with simultaneous suppression on mRNA levels of pro-inflammatory genes during the peripartum period. Full article
Show Figures

Figure 1

14 pages, 12618 KiB  
Article
Microbial Colorants Production in Stirred-Tank Bioreactor and Their Incorporation in an Alternative Food Packaging Biomaterial
by Fernanda de Oliveira, Caio de Azevedo Lima, André Moreni Lopes, Daniela de Araújo Viana Marques, Janice Izabel Druzian, Adalberto Pessoa Júnior and Valéria Carvalho Santos-Ebinuma
J. Fungi 2020, 6(4), 264; https://doi.org/10.3390/jof6040264 - 02 Nov 2020
Cited by 14 | Viewed by 3034
Abstract
Natural colorants from microbial fermentation have gained significant attention in the market to replace the synthetic ones. Talaromyces spp. produce yellow-orange-red colorants, appearing as a potential microorganism to be used for this purpose. In this work, the production of natural colorants by T. [...] Read more.
Natural colorants from microbial fermentation have gained significant attention in the market to replace the synthetic ones. Talaromyces spp. produce yellow-orange-red colorants, appearing as a potential microorganism to be used for this purpose. In this work, the production of natural colorants by T. amestolkiae in a stirred-tank bioreactor is studied, followed by its application as additives in bio-based films. The effect of the pH-shift control strategy from 4.5 to 8.0 after 96 h of cultivation is evaluated at 500 rpm, resulting in an improvement of natural colorant production, with this increase being more significant for the orange and red ones, both close to 4-fold. Next, the fermented broth containing the colorants is applied to the preparation of cassava starch-based films in order to incorporate functional activity in biodegradable films for food packaging. The presence of fermented broth did not affect the water activity and total solids of biodegradable films as compared with the standard one. In the end, the films are used to pack butter samples (for 45 days) showing excellent results regarding antioxidant activity. It is demonstrated that the presence of natural colorants is obtained by a biotechnology process, which can provide protection against oxidative action, as well as be a functional food additive in food packing biomaterials. Full article
Show Figures

Figure 1

23 pages, 4614 KiB  
Article
Metal and Phosphate Ions Show Remarkable Influence on the Biomass Production and Lipid Accumulation in Oleaginous Mucor circinelloides
by Simona Dzurendova, Boris Zimmermann, Valeria Tafintseva, Achim Kohler, Svein Jarle Horn and Volha Shapaval
J. Fungi 2020, 6(4), 260; https://doi.org/10.3390/jof6040260 - 30 Oct 2020
Cited by 20 | Viewed by 2911
Abstract
The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of [...] Read more.
The biomass of Mucor circinelloides, a dimorphic oleaginous filamentous fungus, has a significant nutritional value and can be used for single cell oil production. Metal ions are micronutrients supporting fungal growth and metabolic activity of cellular processes. We investigated the effect of 140 different substrates, with varying amounts of metal and phosphate ions concentration, on the growth, cell chemistry, lipid accumulation, and lipid profile of M. circinelloides. A high-throughput set-up consisting of a Duetz microcultivation system coupled to Fourier transform infrared spectroscopy was utilized. Lipids were extracted by a modified Lewis method and analyzed using gas chromatography. It was observed that Mg and Zn ions were essential for the growth and metabolic activity of M. circinelloides. An increase in Fe ion concentration inhibited fungal growth, while higher concentrations of Cu, Co, and Zn ions enhanced the growth and lipid accumulation. Lack of Ca and Cu ions, as well as higher amounts of Zn and Mn ions, enhanced lipid accumulation in M. circinelloides. Generally, the fatty acid profile of M. circinelloides lipids was quite consistent, irrespective of media composition. Increasing the amount of Ca ions enhanced polyphosphates accumulation, while lack of it showed fall in polyphosphate. Full article
Show Figures

Figure 1

15 pages, 1423 KiB  
Article
Biotransformation of Animal Fat-By Products into ARA-Enriched Fermented Bioproducts by Solid-State Fermentation of Mortierella alpina
by Ondrej Slaný, Tatiana Klempová, Volha Shapaval, Boris Zimmermann, Achim Kohler and Milan Čertík
J. Fungi 2020, 6(4), 236; https://doi.org/10.3390/jof6040236 - 21 Oct 2020
Cited by 17 | Viewed by 3230
Abstract
Solid-state fermentation (SSF) is a powerful fermentation technology for valorizing rest materials and by-products of different origin. Oleaginous Zygomycetes fungi are often used in SSF as an effective cell factory able to valorize a wide range of hydrophilic and hydrophobic substrates and produce [...] Read more.
Solid-state fermentation (SSF) is a powerful fermentation technology for valorizing rest materials and by-products of different origin. Oleaginous Zygomycetes fungi are often used in SSF as an effective cell factory able to valorize a wide range of hydrophilic and hydrophobic substrates and produce lipid-enriched bioproducts. In this study, for the first time, the strain Mortierella alpina was used in SSF for the bioconversion of animal fat by-products into high value fermented bioproducts enriched with arachidonic acid (ARA). Two cereals-based matrixes mixed with four different concentrations of animal fat by-product were evaluated for finding optimal conditions of a fat-based SSF. All obtained fermented bioproducts were found to be enriched with ARA. The highest substrate utilization (25.8%) was reached for cornmeal and it was almost double than for the respective wheat bran samples. Similarly, total fatty acid content in a fermented bioproduct prepared on cornmeal is almost four times higher in contrast to wheat bran-based bioproduct. Although in general the addition of an animal fat by-product caused a gradual cessation of ARA yield in the obtained fermented bioproduct, the content of ARA in fungal biomass was higher. Thus, M. alpina CCF2861 effectively transformed exogenous fatty acids from animal fat substrate to ARA. Maximum yield of 32.1 mg of ARA/g of bioproduct was reached when using cornmeal mixed with 5% (w/w) of an animal fat by-product as substrate. Furthermore, implementation of attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in characterization of obtained SSF bioproducts was successfully tested as an alternative tool for complex analysis, compared to traditional time-consuming methods. Full article
Show Figures

Graphical abstract

14 pages, 1255 KiB  
Article
Interactive Impact of Arbuscular Mycorrhizal Fungi and Elevated CO2 on Growth and Functional Food Value of Thymus vulgare
by Talaat H. Habeeb, Mohamed Abdel-Mawgoud, Ramy S. Yehia, Ahmed Mohamed Ali Khalil, Ahmed M. Saleh and Hamada AbdElgawad
J. Fungi 2020, 6(3), 168; https://doi.org/10.3390/jof6030168 - 09 Sep 2020
Cited by 37 | Viewed by 4209
Abstract
Arbuscular mycorrhizal fungi (AMF) and elevated CO2 (eCO2) have been effectively integrated to the agricultural procedures as an ecofriendly approach to support the production and quality of plants. However, less attention has been given to the synchronous application of AMF [...] Read more.
Arbuscular mycorrhizal fungi (AMF) and elevated CO2 (eCO2) have been effectively integrated to the agricultural procedures as an ecofriendly approach to support the production and quality of plants. However, less attention has been given to the synchronous application of AMF and eCO2 and how that could affect the global plant metabolism. This study was conducted to investigate the effects of AMF and eCO2, individually or in combination, on growth, photosynthesis, metabolism and the functional food value of Thymus vulgare. Results revealed that both AMF and eCO2 treatments improved the photosynthesis and biomass production, however much more positive impact was obtained by their synchronous application. Moreover, the levels of the majority of the detected sugars, organic acids, amino acids, unsaturated fatty acids, volatile compounds, phenolic acids and flavonoids were further improved as a result of the synergistic action of AMF and eCO2, as compared to the individual treatments. Overall, this study clearly shows that co-application of AMF and eCO2 induces a synergistic biofertilization impact and enhances the functional food value of T. vulgare by affecting its global metabolism. Full article
Show Figures

Figure 1

15 pages, 1808 KiB  
Article
Exploring the Antibacterial Activity of Pestalotiopsis spp. under Different Culture Conditions and Their Chemical Diversity Using LC–ESI–Q–TOF–MS
by Madelaine M. Aguilar-Pérez, Daniel Torres-Mendoza, Roger Vásquez, Nivia Rios and Luis Cubilla-Rios
J. Fungi 2020, 6(3), 140; https://doi.org/10.3390/jof6030140 - 19 Aug 2020
Cited by 10 | Viewed by 2711
Abstract
As a result of the capability of fungi to respond to culture conditions, we aimed to explore and compare the antibacterial activity and chemical diversity of two endophytic fungi isolated from Hyptis dilatata and cultured under different conditions by the addition of chemical [...] Read more.
As a result of the capability of fungi to respond to culture conditions, we aimed to explore and compare the antibacterial activity and chemical diversity of two endophytic fungi isolated from Hyptis dilatata and cultured under different conditions by the addition of chemical elicitors, changes in the pH, and different incubation temperatures. Seventeen extracts were obtained from both Pestalotiopsis mangiferae (man-1 to man-17) and Pestalotiopsis microspora (mic-1 to mic-17) and were tested against a panel of pathogenic bacteria. Seven extracts from P. mangiferae and four extracts from P. microspora showed antibacterial activity; while some of these extracts displayed a high-level of selectivity and a broad-spectrum of activity, Pseudomonas aeruginosa was the most inhibited microorganism and was selected to determine the minimal inhibitory concentration (MIC). The MIC was determined for extracts man-6 (0.11 μg/mL) and mic-9 (0.56 μg/mL). Three active extracts obtained from P. mangiferae were analyzed by Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry (LC–ESI–Q–TOF–MS) to explore the chemical diversity and the variations in the composition. This allows us to propose structures for some of the determined molecular formulas, including the previously reported mangiferaelactone (1), an antibacterial compound. Full article
Show Figures

Graphical abstract

13 pages, 2109 KiB  
Article
Secondary Metabolites and Antioxidant Activity of the Solid-State Fermentation in Apple (Pirus malus L.) and Agave Mezcalero (Agave angustifolia H.) Bagasse
by Diego Ibarra-Cantún, María Elena Ramos-Cassellis, Marco Antonio Marín-Castro and Rosalía del Carmen Castelán-Vega
J. Fungi 2020, 6(3), 137; https://doi.org/10.3390/jof6030137 - 18 Aug 2020
Cited by 14 | Viewed by 3416
Abstract
Solid-state fermentation (SSF) is used in enzyme and antibiotic production, bioethanol and biodiesel as an alternative energy source, biosurfactants with environmental goals, and the production of organic acids and bioactive compounds. The present project determined the quantity of secondary metabolites and the antioxidant [...] Read more.
Solid-state fermentation (SSF) is used in enzyme and antibiotic production, bioethanol and biodiesel as an alternative energy source, biosurfactants with environmental goals, and the production of organic acids and bioactive compounds. The present project determined the quantity of secondary metabolites and the antioxidant activity of the extracts obtained by the solid-state fermentation of apple and agave mezcalero bagasse over 28 days, inoculated with the Pleurotus ostreatus strain. The extraction was carried out with three solvents: acetone and water (80:20 v/v), 100% methanol and 100% water. The results showed a higher presence of phenolic compounds, flavonoids, total triterpenes and antioxidant activity in the apple bagasse from the SSF on day 21 in the extract of acetone and water (80:20 v/v), 100% methanol and aqueous; while the agave bagasse showed a significant presence of phenolic compounds and flavonoids only in the aqueous extract. In conclusion, the presence of secondary metabolites exhibiting antioxidant activities from the solid-state fermentation in the residues of the cider and mezcal industry is an alternative use for wasted raw material, plus, it reduces the pollution generated from the agroindustrial residues. Full article
Show Figures

Graphical abstract

15 pages, 2179 KiB  
Article
Alginate-Derived Elicitors Enhance β-Glucan Content and Antioxidant Activities in Culinary and Medicinal Mushroom, Sparassis latifolia
by Yong-Woon Kim, Yuanzheng Wu, Moon-Hee Choi, Hyun-Jae Shin and Jishun Li
J. Fungi 2020, 6(2), 92; https://doi.org/10.3390/jof6020092 - 25 Jun 2020
Cited by 9 | Viewed by 3198
Abstract
This study aimed to investigate the elicitation effects of alginate oligosaccharides extracted from brown algae (Sargassum species) on β-glucan production in cauliflower mushroom (Sparassis latifolia). Sodium alginate was refined from Sargassum fulvellum, S. fusiforme, and S. horneri, [...] Read more.
This study aimed to investigate the elicitation effects of alginate oligosaccharides extracted from brown algae (Sargassum species) on β-glucan production in cauliflower mushroom (Sparassis latifolia). Sodium alginate was refined from Sargassum fulvellum, S. fusiforme, and S. horneri, and characterized by proton nuclear magnetic resonance spectroscopy (1H NMR), resulting mannuronic acid to guluronic acid (M/G) rationes from 0.64 to 1.38. Three oligosaccharide fractions, ethanol fraction (EF), solid fraction (SF), and liquid fraction (LF), were prepared by acid hydrolysis and analyzed by Fourier transform infrared (FT-IR) spectra and high-performance anion-exchange chromatography with a pulsed amperometric detector (HPAEC-PAD). The samples of S. fusiforme resulted in the highest hydrolysate in SF and the lowest in LF, which was consistent with its highest M/G ratio. The SF of S. fusiforme and LF of S. horneri were chosen for elicitation on S. latifolia, yielding the highest β-glucan contents of 56.01 ± 3.45% and 59.74 ± 4.49% in the stalk, respectively. Total polyphenol content (TPC) and antioxidant activities (2,2’-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging and Superoxide dismutase (SOD)-like activity) of aqueous extracts of S. latifolia were greatly stimulated by alginate elicitation. These results demonstrate that alginate oligosaccharides extracted from brown algae may be useful as an elicitor to enhance the nutritional value of mushrooms. Full article
Show Figures

Figure 1

15 pages, 5870 KiB  
Article
Oil-Based Fungal Pigment from Scytalidium cuboideum as a Textile Dye
by Mardonio E. Palomino Agurto, Sarath M. Vega Gutierrez, R. C. Van Court, Hsiou-Lien Chen and Seri C. Robinson
J. Fungi 2020, 6(2), 53; https://doi.org/10.3390/jof6020053 - 22 Apr 2020
Cited by 6 | Viewed by 3388
Abstract
Identification of effective natural dyes with the potential for low environmental impact has been a recent focus of the textile industry. Pigments derived from spalting fungi have previously shown promise as textile dyes; however, their use has required numerous organic solvents with human [...] Read more.
Identification of effective natural dyes with the potential for low environmental impact has been a recent focus of the textile industry. Pigments derived from spalting fungi have previously shown promise as textile dyes; however, their use has required numerous organic solvents with human health implications. This research explored the possibility of using linseed oil as a carrier for the pigment from Scytalidium cuboideum as a textile dye. Colored linseed oil effectively dyed a range of fabrics, with natural fibers showing better coloration. Scanning electron microscopy (SEM) revealed a pigment film over the fabric surface. While mechanical testing showed no strength loss in treated fabric, colorfastness tests showed significant changes in color in response to laundering and bleach exposure with variable effects across fabric varieties. SEM investigation confirmed differences in pigmented oil layer loss and showed variation in pigment crystal formation between fabric varieties. Heating of the pigmented oil layer was found to result in a bright, shiny fabric surface, which may have potential for naturally weatherproof garments. Full article
Show Figures

Figure 1

Review

Jump to: Editorial, Research

30 pages, 9548 KiB  
Review
Structurally Uncommon Secondary Metabolites Derived from Endophytic Fungi
by Humberto E. Ortega, Daniel Torres-Mendoza, Zuleima Caballero E. and Luis Cubilla-Rios
J. Fungi 2021, 7(7), 570; https://doi.org/10.3390/jof7070570 - 17 Jul 2021
Cited by 44 | Viewed by 4520
Abstract
Among microorganisms, endophytic fungi are the least studied, but they have attracted attention due to their high biological diversity and ability to produce novel and bioactive secondary metabolites to protect their host plant against biotic and abiotic stress. These compounds belong to different [...] Read more.
Among microorganisms, endophytic fungi are the least studied, but they have attracted attention due to their high biological diversity and ability to produce novel and bioactive secondary metabolites to protect their host plant against biotic and abiotic stress. These compounds belong to different structural classes, such as alkaloids, peptides, terpenoids, polyketides, and steroids, which could present significant biological activities that are useful for pharmacological or medical applications. Recent reviews on endophytic fungi have mainly focused on the production of novel bioactive compounds. Here, we focus on compounds produced by endophytic fungi, reported with uncommon bioactive structures, establishing the neighbor net and diversity of endophytic fungi. The review includes compounds published from January 2015 to December 2020 that were catalogued as unprecedented, rare, uncommon, or possessing novel structural skeletons from more than 39 different genera, with Aspergillus and Penicillium being the most mentioned. They were reported as displaying cytotoxic, antitumor, antimicrobial, antiviral, or anti-inflammatory activity. The solid culture, using rice as a carbon source, was the most common medium utilized in the fermentation process when this type of compound was isolated. Full article
Show Figures

Figure 1

34 pages, 2278 KiB  
Review
Sphinganine-Analog Mycotoxins (SAMs): Chemical Structures, Bioactivities, and Genetic Controls
by Jia Chen, Zhimin Li, Yi Cheng, Chunsheng Gao, Litao Guo, Tuhong Wang and Jianping Xu
J. Fungi 2020, 6(4), 312; https://doi.org/10.3390/jof6040312 - 24 Nov 2020
Cited by 18 | Viewed by 4180
Abstract
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, [...] Read more.
Sphinganine-analog mycotoxins (SAMs) including fumonisins and A. alternata f. sp. Lycopersici (AAL) toxins are a group of related mycotoxins produced by plant pathogenic fungi in the Fusarium genus and in Alternaria alternata f. sp. Lycopersici, respectively. SAMs have shown diverse cytotoxicity and phytotoxicity, causing adverse impacts on plants, animals, and humans, and are a destructive force to crop production worldwide. This review summarizes the structural diversity of SAMs and encapsulates the relationships between their structures and biological activities. The toxicity of SAMs on plants and animals is mainly attributed to their inhibitory activity against the ceramide biosynthesis enzyme, influencing the sphingolipid metabolism and causing programmed cell death. We also reviewed the detoxification methods against SAMs and how plants develop resistance to SAMs. Genetic and evolutionary analyses revealed that the FUM (fumonisins biosynthetic) gene cluster was responsible for fumonisin biosynthesis in Fusarium spp. Sequence comparisons among species within the genus Fusarium suggested that mutations and multiple horizontal gene transfers involving the FUM gene cluster were responsible for the interspecific difference in fumonisin synthesis. We finish by describing methods for monitoring and quantifying SAMs in food and agricultural products. Full article
Show Figures

Figure 1

37 pages, 5573 KiB  
Review
Fungal Pigments and Their Roles Associated with Human Health
by Lan Lin and Jianping Xu
J. Fungi 2020, 6(4), 280; https://doi.org/10.3390/jof6040280 - 12 Nov 2020
Cited by 51 | Viewed by 5371
Abstract
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host [...] Read more.
Fungi can produce myriad secondary metabolites, including pigments. Some of these pigments play a positive role in human welfare while others are detrimental. This paper reviews the types and biosynthesis of fungal pigments, their relevance to human health, including their interactions with host immunity, and recent progresses in their structure–activity relationships. Fungal pigments are grouped into carotenoids, melanin, polyketides, and azaphilones, etc. These pigments are phylogenetically broadly distributed. While the biosynthetic pathways for some fungal pigments are known, the majority remain to be elucidated. Understanding the genes and metabolic pathways involved in fungal pigment synthesis is essential to genetically manipulate the production of both the types and quantities of specific pigments. A variety of fungal pigments have shown wide-spectrum biological activities, including promising pharmacophores/lead molecules to be developed into health-promoting drugs to treat cancers, cardiovascular disorders, infectious diseases, Alzheimer’s diseases, and so on. In addition, the mechanistic elucidation of the interaction of fungal pigments with the host immune system provides valuable clues for fighting fungal infections. The great potential of fungal pigments have opened the avenues for academia and industries ranging from fundamental biology to pharmaceutical development, shedding light on our endeavors for disease prevention and treatment. Full article
Show Figures

Figure 1

37 pages, 6773 KiB  
Review
Immunomodulatory Effects of Edible and Medicinal Mushrooms and Their Bioactive Immunoregulatory Products
by Shuang Zhao, Qi Gao, Chengbo Rong, Shouxian Wang, Zhekun Zhao, Yu Liu and Jianping Xu
J. Fungi 2020, 6(4), 269; https://doi.org/10.3390/jof6040269 - 08 Nov 2020
Cited by 81 | Viewed by 11354
Abstract
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes [...] Read more.
Mushrooms have been valued as food and health supplements by humans for centuries. They are rich in dietary fiber, essential amino acids, minerals, and many bioactive compounds, especially those related to human immune system functions. Mushrooms contain diverse immunoregulatory compounds such as terpenes and terpenoids, lectins, fungal immunomodulatory proteins (FIPs) and polysaccharides. The distributions of these compounds differ among mushroom species and their potent immune modulation activities vary depending on their core structures and fraction composition chemical modifications. Here we review the current status of clinical studies on immunomodulatory activities of mushrooms and mushroom products. The potential mechanisms for their activities both in vitro and in vivo were summarized. We describe the approaches that have been used in the development and application of bioactive compounds extracted from mushrooms. These developments have led to the commercialization of a large number of mushroom products. Finally, we discuss the problems in pharmacological applications of mushrooms and mushroom products and highlight a few areas that should be improved before immunomodulatory compounds from mushrooms can be widely used as therapeutic agents. Full article
Show Figures

Figure 1

27 pages, 3805 KiB  
Review
Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability
by Jacqueline A. Takahashi, Bianca V. R. Barbosa, Bruna de A. Martins, Christiano P. Guirlanda and Marília A. F. Moura
J. Fungi 2020, 6(4), 223; https://doi.org/10.3390/jof6040223 - 15 Oct 2020
Cited by 28 | Viewed by 5521
Abstract
Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development [...] Read more.
Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development of additives and nutraceutical products of natural origin. Fungi produce several metabolites with bioactivity against NTCD as well as pigments, dyes, antioxidants, polysaccharides, and enzymes that can be explored as substitutes for synthetic food additives. Research in this area has increased the yields of metabolites for industrial applications through improving fermentation conditions, application of metabolic engineering techniques, and fungal genetic manipulation. Several modern hyphenated techniques have impressively increased the rate of research in this area, enabling the analysis of a large number of species and fermentative conditions. This review thus focuses on summarizing the nutritional, pharmacological, and economic importance of fungi and their metabolites resulting from applications in the aforementioned areas, examples of modern techniques for optimizing the production of fungi and their metabolites, and methodologies for the identification and analysis of these compounds. Full article
Show Figures

Graphical abstract

12 pages, 604 KiB  
Review
Application of Probiotic Yeasts on Candida Species Associated Infection
by Lohith Kunyeit, Anu-Appaiah K A and Reeta P. Rao
J. Fungi 2020, 6(4), 189; https://doi.org/10.3390/jof6040189 - 25 Sep 2020
Cited by 15 | Viewed by 5513
Abstract
Superficial and life-threatening invasive Candida infections are a major clinical challenge in hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is exacerbated by the limited availability of antifungals and their associated side-effects. In the current review, we discuss the application of probiotic [...] Read more.
Superficial and life-threatening invasive Candida infections are a major clinical challenge in hospitalized and immuno-compromised patients. Emerging drug-resistance among Candida species is exacerbated by the limited availability of antifungals and their associated side-effects. In the current review, we discuss the application of probiotic yeasts as a potential alternative/ combination therapy against Candida infections. Preclinical studies have identified several probiotic yeasts that effectively inhibit virulence of Candida species, including Candida albicans, Candida tropicalis, Candida glabrata, Candida parapsilosis, Candida krusei and Candida auris. However, Saccharomyces cerevisiae var. boulardii is the only probiotic yeast commercially available. In addition, clinical studies have further confirmed the in vitro and in vivo activity of the probiotic yeasts against Candida species. Probiotics use a variety of protective mechanisms, including posing a physical barrier, the ability to aggregate pathogens and render them avirulent. Secreted metabolites such as short-chain fatty acids effectively inhibit the adhesion and morphological transition of Candida species. Overall, the probiotic yeasts could be a promising effective alternative or combination therapy for Candida infections. Additional studies would bolster the application of probiotic yeasts. Full article
Show Figures

Figure 1

15 pages, 1058 KiB  
Review
Antagonistic Yeasts: A Promising Alternative to Chemical Fungicides for Controlling Postharvest Decay of Fruit
by Xiaokang Zhang, Boqiang Li, Zhanquan Zhang, Yong Chen and Shiping Tian
J. Fungi 2020, 6(3), 158; https://doi.org/10.3390/jof6030158 - 31 Aug 2020
Cited by 90 | Viewed by 6506
Abstract
Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes [...] Read more.
Fruit plays an important role in human diet. Whereas, fungal pathogens cause huge losses of fruit during storage and transportation, abuse of chemical fungicides leads to serious environmental pollution and endangers human health. Antagonistic yeasts (also known as biocontrol yeasts) are promising substitutes for chemical fungicides in the control of postharvest decay owing to their widespread distribution, antagonistic ability, environmentally friendly nature, and safety for humans. Over the past few decades, the biocontrol mechanisms of antagonistic yeasts have been extensively studied, such as nutrition and space competition, mycoparasitism, and induction of host resistance. Moreover, combination of antagonistic yeasts with other agents or treatments were developed to improve the biocontrol efficacy. Several antagonistic yeasts are used commercially. In this review, the application of antagonistic yeasts for postharvest decay control is summarized, including the antagonistic yeast species and sources, antagonistic mechanisms, commercial applications, and efficacy improvement. Issues requiring further study are also discussed. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Review
Saccharomyces boulardii: What Makes It Tick as Successful Probiotic?
by Pedro Pais, Vanda Almeida, Melike Yılmaz and Miguel C. Teixeira
J. Fungi 2020, 6(2), 78; https://doi.org/10.3390/jof6020078 - 04 Jun 2020
Cited by 117 | Viewed by 20226
Abstract
Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long [...] Read more.
Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function. Full article
Show Figures

Figure 1

23 pages, 3061 KiB  
Review
Fungal Pigments: Potential Coloring Compounds for Wide Ranging Applications in Textile Dyeing
by Chidambaram Kulandaisamy Venil, Palanivel Velmurugan, Laurent Dufossé, Ponnuswamy Renuka Devi and Arumugam Veera Ravi
J. Fungi 2020, 6(2), 68; https://doi.org/10.3390/jof6020068 - 20 May 2020
Cited by 63 | Viewed by 9133
Abstract
Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. [...] Read more.
Synthetic pigments/non-renewable coloring sources used normally in the textile industry release toxic substances into the environment, causing perilous ecological challenges. To be safer from such challenges of synthetic colorants, academia and industries have explored the use of natural colorants such as microbial pigments. Such explorations have created a fervent interest among textile stakeholders to undertake the dyeing of textile fabrics, especially with fungal pigments. The biodegradable and sustainable production of natural colorants from fungal sources stand as being comparatively advantageous to synthetic dyes. The prospective scope of fungal pigments has emerged in the opening of many new avenues in textile colorants for wide ranging applications. Applying the biotechnological processes, fungal pigments like carotenoids, melanins, flavins, phenazines, quinones, monascins, violacein, indigo, etc. could be extracted on an industrial scale. This review appraises the studies and applications of various fungal pigments in dyeing textile fabrics and is furthermore shedding light on the importance of toxicity testing, genetic manipulations of fungal pigments, and their future perspectives under biotechnological approaches. Full article
Show Figures

Figure 1

15 pages, 272 KiB  
Review
Selenium Biofortification of Crop Food by Beneficial Microorganisms
by Yuanming Ye, Jingwang Qu, Yao Pu, Shen Rao, Feng Xu and Chu Wu
J. Fungi 2020, 6(2), 59; https://doi.org/10.3390/jof6020059 - 03 May 2020
Cited by 34 | Viewed by 4283
Abstract
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake [...] Read more.
Selenium (Se) is essential for human health, however, Se is deficient in soil in many places all around the world, resulting in human diseases, such as notorious Keshan disease and Keshin–Beck disease. Therefore, Se biofortification is a popular approach to improve Se uptake and maintain human health. Beneficial microorganisms, including mycorrhizal and root endophytic fungi, dark septate fungi, and plant growth-promoting rhizobacteria (PGPRs), show multiple functions, especially increased plant nutrition uptake, growth and yield, and resistance to abiotic stresses. Such functions can be used for Se biofortification and increased growth and yield under drought and salt stress. The present review summarizes the use of mycorrhizal fungi and PGPRs in Se biofortification, aiming to improving their practical use. Full article
Back to TopTop